Sterne - Entwicklung und Ende

Größe: px
Ab Seite anzeigen:

Download "Sterne - Entwicklung und Ende"

Transkript

1 Sterne - Entwicklung und Ende André Kesser 5. Juli Entstehung von Sternen 1.1 Vorraussetzungen für die Bildung von Sternen Sterne entstehen aus interstellaren Gaswolken. Diese können aus Überresten von früheren Sternen bestehen, oder direkt nach dem Urknall entstanden sein. Sterne die aus von Vorgängersternen stammenden Gaswolken entstehen, nennt man Population II Sterne. Sie enthalten im Vergleich zu Population I Sternen, die aus Gaswolken entstanden sind, die sich direkt nach dem Urknall gebildet haben, mehr schwerere Elemente. Das nach Sir James Hopwood Jeans benannte Jeans Kriterium trifft eine Aussage darüber, wie groß eine Masse in Abhängigkeit von der Temperatur und der Dichte sein muss, damit eine interstellare Gaswolke kollabieren kann. Es gilt: mit: M : Masse der Gaswolke k B : Boltzmann Konstante T : Temperatur m mol : mittlere molare Masse ρ : Dichte des Gases Das Jeans Kriterium folg aus dem Viralsatz ( E pot = 2 E kin ) und der kalorischen Zustandsgleichung eines idealen Gases (E kin = 3k 2 BT M m mol ) durch Integration über den Energiegewinn. M > ( 5kB T Gm mol ) 3 ( ) 3 4πρ (1) Abbildung 1: Das etwa 7000 Lichtjahre entfernte Sternentstehungsgebiet Adlernebel (NGC 6611) 1

2 Besitzt die Gaswolke eine ausreichende Größe und damit eine genügend große Masse, zieht sie sich aufgrund der Gravitation zusammen. Da der Drehimpuls der Gaswolke erhalten bleiben muss, bildet sich ein Ringsystem oder eine Akkretionsscheibe. Ein Ringsystem kann weiter fragmentieren und mehrere Sterne bilden. Man spricht dann von einem Doppel- oder Mehrsternsystem. Aus einer Akkretionsscheibe können sich, wie etwa in unserem Sonnensystem, Planeten bilden. Der Drehimpuls ist dann in Form von Bahndrehimpuls im Doppel- bzw. Mehrfachsternsystem oder den Planeten gespeichert. Beispielsweise tragen in unserem Sonnensystem Saturn und Jupiter zusammen 99% des Drehimpulses, aber die Sonne 99% der Masse. Etwa 80% der beobachtbaren Sterne befinden sich in einem Doppel- oder Mehrfachsternsystem. re Massen kollabieren schneller als kleine. Die Zeit, die eine Gaswolke benötigt um zu kollabieren wird Helmholz-KelvinZeit genannt, sie beträgt 105 bis 108 Jahre. Abbildung 3: HD216956, ein Akkretionsscheibe, aus dem sich ein Stern mit einem Planetensystem bilden kann. 1.2 Energieproduktion in einem Stern Der Kollaps der Gaswolle kommt zum Halt, wenn das Kerngebiet sich auf etwa 4000K erwärmt hat. Durch das Pauli-Prinzip wird der Kern dicht und der Kern wirkt als Stoßfront für die äußere, weiter einfallende Materie. Dadurch erhöhen sich sowohl Druck als auch Temperatur. Ist beides genügend hoch, kommt es zum Wasserstoffbrennen. Solche so genannten Protosterne sind wegen der Staubhülle, die sie umgibt zunächst nur im Infrarotbereich zu sehen. Abhängig von der Masse des Sterns kann dieser verschiedene Brennstufen durchlaufen. Dabei muss für jede höhere Brennstufe der Druck und die Temperatur im Kern des Sterns zunehmen. Diese Zunahme kann nur dadurch entstehen, dass äußere Schalen in den Kern stürzen. Sterne mit Massen Abbildung 2: M57, ein Ringnebel, aus dem sich ein Doppel- oder Mehrfachsternsystem bilden kann. Der Kollaps einer solchen Gaswolke ist abhängig von ihrer Ursprungsgröße, größe- 2

3 bis etwa 8M können folgende Brennstufen durchlaufen: Wasserstoffbrennen Heliumbrennen Da mit jeder höheren Brennstufe mehr Energie erforderlich wird um die Coulombwälle bei der Kernfusion zu überwinden, können nur genügend schwere Sterne auch weitere Brennstufen durchlaufen: 1.3 Herzsprung-Russel- Diagramm 1913 entwickelte Henry Norris Russell beruhend auf Arbeiten von Ejnar Herzsprung aus dem Jahre 1905 das nach beiden benannte Herzsprung-Russell-Diagramm (HRD). Kohlenstoffbrennen Neonbrennen Sauerstoffbrennen Siliziumbrennen Die Asche einer Brennstufe ist dabei gleichzeitig der Ausgangsstoff der nächsten Stufe. Dabei ist das Wasserstoffbrennen die am längsten dauernde Brennstufe, alle höheren Stufen laufen zunehmend schneller ab. Tabelle (1.2) zeigt den zeitlichen Verlauf, sowie die nötige Temperatur der einzelnen Brennstufen eines Sternes mit M = 25M : Abbildung 4: Henry Norris Russell Russell klassifizierte die Sterne nach ihrer Leuchtkraft und Temperatur. Dabei entstehen vier Gruppen. Zum einen ergibt sich die Hauptreihe (Main Sequence), auf der sich etwa 70% der Sterne befinden. Brennphase Temp. in K Dauer H-Brennen J He-Brennen 2, J C-Brennen 9, J Ne-Brennen 1, J O-Brennen 2, J 2 Si-Brennen 4, d Tabelle 1: Zeitlicher Ablauf und benötigte Temperatur der Brennstufen eines Sterns mit M = 25M. Abbildung 5: Herzsprung Russell Diagramm 3

