Betriebssysteme. Agenda. Tafelübung 3. Deadlock. Olaf Spinczyk.

Größe: px
Ab Seite anzeigen:

Download "Betriebssysteme. Agenda. Tafelübung 3. Deadlock. Olaf Spinczyk."

Transkript

1 Betriebssysteme Tafelübung 3. Deadlock Olaf Spinczyk AG Eingebettete Systemsoftware Informatik 12, TU Dortmund Agenda Besprechung Aufgabe 2: Threadsynchronisation Aufgabe 3: Deadlock Semaphore Problemvorstellung Erkennen von Verklemmungen Auflösen von Verklemmungen Pthreads abbrechen Enumeration und Signal-Handler Alte Klausuraufgabe zu Semaphoren 2

2 Besprechung Aufgabe 2 Foliensatz Besprechung 3 Wiederholung Mutex Mutex dienen zum Schutz von kritischen Abschnitten Nebenläufige Prozesse können hierdurch auf eine gemeinsame Datenstruktur zugreifen, ohne das der Zustand der Datenstruktur inkonsisten wird. /* Schlossvariable (Initialwert 0) */ pthread_mutex_t rangmutex; int main(void){ pthread_mutex_init(&rangmutex, NULL); void* run(void* arg) { pthread_mutex_lock(&rangmutex); rangliste[rang++] = team; pthread_mutex_unlock(&rangmutex); Kritische Abschnitte können auch durch Semaphore geschützt werden. Dazu müssen wir aber zunächst wissen, was Semaphore sind und wie wir sie benutzen können. 4

3 Mutexe vs. Semaphoren Mit beiden können kritische Abschnitte geschützt werden. Beim Mutex kann immer nur ein Thread den kritischen Abschnitt betreten. Mit Semaphoren können n Threads den kritischen Abschnitt betreten. Nützlich für Betriebssystemressourcen, bei denen eine bestimmte Anzahl zur Verfügung steht. Für n=1 verhält sich ein Semaphor ähnlich wie ein Mutex. Semaphoren können aber prinzipiell auch von unterschiedlichen Prozessen freigegeben werden. 5 Semaphoren Ein Sempahor ist eine Betriebssystemabstraktion zum Austausch von Synchronisationssignalen zwischen nebenläufig arbeitenden Prozessen. Steht für Signalgeber E. Dijkstra: Eine nicht-negative ganze Zahl, für die zwei unteilbare Operationen definiert sind: P (holländisch prolaag, erniedrige ; auch down oder wait) hat der Semaphor den Wert 0, wird der laufende Prozess blockiert ansonsten wird der Semaphor um 1 dekrementiert V (holländisch verhoog, erhöhe ; auch up oder signal) auf den Semaphor ggf. blockierter Prozess wird deblockiert ansonsten wird der Semaphor um 1 inkrementiert 6

4 Eselsbrücken zu Semaphoren Mit P wartet man auf eine Ressource und belegt diese dann. Eselsbrücke: p(b)elegen, ggfs. vorher warten Es sind danach weniger Ressourcen verfügbar, also wird runtergezählt. Mit V gibt man eine Ressource wieder frei, ggfs. wird der nächste wartende Thread benachrichtigt. Eselsbrücke: v(f)reigeben, ggfs. benachrichtigen Es sind danach wieder mehr Ressourcen verfügbar, also wird hochgezählt. 7 Semaphor Komplexere Interaktion Das erste Leser/Schreiber-Problem aus der Vorlesung In diesem Beispiel ein kritischer Abschnitt geschützt werden. Es gibt zwei Klassen von konkurrierenden Prozessen: Schreiber: Sie ändern Daten und müssen daher gegenseitigen Ausschluss garantiert bekommen. Leser: Da sie nur Lesen, dürfen mehrere Leser auch gleichzeitig den kritischen Abschnitt betreten 8