4 Leuchtkraft Sonne = 1 Zeit Phase ,1 0,01 Sterne beginnen ihr Leben am unteren Ende der Hauptreihe als rote Zwerge und wandern während der Phase des Wasserstoffbrennens auf der Hauptreihe weiter nach oben. Rechts oberhalb der Hauptreihe befinden sich die so genannten Riesensterne (Giants). Diese Sterne befinden sich am Ende der Wasserstoffbrennphase im Übergang zum Heliumbrennen. Bei noch größeren Leuchtkräften befinden sich Überriesen (Supergiants). Dabei handelt es sich um Sterne bei denen die das Heliumbrennen schlagartig begonnen hat. Bei niedrigen Leuchtkräften aber hohen Temperaturen befinden sich die Weißen Zwerge (White Dwarts). Weiße Zwerge sind Überreste erloschener Sterne. ~9 Mrd J ~1 Mrd J ~100 Mill J ~ J Hauptreihe Roter Riese Gelber Riese Planet. Nebel Weißer Zwerg Sonne 4,5 Mrd J (jetzt) 12,2 Mrd J 12,3 Mrd J 12,3305 Mrd J 13,3306 Mrd J 10 4 Kern Schrumpft Abstoßen Planetrarischer Nebel der Hülle 10 3 Roter Überriese Kern kühlt aus Weißer Zwerg Roter Riese Hauptreihe Temperatur K Abbildung 6: Wanderung der Sonne im Herzsprung-Russell-Diagramm Abbildung Nr. (6) zeigt beispielhaft die Wanderung der Sonne auf dem Herzsprung- Russell-Diagramm. Während er Wasserstoffbrennphase, die bei der Sonne etwa 10 9 Jahre dauert, wandert sie auf der Hauptreihe. Ist der Wasserstoffvorrat des Kerns aufgebraucht, fehlt der Gegendruck zum Gravitationsdruck. Dadurch beginnt die Schale in den Kern zu stürzen und erhöht damit Druck und Temperatur im Kern. Dadurch dass dieser durch das Pauli-Prinzip dicht wird, wirkt er als Stoßfront. Die reflektierte Stoßwelle bläht die äußeren Schalen auf einhundert Sonnenradien auf. Die Temperatur der ausgedehnten Schalen nimmt ab, die Leuchtkraft der Sonne bleibt hingegen durch die größere Oberfläche etwa konstant. Die Sonne ist zum Roten Riesen geworden. Durch den zunehmenden Druck beginnt in den Schalen der Sonne ebenfalls eine Wasserstoffbrennphase. Befindet sich eine genügende Menge an Helium im Kern (etwa 0, 45M ), kommt es zum Heliumflash. Dabei zündet explosionsartig die Heliumbrennphase und bläht die Sonne zu einem Überriesen mit 140R auf. Stabilisiert sich das Heliumbrennen, wird die Sonne zum Gelben Riesen. Am Ende des Heliumbrennens wird die Sonne ihre Hülle abstoßen. Die zunächst noch sichtbare Hülle kühlt ab, weshalb die Temperatur sinkt. Wird der übrig gebliebene Kern sichtbar, ist die Sonne zu einem Weißen Zwerg geworden, der nur noch Restwärme abstrahlt. 2 Ende von Sternen Es gibt drei verschiedene Möglichkeiten, wie ein Stern sein Leben beenden kann. Sterne mit einer Masse bis 1, 44M, der Chandrasekhar-Grenze, enden als Weißer Zwerg, Sterne mit bis zu 3M, der Tolman-Oppenheimer- Volkoff-Grenze, enden als Neutronenstern. Schwere Sterne werden zu Schwarzen Löchern. 2.1 Weiße Zwerge Weiße Zwerge sind die Kerne leichter Sterne, die ihr Hülle bereits durch eine Supernova abgestoßen haben. Sie besitzen keine eigene Energieproduktion mehr, sondern 4

5 strahlen nur noch Restwärme ab. Sie haben Temperaturen von 10 4 bis 10 5 K. Dem Gravitationsdruck wird durch den Entartungsdruck der Elektronen standgehalten. Dadurch besitzt der Weiße Zerg eine hohe Dichte. Etwa die Masse der Sonne ist auf des Volumen der Erde komprimiert. Dadurch herrscht an der Oberfläche eines Weißen Zwerges eine im Vergeich zur Erde etwa mal größere Fallbeschleunigung. Abbildung 7: Weißer Zwerg: Sirius B, Begleiter des Sirius im Sternbild Großer Hund Dem Gravitationsdruck hält nun der Entartungsdruck der Neutronen stand. Entsprechend steigt steigt auch die Fallbeschleunigung an und erreicht Werte, die mal so groß wie die Fallbeschleunigung auf der Erde. Aufgrund der Drehimpulserhaltung weisen Neutronensterne eine hohe Drehfrequenz auf, es wurden Drehfrequenzen bis zu 716Hz gemessen. Neutronensterne weisen ebenfalls ein hohes Magnetfeld bis zu 10 8 T auf, steht dieses nicht parallel zu Drehachse, spricht man von einem Pulsar. Die Hülle des Neutronensterns besteht aus Eisenkernen und freien Elektronen. Durch die Rotation kommt es zu einer Hallspannung im Bereich von V. 2.3 Schwarzes Loch Bei Schwarzen Löchern wird der Entartungsdruck der Neutonen überwunden und das Volumen des Sterns praktisch auf Null reduziert. Durch die starke Gravitation wird die Raumzeit bis zur Singularität gekrümmt. Schwarze Löcher sind nicht sichtbar, können aber durch Materiejets, die senkrecht zur Akkretionsscheibe austreten detektiert werden. Weiße Zwerge besitzen eine Hülle aus Wasserstoff und Helium sowie meist einen Kern aus Sauerstoff und Kohlenstoff. 2.2 Neutronenstern Bei Neutronensternen wird der Entartungsdruck der Elektronen durch die Gravitation überwunden. Die Elektronen werden dadurch in die Protonen gedrückt und wandeln sich mit diesen zu Neutronen und Neutrinos um: p + e n + ν e (2) Abbildung 8: Prinzipdarstellung eines Schwarzen Lochs, das einen Stern verschlingt 5

6 2.4 Supernovae Es gibt grundsätzlich zwei verschiedene Supernovaetype, die KernkollapsSupernovae und die DoppelsternSupernovae. Abbildung 10: Supernova aus dem Jahr 1987 Bei einer Doppelstern-Spernovae saugt ein Weißer Zwerg in einem Doppelsternsystem einem benachbarten Roten Riesen Materie ab und wächst bis zur Chandrasekhar-Grenze an. Die anschließende Supernova dient als Standardkerze zur Entfernungsmessung. Der Begleitstern wird zum Fluchtstern (Runaway Star). Abbildung 9: Supernova aus dem Jahr 1054 Bei der Kernkollaps-Supernovae werden die Schalen des Stern am Ende des Sternlebens in den interstellaren Raum geschleudert. Dies geschieht dadurch, dass die Hülle zunächst auf den Kern zufällt, da die Energie fehlt, der Gravitation stand zu halten. Wird der Kern durch das Pauli-Prinzip dicht, wirkt er als Stoßfront, an der die Stoßwelle reflektiert wird. Bei dieser Explosion können Bedingungen herrschen, die für die Bildung von Elementen schwerer als Eisen Voraussetzung sind. Die abgesprengte Gashülle erreicht Geschwindigkeiten bis 106 km. Fast die gesamte Energie Abbildung 11: Prinzipdarstellung einer h (99%) wird in Form von Neutrinos abge- Doppelsternsupernova geben. 6

7 3 Nachweis von Neutrinos aus Supernovae Um rechtzeitig vor Supernovae warnen zu können besteht das Supernova- Frühwarnungssystem (SNEW), ihm angeschlossen sind die Detektoren: SNO (Kanada) Super-Kamikande (Japan) LVD (Italien) IceCube (Antarktis) aus 5160 lichtempfindlichen Sensoren an 86 Strängen, die in das Eis der Antarktik eingelassen sind. IceCube ist zum Nachweis von Neutrinos genbaut. Hochenergetische Neutrinos können durch die Reaktion von Myon-Neutrinos detektiert werden: ν µ + N X + µ (3) Das dabei entstehende Tscherenkow-Licht kann im hochreinen Eis detektiert werden und lässt damit die Berechnung der Flugbahn des Neutrinos zu. 3.1 IceCube Abbildung 13: Errechnete Flugbahn von Neutrinos, Daten vom 4. Juni 2010 Niederenergetische Neutrinos aus Supernova-Ereignissen können ebenfalls detektiert werden, dazu nutzt man die Reaktion mit Protonen: Abbildung 12: Schematischer Aufbau des IceCube Detektors Der Detektor IceCube, an dem auch die Universität Mainz beteiligt ist und der 2011 fertig gestellt werden soll, besteht ν e + p n + e + (4) Abbildung Nr (14) zeigt ein detektiertes Supanovaereignis. Gut zu erkennen ist der plötzliche Anstieg der Detektionen und die innerhalb von etwa 10 Sekunden abklingende Zahl der Neutrinos. 7

8 DOM Hits ( 20ms binning) No Oscillation Scenario A (NH) Scenario B (IH) sechs Stunden vor sichtbarem Licht die Erde erreichen. 4 Quellen Buch Oberhummer Kerne und Sterne Johann Ambrosius Barth Time Post-Bounce [s] Abbildung 14: Detektiertes Supernova- Ereigniss Mit Hilfe der in Detektoren beobachteten Ereignisse können Astronomen frühgewarnt werden, da Neutrinos aufgrund der geringen Wechselwirkung mit Materie etwa

Vom Sterben der Sterne

Vom Sterben der Sterne Vom Sterben der Sterne Weiße Zwerge, Neutronensterne und Schwarze Löcher Franz Embacher http://homepage.univie.ac.at/franz.embacher/ franz.embacher@univie.ac.at Fakultät für Physik Universität Wien Vortrag

Mehr

Sterne. Eine kurze Zusammenfassung des Sternenlebens. Jörn Lenhardt. Das Leben der Sterne

Sterne. Eine kurze Zusammenfassung des Sternenlebens. Jörn Lenhardt. Das Leben der Sterne Sterne Eine kurze Zusammenfassung des Sternenlebens Jörn Lenhardt Willkommen Entstehung 1/5 Riesige Gas- und Staubwolken Fast Vakuum Durch Gravitation (Schwerkraft) wird die Wolke zusammengehalten Die

Mehr

Moderne Instrumente der Sternbeobachtung

Moderne Instrumente der Sternbeobachtung Moderne Instrumente der Sternbeobachtung Sternentstehung/ Sternentwicklung (Steffen Fuhrmann) Sternbeobachtung (Jan Zimmermann) 0. Gliederung 1. historische Entwicklung 2. Definitionen 3. Entstehung eines

Mehr

Sternentwicklung und das Hertzsprung-Russel-Diagramm

Sternentwicklung und das Hertzsprung-Russel-Diagramm Sternentwicklung und das Hertzsprung-Russel-Diagramm Workshop MNU-Tagung Leipzig 2016 Technische Universität Dresden Dr. rer. nat. Frank Morherr Entwicklung der Sterne Sternentwicklung Weißer Zwerg Schwarzes

Mehr

Sterne - Entwicklung und Ende

Sterne - Entwicklung und Ende Sterne - Entwicklung und Ende Anja Scharth 23. Januar 2011 1 Einleitung Durch die enorme Anzahl an Sonnen in unserem Universum sind Supernovae kein sehr seltenes Ereignis. Dies macht es besonders interessant

Mehr

Massive Sterne: Gravitationskollaps-Supernovae, Neutronensterne & Pulsare

Massive Sterne: Gravitationskollaps-Supernovae, Neutronensterne & Pulsare Massive Sterne: Gravitationskollaps-, & Uni Mainz Vortrag in Astroteilchenphysik im WS 10/11 18. Januar 2011 Überblick 1 Gravitationskollaps- und Entstehung von n 2 Eigenschaften von n 3 Was ist ein Pulsar?

Mehr

Der Lebensweg der Sterne

Der Lebensweg der Sterne Der Lebensweg der Sterne Wahrscheinlich durch die Überreste einer nahen Supernova konnte sich die Sonne samt Planeten bilden. Nach einem Milliarden Jahre langen Leben bläht sie sich nachdem der Wasserstoff

Mehr

Supernova. Katastrophe am Ende eines Sternenlebens W. Stegmüller Folie 2

Supernova. Katastrophe am Ende eines Sternenlebens W. Stegmüller Folie 2 Supernova Katastrophe am Ende eines Sternenlebens 15.01.2008 W. Stegmüller Folie 1 Supernovae Eine Supernova ist das schnell eintretende, helle Aufleuchten eines Sterns am Ende seiner Lebenszeit durch

Mehr

Sternentwicklung. Sternentwicklung

Sternentwicklung. Sternentwicklung Übersicht Nebel Vor- n Stadium Endstadium n Stadium Nach- n Stadium Nebel & Vor-n Stadium Entstehung Eigentlich ist die Entstehung eines Sternes unwahrscheinlich, da Dichte der Atome zu gering Temperaturen

Mehr

- Weisse Zwerge - Neutronensterne & Pulsare - Supernovae Ia, IIa - Gamma Ray Bursts

- Weisse Zwerge - Neutronensterne & Pulsare - Supernovae Ia, IIa - Gamma Ray Bursts Astroteilchenphysik, SS 2006, Vorlesung # 5 - Endstadien von Sterne- - Weisse Zwerge - Neutronensterne & Pulsare - Supernovae Ia, IIa - Gamma Ray Bursts Crab-Pulsar Chandrasekhar G. Drexlin, EKP Hertzsprung

Mehr

Von Weißen Zwergen, Neutronensternen und Schwarzen Löchern

Von Weißen Zwergen, Neutronensternen und Schwarzen Löchern Von Weißen Zwergen, Neutronensternen und Schwarzen Löchern Was uns die Endstadien der Sterne über die Naturgesetze sagen Franz Embacher http://homepage.univie.ac.at/franz.embacher/ franz.embacher@univie.ac.at

Mehr

3.5.5 Sternentstehung und -entwicklung

3.5.5 Sternentstehung und -entwicklung 3.5.5 Sternentstehung und -entwicklung Energiefreisetzung in Sternen durch Kernfusion Problem 1: Energieerzeugung muss irgendwann begonnen haben Wie entstehen Sterne? Problem 2: Irgendwann ist der Kernbrennstoff

Mehr

Supernovae. Peter H. Hauschildt. Hamburger Sternwarte Gojenbergsweg Hamburg

Supernovae. Peter H. Hauschildt. Hamburger Sternwarte Gojenbergsweg Hamburg Supernovae Peter H. Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg sn.tex Supernovae Peter H. Hauschildt 16/2/2005 18:20 p.1 Übersicht Was ist eine Supernova? Was

Mehr

Sternenentwicklung. Martin Hierholzer. Seminar über Nukleare Astrophysik und Anwendungen - SS04 Institut für Kernphysik - Universität Münster

Sternenentwicklung. Martin Hierholzer. Seminar über Nukleare Astrophysik und Anwendungen - SS04 Institut für Kernphysik - Universität Münster Sternenentwicklung Martin Hierholzer Seminar über Nukleare Astrophysik und Anwendungen - SS04 Institut für Kernphysik - Universität Münster sternenentwicklung.tex Sternenentwicklung Martin Hierholzer 25/5/2004

Mehr

Kernkollapssuper novae SN Ib, Ic und II. Moritz Fuchs 11.12.2007

Kernkollapssuper novae SN Ib, Ic und II. Moritz Fuchs 11.12.2007 Kernkollapssuper novae SN Ib, Ic und II Moritz Fuchs 11.12.2007 Gliederung Einleitung Leben eines Sterns bis zur Supernova Vorgänge während der Supernova SN 1987 A r-prozesse Was ist interessant an Supernovae?