5 Semaphor Komplexes Beispiel Das erste Leser/Schreiber-Problem aus der Vorlesung /* gem. Speicher */ Semaphore rcmutex; Semaphore wrtmutex; int readcount; /* Initialisierung */ rcmutex = 1; wrtmutex = 1; readcount = 0; /* Schreiber */ p(&wrtmutex);... schreibe v(&wrtmutex); /* Leser */ p(&rcmutex); readcount++; /* Der erste Leser sperrt wrtmutex */ if (readcount == 1) p(&wrtmutex); v(&rcmutex);... lese p(&rcmutex); readcount--; /* Der Letzte gibt wrtmutex frei */ if (readcount == 0) v(&wrtmutex); v(&rcmutex): 11 POSIX Semaphoren int sem_init(sem_t *sem, int pshared, unsigned int value); Anlegen einer Semaphore Parameter sem: Adresse des Semaphor-Objekts pshared: 0, falls nur zwischen Threads eines Prozesses verwendet value: Initalwert der Semaphore, entspricht dem n Rückgabewert: #include <semaphore.h> 0, wenn erfolgreich -1 im Fehlerfall Bsp.: sem_t semaphor; if (sem_init(&semaphor, 0, 1) == -1) { /* Fehlerbehandlung */ 12

6 POSIX Semaphoren Belegen einer Semaphore (P), ggfs. müssen wir vorher warten: int sem_wait(sem_t *sem); Freigeben einer Semaphore (V), ggfs. wird der nächste Thread benachrichtigt: int sem_post(sem_t *sem); Entfernen einer Semaphore: Parameter int sem_destroy(sem_t *sem); sem: Adresse des Semaphor-Objekts Rückgabewert: 0, wenn erfolgreich -1 im Fehlerfall 13 POSIX Semaphore Beispiel: Gegenseitiger Ausschluss mit Semaphore #include <semaphore.h> /* Konsumierbare Rangsemaphore */ sem_t rangsemaphore;... int main(void){ sem_init(&rangsemaphore, 0, 1);... sem_destroy(&rangsemaphore); return 0; void* run(void* arg) {... sem_wait(&rangsemaphore); rangliste[rang++] = team; sem_post(&rangsemaphore);... globale Deklaration, damit auch Threads Zugriff haben Fehlerbehandlung! 14

7 Problemstellung Das Szenario: Zwei Mitarbeiter (bei uns PThreads) teilen sich die Arbeit eine Klausur zu korrigieren. Hierzu unterbrechen sie regelmäßig ihre andere Arbeit. Es gibt also zwei Pthreads: Thread 1: mitarbeiter_a_thread Thread 2: mitarbeiter_b_thread Um die Klausuren zu korrigieren benötigen sie folgende Ressourcen, die jeweils nur einmal vorhanden sind: Ressource 1: Karton mit Klausuren, als Semaphore implementiert Ressource 2: Liste für die Noten, als Semaphore implementiert 15 Problemstellung Die Threads führen folgende Aufgaben regelmäßig durch: Mitarbeiter A Mitarbeiter B Andere Arbeit erledigen Andere Arbeit erledigen Semaphore Klausuren belegen Semaphore Liste belegen Semaphore Liste belegen Semaphore Klausuren belegen Korrigieren Korrigieren Klausuren und Liste freigeben Klausuren und Liste freigeben Weiter mit Schritt 1 Weiter mit Schritt 1 16