Mehr

Wann sind Sterne stabil? Virialsatz

Wann sind Sterne stabil? Virialsatz Exkurs: Fermisterne Wann sind Sterne stabil? Jede Masse ist bestrebt aufgrund der Eigengravitation zu kontrahieren. Sie kann davon nur durch Kräfte gehindert werden, die entgegengesetzt gerichtet sind...

Mehr

Mathis Hartmann. Handout zum Vortrag Stern Entwicklung und Ende. 20.Dezember 2010

Mathis Hartmann. Handout zum Vortrag Stern Entwicklung und Ende. 20.Dezember 2010 Mathis Hartmann Handout zum Vortrag Stern Entwicklung und Ende 20.Dezember 2010 1. Grundlagen 1.1 Historische Entwicklung und wichtige Begriffe Erste Überlegungen über die Struktur des Universums gehen

Mehr

NEUTRONENSTERNE. Eine Reise in die Vergangenheit. Jochen Wambach Institut für Kernphysik TU Darmstadt

NEUTRONENSTERNE. Eine Reise in die Vergangenheit. Jochen Wambach Institut für Kernphysik TU Darmstadt NEUTRONENSTERNE Eine Reise in die Vergangenheit Jochen Wambach Institut für Kernphysik TU Darmstadt NEUTRONENSTERNE Eine Reise in die Vergangenheit Jochen Wambach Institut für Kernphysik TU Darmstadt Was

Mehr

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 7. Anfang und Ende der Welt

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 7. Anfang und Ende der Welt Ziele der Vorlesung: 1.) Die Entwicklung des Universums seit dem Urknall, unsere Heimatgalaxie 2.) Entwicklungszyklen von Sternen mit unterschiedlichen Anfangsmassen, unsere Sonne 3.) Unser Planetensystem

Mehr

Endstadien massiver Sterne Supernova Typ II

Endstadien massiver Sterne Supernova Typ II Endstadien massiver Sterne Supernova Typ II Emissionsnebel - Cassiopesia A Entfernung: 11 000 Lichtjahre Beobachtet: 1950 Krebsnebel Entfernung: 6 300 Lichtjahre Beobachtet: 4. Juli 1054 Endstadien massiver

Mehr

Die Endstadien der Sterne und wie es die Physik schafft, sie zu beschreiben

Die Endstadien der Sterne und wie es die Physik schafft, sie zu beschreiben Die Endstadien der Sterne und wie es die Physik schafft, sie zu beschreiben Franz Embacher http://homepage.univie.ac.at/franz.embacher/ franz.embacher@univie.ac.at Fakultät für Physik Universität Wien

Mehr

13. Aufbau und Entwicklung der Sterne

13. Aufbau und Entwicklung der Sterne 13.1 Sterngeburt Kollaps von interstellaren Gaswolken (dunkle oder leuchtende Nebel) Kalte globules 5-15K Folie 1 Sternentstehung Interstellare Wolken: Fragmentation notwendig, da Jeans- Masse in interstellaren

Mehr

13. Aufbau und Entwicklung der Sterne Sterngeburt Kollaps von interstellaren Gaswolken (dunkle oder leuchtende Nebel) Kalte globules 5-15K

13. Aufbau und Entwicklung der Sterne Sterngeburt Kollaps von interstellaren Gaswolken (dunkle oder leuchtende Nebel) Kalte globules 5-15K 13.1 Sterngeburt Kollaps von interstellaren Gaswolken (dunkle oder leuchtende Nebel) Kalte globules 5-15K Folie 1 Sternentstehung Interstellare Wolken: Fragmentation notwendig, da Jeans- Masse in interstellaren

Mehr

Die Macht der Gravitation vom Leben und Sterben der Sterne

Die Macht der Gravitation vom Leben und Sterben der Sterne Die Macht der Gravitation vom Leben und Sterben der Sterne Franz Embacher http://homepage.univie.ac.at/franz.embacher/ franz.embacher@univie.ac.at Fakultät für Physik Universität Wien Vortrag am GRG17

Mehr

Entwicklung und Ende von Sternen

Entwicklung und Ende von Sternen Entwicklung und Ende von Sternen Seminarvortrag von Klaus Raab 1.) Nebel und deren Verdichtung zu Protosternen 2.) Kernfusion: Energieerzeugung der Sterne 3.) Massenabhängige Entwicklung und Ende von Sternen

Mehr

Sterne, Galaxien und das Universum

Sterne, Galaxien und das Universum Sterne, Galaxien und das Universum Teil 3: Nebel + Sternentstehung Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 18. April 2017 1 / 40 Übersicht Interstellare

Mehr

Anreicherung der interstellaren Materie mit schweren Elementen. Supernovae

Anreicherung der interstellaren Materie mit schweren Elementen. Supernovae Anreicherung der interstellaren Materie mit schweren Elementen Supernovae Unser heutiges Thema... Sterne können exotherm nur Elemente bis Eisen (Z=26) in ihrem Inneren regulär fusionieren. Wie gelangen

Mehr

Entwicklung massereicher Sterne

Entwicklung massereicher Sterne Entwicklung massereicher Sterne Eugenia Litzinger Friedrich-Alexander-Universität Erlangen-Nürnberg 23.11.2009 Inhaltsverzeichnis Entstehung eines massereichen Sternes Definition Entstehungsort Grundgleichungen

Mehr

Die Milchstraße. Sternentstehung. ( clund Observatory, 1940er) Interstellare Materie (ISM) W. Kley: Theoretische Astrophysik 1

Die Milchstraße. Sternentstehung. ( clund Observatory, 1940er) Interstellare Materie (ISM) W. Kley: Theoretische Astrophysik 1 Die Milchstraße ( clund Observatory, 1940er) Interstellare Materie (ISM) W. Kley: Theoretische Astrophysik 1 Die Galaxie M74 (NGC 628) Sternbild: Fische Abstand: 35 Mio. LJ. Rot: sichtbares Licht - ältere

Mehr

XI. Sternentwicklung

XI. Sternentwicklung XI. Sternentwicklung Entwicklungszeitskalen Änderungen eines Sterns kann sich auf drei Zeitskalen abspielen: 1) nukleare Zeitskala t n = Zeit, in der der Stern seine Leuchtkraft durch Kernfusion decken

Mehr

Die Entstehung der Elemente

Die Entstehung der Elemente Die Entstehung der Elemente In der Antike besteht alles Sein aus: Heute: Materie (lat: Stoff) sind Beobachtungsgegenstände die Masse besitzen. Raumbereiche, die keine Materie enthalten bezeichnet man als

Mehr

Wie Supernovae explodieren

Wie Supernovae explodieren Aufbegehren gegen die Macht der Gravitation Wie Supernovae explodieren Hans-Thomas Janka Max-Planck-Institut für Astrophysik Garching Krebsnebel: Gasförmiger Überrest der Supernova des Jahres 1054 nach

Mehr

Reise in das Weltall bis zurück. zum Urknall

Reise in das Weltall bis zurück. zum Urknall Reise in das Weltall bis zurück zum Urknall Reise in 3 Stufen - unser Wohnhaus (Planetensystem) - unsere Heimatinsel (Milchstraßengalaxie) - bis zum Ursprung der Welt (Urknall) Von September 2003 bis September

Mehr

Sterne, Galaxien und das Universum

Sterne, Galaxien und das Universum Sterne, Galaxien und das Universum Teil 4: Leben nach der Hauptreihe Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 18. April 2017 1 / 49 Übersicht auf dem

Mehr

Sterne, Galaxien und das Universum

Sterne, Galaxien und das Universum Sterne, Galaxien und das Universum Teil 5: Das Ende der Sterne Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 18. April 2017 1 / 56 Übersicht Sterne mit geringer

Mehr

Sternentstehung. Von der Molekülwolke zum T-Tauri-Stern. Von Benedict Höger

Sternentstehung. Von der Molekülwolke zum T-Tauri-Stern. Von Benedict Höger Sternentstehung Von der Molekülwolke zum T-Tauri-Stern Von Benedict Höger Inhaltsverzeichnis 1. Unterschied zwischen Stern und Planet 2. Sternentstehung 2.1 Wo entsteht ein Stern? 2.2 Unterschied HI und

Mehr

Endstadien der Sternentwicklung

Endstadien der Sternentwicklung Endstadien der Sternentwicklung Prof. Dr. Werner Becker & Dipl. Phys. Mike G. Bernhardt Max-Planck Institut für extraterrestrische Physik Max-Planck Institut für Astrophysik web at mpe-mpg.de http://www.xray.mpe.mpg.de/~web

Mehr

8.1 Einleitung Die interstellare Materie Sternentstehung... 3

8.1 Einleitung Die interstellare Materie Sternentstehung... 3 Astronomie Lernheft 8 Sternkunde I: Sternentstehung Inhaltsverzeichnis: 8.1 Einleitung... 2 8.2 Die interstellare Materie... 2 8.3 Sternentstehung... 3 8.4 Fusionsmechanismen... 3 8.4.1 Die Proton-Proton-Reaktion...

Mehr

Sternenentwicklung. Sternenentwicklung. Scheinseminar Astro- und Teilchenphysik SoSe Fabian Hecht

Sternenentwicklung. Sternenentwicklung. Scheinseminar Astro- und Teilchenphysik SoSe Fabian Hecht Fabian Hecht 29.04.2010 Physikalische Grundlagen des Sternenaufbaus Motivation nur beschreibbar mit Wissen über Sternenaufbau 4 Zentrale Grundgleichungen zusammen mit Zustandsgleichungen und Zusammensetzung

Mehr

Neutrinoquellen im Kosmos: Supernovae Martina Davids

Neutrinoquellen im Kosmos: Supernovae Martina Davids Neutrinoquellen im Kosmos: Supernovae Martina Davids Betreuer: Prof. M. Tonutti Neutrino-Seminar, RWTH Aachen, WS Gliederung Supernovae - Typen und Ablauf Cherenkovdetektoren: Funktionsweise Beispiele:

Mehr

Wie lange leben Sterne? und Wie entstehen sie?

Wie lange leben Sterne? und Wie entstehen sie? Wie lange leben Sterne? und Wie entstehen sie? Neue Sterne Neue Sterne Was ist ein Stern? Unsere Sonne ist ein Stern Die Sonne ist ein heißer Gasball sie erzeugt ihre Energie aus Kernfusion Planeten sind

Mehr

Wiederholung Sternentwicklung. Christian-Weise-Gymnasium Zittau - FB Physik - Mirko Hans 1

Wiederholung Sternentwicklung. Christian-Weise-Gymnasium Zittau - FB Physik - Mirko Hans 1 Wiederholung Sternentwicklung Christian-Weise-Gymnasium Zittau - FB Physik - Mirko Hans 1 stellare schwarze Löcher (Kollapsare) stellare schwarze Löcher vs. supermassive schwarze Löcher Historisches Eigenschaften

Mehr

Unsere weitere kosmische Umgebung

Unsere weitere kosmische Umgebung Sachinformationen 3 Unsere weitere kosmische Umgebung Nachbarsterne, Nebel und Sternhaufen in der Milchstraße Galaxien Autor: Dieter Seiwald Wie viele Sterne gibt es? 6000 sind mit freiem Auge sichtbar,

Mehr

Gigantische Explosionen

Gigantische Explosionen Gigantische Explosionen Gammaastronomie - das Universum bei höchsten Energien Gernot Maier Credit: Stephane Vetter (Nuits sacrees) Kollidierende Galaxien Licht = Elektromagnetische Strahlung Welle Teilchen

Mehr

Astronomische Einheit

Astronomische Einheit Einführung in die Astronomie ii Sommersemester 2016 Musterlösung Nützliche Konstanten Astronomische Einheit Parsec Gravitationskonstante Sonnenmasse Sonnenleuchtkraft Lichtgeschwindigkeit Hubble Konstante

Mehr

Physik Q4 (sp, )

Physik Q4 (sp, ) DIE SONNE Physik Q4 (sp, 10.02.2017) SONNE UND SONNENSYSTEM I Sonne ist von erheblicher Bedeutung als Energiequelle Kernfusion im Innern enthält ca. 99 % der Masse des Sonnensystems da wir sie gut beobachten

Mehr

Interstellares Medium

Interstellares Medium Interstellares Medium In ferner Zukunft: Alice, eine Astronautin, und ihr Kollege Bob unterhalten sich, wie es ihnen bei ihren Weltraumreisen so ergangen ist. Bob berichtet aufgeregt: Bob: "Bei unserem

Mehr

6. Sterne. 6.1 Die Sterne auf der Hauptreihe Energiequelle normaler Sterne

6. Sterne. 6.1 Die Sterne auf der Hauptreihe Energiequelle normaler Sterne 6. Sterne 6.1 Die Sterne auf der Hauptreihe 6.1.1 Energiequelle normaler Sterne Gravitationskontraktion: 10 7 Jahre (Russell 1919) Umwandlung von Materie in Energie (basierend auf Einstein 1907): DE =

Mehr

Endstadium massiver Sterne. Supernova Typ II

Endstadium massiver Sterne. Supernova Typ II Hauptseminar Astro- und Elementarteilchenphysik SS2009 Endstadium massiver Sterne Supernova Typ II Alexander Jansen Universität Karlsruhe (TH) 1 Inhaltsverzeichnis Eine kleine Einleitung...3 Die Rolle

Mehr

Übersicht. 1. Unsere Sonne als Stern 1.1. Modell Sonne. Die Entstehung von Weißen Zwergen & Neutronensternen

Übersicht. 1. Unsere Sonne als Stern 1.1. Modell Sonne. Die Entstehung von Weißen Zwergen & Neutronensternen Übersicht Die Entstehung von Weißen Zwergen & Neutronensternen Author: Tutor: Ort: Alexander Kolodzig Dr. Marek Kowalski Physik-Institut, Humboldt Universität zu Berlin Datum: 1..008 email: alex_kolo@gmx.de

Mehr

1 Interstellares Gas und Staub

1 Interstellares Gas und Staub Hannes Konrad Martin Wolf Einführung in die Astronomie I 18.01.2008 Johannes Iloff Übung 9 1 Interstellares Gas und Staub Die interstellare Wolke besteht aus atomaren und molekularen Wassestoff, sowie

Mehr

Susanne Neueder: Kernkollaps Supernovae

Susanne Neueder: Kernkollaps Supernovae Universität Regensburg Naturwissenschaftliche Fakultät II Ausbildungsseminar: Kerne und Sterne Susanne Neueder: Kernkollaps Supernovae 22. 5. 2007 1 Gliederung 1. Einführung 1.1. Zwei unterschiedliche