8 Problemstellung Die Mitarbeiter können immer nur dann korrigieren, wenn folgende Bedingungen erfüllt sind: Beide Ressourcen (die beiden Semaphoren Klausuren und Liste) konnten von einer Person reserviert werden. Ist die zweite benötigte Ressource nicht frei, wird solange gewartet, bis die benötigte Ressource vom anderen Mitarbeiter freigegeben wird. Dabei behält jeder Mitarbeiter die zuerst reservierte Ressource (Klausuren/Liste). Sind beide Ressourcen erfolgreich reserviert wird korrigiert. Im Anschluss an die Korrektur werden beide Betriebsmittel wieder zurückgegeben freigegeben. 17 Problemstellung: Verklemmung Zwischen den Mitarbeitern kann es immer wieder zu konkurrierenden Situationen kommen: Nachdem ein Betriebsmittel vom Mitarbeiter reserviert wurde, wird auch das andere Betriebsmittel benötigt! Haben beide Mitarbeiter jeweils ein Betriebsmittel, brauchen sie das Betriebsmittel des anderen. Beide Mitarbeiter geben Betriebsmittel nicht freiwillig ab! Und so warteten sie und warteten ist belegt von A Ressource 1 Thread: A Thread: B Ressource 2 wird benötigt von A wird benötigt von B ist belegt von B 18

9 Problemstellung: Zustände 4 Zustände: andere_arbeit, hole_klausuren, hole_liste und korrigieren Ablauf für Mitarbeiter A Betriebsmittel 2 belegen hole klausuren hole liste Betriebsmittel 1 belegen andere arbeit Beide Betriebsmittel freigeben korrigieren 19 Deadlock-Voraussetzungen Die notwendigen Bedingungen für eine Verklemmung: 1. mutual exclusion die umstrittenen Betriebsmittel sind nur unteilbar nutzbar 20

10 Deadlock-Voraussetzungen Die notwendigen Bedingungen für eine Verklemmung: 1. mutual exclusion die umstrittenen Betriebsmittel sind nur unteilbar nutzbar 2. hold and wait die umstrittenen Betriebsmittel sind nur schrittweise belegbar 21 Deadlock-Voraussetzungen Die notwendigen Bedingungen für eine Verklemmung: 1. mutual exclusion die umstrittenen Betriebsmittel sind nur unteilbar nutzbar 2. hold and wait die umstrittenen Betriebsmittel sind nur schrittweise belegbar 3. no preemption die umstrittenen Betriebsmittel sind nicht rückforderbar 22

11 Deadlock-Voraussetzungen Die notwendigen Bedingungen für eine Verklemmung: 1. mutual exclusion die umstrittenen Betriebsmittel sind nur unteilbar nutzbar 2. hold and wait die umstrittenen Betriebsmittel sind nur schrittweise belegbar 3. no preemption die umstrittenen Betriebsmittel sind nicht rückforderbar Erst wenn zur Laufzeit eine weitere Bedingung eintritt, liegt tatsächlich eine Verklemmung vor: 4. circular wait eine geschlossene Kette wechselseitig wartender Prozesse 23 Deadlock-Voraussetzungen 4. circular wait eine geschlossene Kette wechselseitig wartender Prozesse ist belegt von A Ressource 1 Thread: A Thread: B Ressource 2 wird benötigt von A wird benötigt von B ist belegt von B 24

12 Erkennen von Verklemmungen Analyse der Zustände beider Mitarbeiter mögliche Art der Deadlockerkennung Die Zustände der beiden Mitarbeiter werden in einem globalen Feld abgelegt Mitarbeiter setzen ihre Zustände; Der Elternprozess liest die Daten aus dem Feld Was ist das Problem? 25 Erkennen von Verklemmungen Analyse der Zustände beider Mitarbeiter mögliche Art der Deadlockerkennung Die Zustände der beiden Mitarbeiter werden in einem globalen Feld abgelegt Mitarbeiter setzen ihre Zustände; Der Elternprozess liest die Daten aus dem Feld Problem: Race-Conditions durch fehlende Synchronisation Aufpassen: Während der Elternprozess einen Zustand ausliest, kann ein Mitarbeiter seinen Zustand im Feld verändern Die Sicht des Elternprozesses wird inkonsistent! 26