Mehr

Supernovae Explosionsmechanismen

Supernovae Explosionsmechanismen Supernovae Explosionsmechanismen Victoria Grinberg La Villa - 31.08.2006 1 Inhaltsüberblick Klassifizierung und Explosionsmechanismen Supernovae vom Typ Ia Vorläuferstern Explosion zusätzliche Betrachtungen

Mehr

Wiederholung Sternentwicklung. Christian-Weise-Gymnasium Zittau - FB Physik - Mirko Hans 1

Wiederholung Sternentwicklung. Christian-Weise-Gymnasium Zittau - FB Physik - Mirko Hans 1 Wiederholung Sternentwicklung Christian-Weise-Gymnasium Zittau - FB Physik - Mirko Hans 1 stellare schwarze Löcher (Kollapsare) Historisches stellare schwarze Löcher vs. supermassive schwarze Löcher Eigenschaften

Mehr

Vom Urknall zur Dunklen Energie

Vom Urknall zur Dunklen Energie Wie ist unser Universum entstanden und wie wird es enden? Wie werden Sterne geboren, leben und sterben dann? Woher kommen die Elemente im Universum? Einleitung Entstehung des Universums vor ungefähr 14

Mehr

Sternentwicklung. Ziele

Sternentwicklung. Ziele Ziele DAS HERTZSPRUNG-RUSSELL DIAGRAMM Eigenschaften von Sternen. Übersicht über Sterntypen: Hauptreihe, Riesen, Zwerge, Neutronensterne. STERNSTRUKTUR UND STERNENTWICKLUNG Modelle als Schlüssel zur Kenntnis

Mehr

Endstadien der Sternentwicklung. Max Camenzind ZAH /LSW SS 2011

Endstadien der Sternentwicklung. Max Camenzind ZAH /LSW SS 2011 Endstadien der Sternentwicklung Max Camenzind ZAH /LSW TUDA @ SS 2011 Übersicht M in < 8 Sonnenmassen Weiße Zwerge (>1 Mrd. in Galaxis, 10.000 in Kugelsternhaufen) 8 < M in < 25 Sonnenmassen Neutronensterne

Mehr

HERTZSPRUNG RUSSELL DIAGRAMM

HERTZSPRUNG RUSSELL DIAGRAMM Vortrag beim PEGASUS-Monatstreffen am 25. August 2016: Das Hertzsprung-Russell- Diagramm zusammengestellt und vorgestellt von Hans Hubner HERTZSPRUNG RUSSELL DIAGRAMM Das HERTZSPRUNG- RUSSELL- DIAGRAMM,

Mehr

STERNENTWICKLUNG. Protosterne:

STERNENTWICKLUNG. Protosterne: STERNENTWICKLUNG Über die Sternentwicklung gibt es zurzeit noch keine endgültigen Aussagen. Es ist aber ziemlich wahrscheinlich, dass die Sterne in ganzen Gruppen aus der Verdichtung großer kalter Wolken

Mehr

Modul Sternphysik Repräsentativer Fragenkatalog

Modul Sternphysik Repräsentativer Fragenkatalog Modul Sternphysik Repräsentativer Fragenkatalog Elementare Größen Definieren und erläutern Sie folgende Größen: Strahlungsstrom, scheinbare Helligkeit, absolute Helligkeit, bolometrische Helligkeit, Leuchtkraft

Mehr

Die Nach-Hauptreihen-Entwicklung

Die Nach-Hauptreihen-Entwicklung 1 Die Nach-Hauptreihen-Entwicklung Die Nach-Hauptreihen-Phase beschreibt die Entwicklungen der Sterne ab dem Ende des zentralen Wasserstoffbrennens bis hin zum allgemeinen Aussetzen der Kernfusionen als

Mehr

RELATIVITÄTSTHEORIE. (Albert Einstein ) spezielle Relativitätstheorie - allgemeine Relativitätstheorie. Spezielle Relativitätstheorie

RELATIVITÄTSTHEORIE. (Albert Einstein ) spezielle Relativitätstheorie - allgemeine Relativitätstheorie. Spezielle Relativitätstheorie RELATIVITÄTSTHEORIE (Albert Einstein 1879-1955) spezielle Relativitätstheorie - allgemeine Relativitätstheorie Spezielle Relativitätstheorie (Albert Einstein 1905) Zeitdilatation - Längenkontraktion =

Mehr

Vom Urknall. bis heute Zeit. Kosmologie. Christian Stegmann Universität Erlangen-Nürnberg

Vom Urknall. bis heute Zeit. Kosmologie. Christian Stegmann Universität Erlangen-Nürnberg Vom Urknall bis heute Kosmologie Christian Stegmann Universität Erlangen-Nürnberg Die Erde Heute einer von acht Planeten Heute Sterne Heute Die Milchstrasse Heute Voller Sterne Heute Und Nebel Heute Unsere

Mehr

Astronomische Einheit. d GC = 8kpc R(t e ) z + 1

Astronomische Einheit. d GC = 8kpc R(t e ) z + 1 Einführung in die Astronomie ii Sommersemester 2010 Musterlösung Allgemeine Regeln Die Bearbeitungszeit der Klausur beträgt eine Stunde. Außer eines Taschenrechners sind keine Hilfsmittel erlaubt. Alle

Mehr

Kerne und Sterne. (Was verbindet Mikro- und Makrokosmos?) Andreas Wagner. Institut für Kern- und Hadronenphysik. Andreas Wagner

Kerne und Sterne. (Was verbindet Mikro- und Makrokosmos?) Andreas Wagner. Institut für Kern- und Hadronenphysik. Andreas Wagner Kerne und Sterne (Was verbindet Mikro- und Makrokosmos?) PLOPP SUPERNOVA He H Li SONNE SONNENSYSTEME GALAXIEN C Fe O N U Moderne Astronomie: Infrarot-, Radio-, Optische, Röntgen-, Gamma-, Neutrino- Klassische

Mehr

Spätstadien der Sternentwicklung. Wiederholung: Entwicklung nach dem H-Brennen Altersbestimmung Supernovae Neutronensterne Pulsare Schwarze Löcher

Spätstadien der Sternentwicklung. Wiederholung: Entwicklung nach dem H-Brennen Altersbestimmung Supernovae Neutronensterne Pulsare Schwarze Löcher Spätstadien der Sternentwicklung Wiederholung: Entwicklung nach dem H-Brennen Altersbestimmung Supernovae Neutronensterne Pulsare Schwarze Löcher Wiederholung: Das Brennen nach der Hauptreihe Roter Riese:

Mehr

DIE SUPERNOVA 1054 UND WAS VON IHR ÜBRIG BLIEB

DIE SUPERNOVA 1054 UND WAS VON IHR ÜBRIG BLIEB 1 DIE SUPERNOVA 1054 UND WAS VON IHR ÜBRIG BLIEB Wolfgang Krispler / Alexander Krombacher Wals 29.05.2015 2 WAS EUCH HEUTE ERWARTET 1. Supernovae 2. Neutronensterne 3. Der Krebsnebel 4. Pulsare Untersuchungen

Mehr

Masterseminar I Supernovae und das expandierende Universum

Masterseminar I Supernovae und das expandierende Universum Masterseminar I Supernovae und das expandierende Universum Yilmaz Ayten 1 23. Juni 2013 1 yayten@students.uni-mail.de 1 2 Inhaltsverzeichnis 1 Motivation 3 2 Supernovae 3 2.1 Kernkollapssupernovae............................

Mehr

Kosmologie im dunklen Universum

Kosmologie im dunklen Universum Kosmologie im dunklen Universum Dr. Robert W. Schmidt Zentrum für Astronomie Universität Heidelberg Lehrerfortbildung Bayreuth 14.10.2010 Literatur Es gibt viele, viele Bücher, Internetseiten, Movies etc.

Mehr

3. Stabilität selbstgravitierender Kugeln

3. Stabilität selbstgravitierender Kugeln 3. Stabilität selbstgravitierender Kugeln Stabilisierungsproblem Virialsatz Druck und Zustandsgleichungen Lane-Emden-Gleichung Weiße Zwerge, Neutronensterne, Braune Zwerge und Planeten Energieerzeugung

Mehr

Sterne, Doppelsterne und Be-Sterne

Sterne, Doppelsterne und Be-Sterne Sterne, Doppelsterne und Be-Sterne Astrotreff.de m.teachastronomy.com Fh-kiel.de Tagesspiegel.de Von Christian Lipgens Fernandez Inhaltsverzeichnis Entstehung von Sternen Herzsprung-Russel-Diagramm Tod

Mehr

Sternentwicklung (5) Wie Sterne Energie erzeugen Triple-Alpha-Prozeß: wie geht es weiter

Sternentwicklung (5) Wie Sterne Energie erzeugen Triple-Alpha-Prozeß: wie geht es weiter Sternentwicklung (5) Wie Sterne Energie erzeugen Triple-Alpha-Prozeß: wie geht es weiter Kosmische Elementehäufigkeit Harkinsche Regel: Elemente mit geradzahliger Ordnungszahl sind häufiger als Elemente

Mehr

Die Entstehung der lebenswichtigen Elemente S C H Ö P Fe N

Die Entstehung der lebenswichtigen Elemente S C H Ö P Fe N Die Entstehung der lebenswichtigen Elemente S C H Ö P Fe N Elemente, welche den Aufbau und die Chemie lebender Systeme bestimmen Vier Elemente dominieren die belebte Natur: H, O, C, N (zusammen 96 Masse-%)

Mehr

Der Jojo-Effekt bei Neutronensternen

Der Jojo-Effekt bei Neutronensternen Der Jojo-Effekt bei Neutronensternen und wie er die Astrophysiker in Aufregung versetzt Irina Sagert Astronomie am Freitag, 25.03.2011 Physikalischer Verein, Frankfurt 8-20 Sonnenmassen Kollaps eines

Mehr

Das neue kosmologische Weltbild zum Angreifen!

Das neue kosmologische Weltbild zum Angreifen! Das neue kosmologische Weltbild zum Angreifen! Franz Embacher http://homepage.univie.ac.at/franz.embacher/ franz.embacher@univie.ac.at Fakultät für Physik Universität Wien Vortrag im Rahmen von physics:science@school

Mehr

Planetarische Nebel Wolfgang Stegmüller Seite 2

Planetarische Nebel Wolfgang Stegmüller Seite 2 Planetarische Nebel Planetarische Nebel! Ein planetarischer Nebel ist ein astronomisches Objekt und besteht aus einer Hülle aus Gas und Plasma, das von einem alten Stern am Ende seiner Entwicklung abgestoßen

Mehr

Entstehung des Sonnensystems. Von Thorsten Seehaus Einführung in die Astrophysik Universtät Würzburg

Entstehung des Sonnensystems. Von Thorsten Seehaus Einführung in die Astrophysik Universtät Würzburg Entstehung des Von Thorsten Seehaus Einführung in die Astrophysik Universtät Würzburg 20.11.2007 Gliederung Daten des Theorie der Entstehung des Bildung der Planeten Entstehung des Mondes Das Sonnensystem

Mehr

Kosmische Strahlung in unserer Galaxie

Kosmische Strahlung in unserer Galaxie Kosmische Strahlung in unserer Galaxie Das Interstellare Medium Gas Staub Sternentstehung und -entwicklung Interstellares Photonenfeld Wechselwirkung von kosmischer Strahlung Photonen geladene Komponente

Mehr

Die Entwicklung des Universums vom Urknall bis heute. Gisela Anton Erlangen, 23. Februar, 2011

Die Entwicklung des Universums vom Urknall bis heute. Gisela Anton Erlangen, 23. Februar, 2011 Die Entwicklung des Universums vom Urknall bis heute Gisela Anton Erlangen, 23. Februar, 2011 Inhalt des Vortrags Beschreibung des heutigen Universums Die Vergangenheit des Universums Ausblick: die Zukunft

Mehr

6.3. STABILITÄTSGRENZEN VON STERNEN 149

6.3. STABILITÄTSGRENZEN VON STERNEN 149 6.3. STABILITÄTSGRENZEN VON STERNEN 149 relativistisch: P R n 4/3 nicht-relativistisch: P NR n 5/3 Gravitationsdruck: P grav n 4/3 Im nicht-relativistischen Fall steigt der Entartungsdruck bei Kompression

Mehr

Das Sonnensystem. Teil 2. Peter Hauschildt 6. Dezember Hamburger Sternwarte Gojenbergsweg Hamburg

Das Sonnensystem. Teil 2. Peter Hauschildt 6. Dezember Hamburger Sternwarte Gojenbergsweg Hamburg Das Sonnensystem Teil 2 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 6. Dezember 2016 1 / 48 Übersicht Teil 2 Entstehung des Sonnensystems Exoplaneten 2

Mehr

100 Jahre Hertzsprung-Russell Diagramm

100 Jahre Hertzsprung-Russell Diagramm 100 Jahre Hertzsprung-Russell Diagramm Max Camenzind - Akademie HD Mai 2017 Die Gründerväter Einar Hertzsprung 1873-1967 Henry Norris Russell 1877-1957 Nach einem 1898 abgeschlossenen Chemiestudium arbeitete

Mehr

Sternhaufen. Geburtsorte der Materie. Dr. Andrea Stolte. I. Physikalisches Institut Universität Köln

Sternhaufen. Geburtsorte der Materie. Dr. Andrea Stolte. I. Physikalisches Institut Universität Köln Sternhaufen Geburtsorte der Materie Dr. Andrea Stolte I. Physikalisches Institut Universität Köln Ringvorlesung Astronomie 13. Januar 2010 1 Sternhaufen -- Geburtsorte der Materie I. Am Anfang waren Wasserstoff

Mehr

Mittwochsakademie WS 15/16 Claus Grupen

Mittwochsakademie WS 15/16 Claus Grupen Hatte Gott bei der Erschaffung der Welt eine Wahl? Mittwochsakademie WS 15/16 Claus Grupen Am Anfang schuf Gott Himmel Am Anfang schuf Gott und Erde Himmel und Erde. und die Erde war wüst und leer, Und

Mehr

Keine Welt ohne explodierende Sterne. Bruno Leibundgut Europäische Südsternwarte (ESO)

Keine Welt ohne explodierende Sterne. Bruno Leibundgut Europäische Südsternwarte (ESO) Keine Welt ohne explodierende Sterne Bruno Leibundgut Europäische Südsternwarte (ESO) Alter der Alpen Entstanden vor etwa 30 bis 35 Millionen Jahren Dinosaurier haben die Alpen nie gekannt! (vor 65 Millionen