13 Erkennen von Verklemmungen Analyse der Zustände beider Mitarbeiter mögliche Art der Deadlockerkennung Die Zustände der beiden Mitarbeiter werden in einem globalen Feld abgelegt Mitarbeiter setzen ihre Zustände; Der Elternprozess liest die Daten aus dem Feld Problem: Race-Conditions durch fehlende Synchronisation Lösung: Zugriff zusätzlich mit einem Semaphor absichern keine Race-Condition mehr! 27 Auflösen von Verklemmungen Der Elternprozess kann also einen Deadlock erkennen, indem die Zustände beider Mitarbeiter geeignet überprüft werden. Wie kann eine Deadlock-Situation aufgelöst werden? Aufgabe d) Beschreibt eine Lösung Optionale Aufgabe: Implementiert eure Gedankengänge 28

14 Pthreads abbrechen int pthread_cancel(pthread_t thread); Sendet eine Anfrage zum Abbrechen des Pthreads Parameter Rückgabewert: thread: Thread-Objekt 0, wenn erfolgreich eine Fehlernummer ungleich 0 im Fehlerfall Wann der Thread auf den Abbruch reagiert hängt vom: gesetzten Abbruchzustand (enabled oder disabled) und dem gesetzten Abbruchtyp ab (asynchronous oder deferred). 29 Enumeration enum ist ein benutzerdefinierter Aufzählungstyp eine mittels enum definierte Variable ist vom Typ int intern Ganzzahl, aber durch Wertbezeichner visualisiert kann dort verwendet werden, wo ein int erlaubt ist #include <stdio.h> enum farbpalette {ROT, GRUEN, BLAU, GELB; enum farbpalette farbe; int main(void) { farbe = GRUEN; printf("gewaehlte Farbe: %d\n", farbe); return 0; mm@ios:~$./enum gewaehlte Farbe: 1 30

15 Signal-Handler, sigaction(2) int sigaction(signalnr, *neueakt, *alteakt); Im eigenen Prozess Signale verarbeiten (SIGINT, SIGCHLD, etc.) Parameter SignalNr = das Signal das behandelt werden soll *neueakt = Pointer auf struct sigaction mit den Informationen zum neuen Handler (Eingabe!) *alteakt = Pointer auf struct sigaction mit den Informationen zum vorherigen Handler (Ausgabe!), ignoriert bei Übergabe von NULL Benötigt <signal.h> Rückgabewerte: -1: Fehler bei der Ausführung, Fehlercode in errno 0: Erfolgreiche Ausführung 31 Signal-Handler struct sigaction { void (*sa_handler)(int); /* Zeiger auf die Handler-Funktion */ sigset_t sa_mask; /* Ignorierte Signale während Behandlung */ int sa_flags; /* Optionen */ void (*sa_restorer)(void); /* veraltet -> IGNORIEREN */ #include <signal.h>... /* die Handler Funktion für unser Signal */ void handle_abbruch(int sig) { printf("sigint gefangen: %d!\n", SIGINT==sig); exit(2); int main() { struct sigaction action; action.sa_handler = &handle_abbruch; /* die Adresse des Handlers angeben */ action.sa_flags = 0; /* keine besonderen Flags */ sigemptyset(&action.sa_mask); /* keinerlei Signale ignorieren */ if (sigaction(sigint, &action, NULL)) { /* SIGINT Handler registrieren */ perror( sigaction ); return 1; /* Rückgabewert!= 0 => Fehler! */ while(1); return 0; 32

16 Klausuraufgabe: Synchronisierung Initialwerte der Semaphore: S1 = chicken1() { S2 = chicken2() { S3 = printf("get"); printf("to"); chicken3() { printf("to"); printf("the"); printf("other"); printf("side"); 33 Klausuraufgabe: Synchronisierung Initialwerte der Semaphore: chicken1() { printf("to"); V(S2); P(S1); printf("to"); V(S3); P(S1); printf("other"); V(S3); S1 = 0 S2 = 0 chicken2() { P(S2); printf("get"); V(S1); chicken3() { P(S3); printf("the"); V(S1); P(S3); printf("side"); S3 = 0 34

17 Klausuraufgabe: Synchronisierung 35

Betriebssysteme. Tafelübung 3. Deadlock. Olaf Spinczyk.