Mehr

Neutronen-Sterne Max Camenzind - Akademie HD

Neutronen-Sterne Max Camenzind - Akademie HD Neutronen-Sterne Max Camenzind - Akademie HD - 2017 Der archetypische Neutronenstern im Krebsnebel - geboren 1054 P = 33 ms Pulsar Wind Krebs- Nebel Torus Bild: HST Inhalt Die Entdeckung des Neutrons und

Mehr

Von der Hauptreihe zu PNes und Supernovae. Max Camenzind Akademie Heidelberg Mai 2014

Von der Hauptreihe zu PNes und Supernovae. Max Camenzind Akademie Heidelberg Mai 2014 Von der Hauptreihe zu PNes und Supernovae Max Camenzind Akademie Heidelberg Mai 2014 Entwicklung der Sterne in der Milchstraße; Entwicklung massearmer Sterne zu Roten Riesen und Planetarischen Nebeln;

Mehr

Schwarze Löcher Staubsauger oder Stargate? Kai Zuber Inst. f. Kern- und Teilchenphysik TU Dresden

Schwarze Löcher Staubsauger oder Stargate? Kai Zuber Inst. f. Kern- und Teilchenphysik TU Dresden Schwarze Löcher Staubsauger oder Stargate? Kai Zuber Inst. f. Kern- und Teilchenphysik TU Dresden 4.12.2010 Das Leben des Albert E. - Relativitätstheorie Das Leben der Sterne Schwarze Löcher Wurmlöcher

Mehr

Proseminar: Theoretische Physik. und Astroteilchenphysik. Fermi- und Bose Gase. Thermodynamisches Gleichgewicht

Proseminar: Theoretische Physik. und Astroteilchenphysik. Fermi- und Bose Gase. Thermodynamisches Gleichgewicht Proseminar: Theoretische Physik und Astroteilchenphysik Thermodynamisches Gleichgewicht Fermi- und Bose Gase Inhalt 1. Entropie 2. 2ter Hauptsatz der Thermodynamik 3. Verteilungsfunktion 1. Bosonen und

Mehr

Unter welchen Bedingungen bilden sich Strukturen? Unter welchen Bedingungen kommt es zum katastrophalen Kollaps eines ausgebrannten

Unter welchen Bedingungen bilden sich Strukturen? Unter welchen Bedingungen kommt es zum katastrophalen Kollaps eines ausgebrannten Kapitel 6 Sternentwicklung Wir wollen uns in diesem Kapitel einen kurzen Überblick über die Bildung, die Entwicklung und das Vergehen von Sternen verschaffen. Vor allem in der letzten Phase, dem Sterben

Mehr

Die Entstehung der Elemente

Die Entstehung der Elemente Die Entstehung der Elemente Ein Vortrag von Shin-Gyu Kang, Birger Buttenschön, Marco Knutzen, Ole Ammon Staack, Frank Schlotfeldt und Alexander Sperl Kiel, 10. Juni 2005 Inhalt Einleitung und Übersicht

Mehr

Astronomie. Kursjahr 2016/17 Leibniz Kolleg Tübingen PD Dr. Thorsten Nagel

Astronomie. Kursjahr 2016/17 Leibniz Kolleg Tübingen PD Dr. Thorsten Nagel Astronomie Kursjahr 2016/17 Leibniz Kolleg Tübingen PD Dr. Thorsten Nagel Kapitel 3 Sternentwicklung Vom Leben und Sterben der Sterne Übersicht Hertzsprung Russel Diagramm Sternentstehung Molekülwolke,

Mehr

Neues aus Kosmologie und Astrophysik 1.0

Neues aus Kosmologie und Astrophysik 1.0 Neues aus Kosmologie und Astrophysik 1.0 Unser Universum Sterne und Galaxien Hintergrundstrahlung Elemententstehung Das Big-Bang-Modell Prozesse im frühen Universum Fragen und Antworten (?) Dunkle Materie

Mehr

6.3. STABILITÄTSGRENZEN VON STERNEN 133

6.3. STABILITÄTSGRENZEN VON STERNEN 133 6.3. STABILITÄTSGRENZEN VON STERNEN 133 Abbildung 6.13: Entwicklungswege der Sterne in Abhängigkeit von ihrer Masse. 134 KAPITEL 6. STERNENTWICKLUNG und damit für den Druck: P R = 1 E R 3 V = ( ) 1/3 3

Mehr

1930: Krise in in der der Physik. Oh, Oh, daran denkt man man am am besten gar gar nicht, wie wie an an die die neuen Steuern

1930: Krise in in der der Physik. Oh, Oh, daran denkt man man am am besten gar gar nicht, wie wie an an die die neuen Steuern 1930: Krise in in der der Physik Oh, Oh, daran denkt man man am am besten gar gar nicht, wie wie an an die die neuen Steuern 1930: Energie-Erhaltung im im Beta-Zerfall verletzt?? Alpha-Zerfall Beta-Zerfall

Mehr

BILDAUSWAHL DER KÜNSTLER / FOTOGRAFEN BEI ASTROFOTO

BILDAUSWAHL DER KÜNSTLER / FOTOGRAFEN BEI ASTROFOTO Bildnummer: ne006-03 Pferdekopfnebel mit Nebel NGC 2024 und IC 434 im Sternbild Orion Astrofoto/ROE/AAT Board/David Malin Bildnummer: ob019-01 Deep Space Tracking Station (Radioantenne, Radioteleskop),

Mehr

8. Reines Ethanol besitzt eine Dichte von ρ = 0,79 g/cm³. Welches Volumen V Ethanol ist erforderlich, um eine Masse von m = 158g Ethanol zu erhalten?

8. Reines Ethanol besitzt eine Dichte von ρ = 0,79 g/cm³. Welches Volumen V Ethanol ist erforderlich, um eine Masse von m = 158g Ethanol zu erhalten? Staatliche Schule für technische Assistenten in der Medizin Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main Testklausur Physik 1. 10 2 10 3 =... 2. 4 10 3 2 10 3=... 3. 10 4 m= cm 4.

Mehr

Sternparameter - Sternentwicklung

Sternparameter - Sternentwicklung Sternparameter - Sternentwicklung Der Sternhimmel Die Sternbilder Sternparameter Sternspektren Das Hertzsprung-RusselDiagramm Lebensdauer Rote Riesen-weiße Zwerge Altersbestimmung Orientierung am Sternenhimmel

Mehr

Stellarstatistik - Aufbau unseres Milchstraßensystems (3)

Stellarstatistik - Aufbau unseres Milchstraßensystems (3) Stellarstatistik - Aufbau unseres Milchstraßensystems (3) Die solare Nachbarschaft Die Bewegung der Sonne relativ zu den benachbarten Sternen Der Sonnenapex Der Sonnenapex ist der Fluchtpunkt der Bewegung

Mehr

2. Sterne im Hertzsprung-Russell-Diagramm

2. Sterne im Hertzsprung-Russell-Diagramm 2. Sterne im Hertzsprung-Russell-Diagramm Wie entstand die Astrophysik? Sternatmosphäre Planck-Spektrum Spektraltyp und Leuchtkraftklasse HRD Sternpositionen im HRD Die Sterne füllen das Diagramm nicht

Mehr