Betriebssysteme. Tafelübung 3. Deadlock. Olaf Spinczyk. Betriebssysteme Tafelübung 3. Deadlock http://ess.cs.tu-dortmund.de/de/teaching/ss2017/bs/ Olaf Spinczyk olaf.spinczyk@tu-dortmund.de http://ess.cs.tu-dortmund.de/~os AG Eingebettete Systemsoftware Informatik

Mehr

Tafelübung zu BSRvS 1 3. Kreuzung

Tafelübung zu BSRvS 1 3. Kreuzung Tafelübung zu BSRvS 1 3. Kreuzung Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/ http://ess.cs.tu-dortmund.de/de/teaching/ss2009/bsrvs1/

Mehr

Tafelübung zu BS 3. Die Bibliothek

Tafelübung zu BS 3. Die Bibliothek Tafelübung zu BS 3. Die Bibliothek Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/ http://ess.cs.tu-dortmund.de/de/teaching/ss2010/bs/

Mehr

Tafelübung zu BSRvS1. 3. Philosophen. Fortsetzung Grundlagen C-Programmierung

Tafelübung zu BSRvS1. 3. Philosophen.  Fortsetzung Grundlagen C-Programmierung Tafelübung zu BSRvS1 3. Philosophen Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/teaching/ss2008/bsrvs1/exercises/

Mehr

3. Philosophen. Tafelübung zu BSRvS1. Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware. Lehrstuhl für Informatik 12 TU Dortmund

3. Philosophen. Tafelübung zu BSRvS1. Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware. Lehrstuhl für Informatik 12 TU Dortmund Tafelübung zu BSRvS1 3. Philosophen Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/teaching/ss2008/bsrvs1/exercises/

Mehr

Tafelübung zu BS 1. Prozesse verwalten

Tafelübung zu BS 1. Prozesse verwalten Tafelübung zu BS 1. Prozesse verwalten Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/ http://ess.cs.tu-dortmund.de/de/teaching/ss2013/bs/

Mehr

Tafelübung zu BSRvS 1 2. Prozesssynchronisation

Tafelübung zu BSRvS 1 2. Prozesssynchronisation Tafelübung zu BSRvS 1 2. Prozesssynchronisation Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/

Mehr

Tafelübung zu BS 4. Speicherverwaltung

Tafelübung zu BS 4. Speicherverwaltung Tafelübung zu BS 4. Speicherverwaltung Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/ http://ess.cs.tu-dortmund.de/de/teaching/ss2014/bs/

Mehr

2. Prozesssynchronisation

2. Prozesssynchronisation Tafelübung zu BSRvS1 2. Prozesssynchronisation Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/teaching/ss2008/bsrvs1/exercises/

Mehr

Betriebssysteme. Probeklausur. Olaf Spinczyk.

Betriebssysteme. Probeklausur. Olaf Spinczyk. Betriebssysteme https://ess.cs.tu-dortmund.de/de/teaching/ss/bs/ Olaf Spinczyk olaf.spinczyk@tu-dortmund.de https://ess.cs.tu-dortmund.de/~os G Eingebettete Systemsoftware Informatik, TU Dortmund blauf

Mehr

Betriebssysteme. Probeklausur. Olaf Spinczyk.

Betriebssysteme. Probeklausur. Olaf Spinczyk. Betriebssysteme Probeklausur https://ess.cs.tu-dortmund.de/de/teaching/ss2018/bs/ Olaf Spinczyk olaf.spinczyk@tu-dortmund.de https://ess.cs.tu-dortmund.de/~os AG Eingebettete Systemsoftware Informatik

Mehr

Betriebssysteme (BS)

Betriebssysteme (BS) Betriebssysteme (BS) Probeklausur Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund http://ess.cs.uni-dortmund.de/ http://ess.cs.tu-dortmund.de/de/teaching/ss2014/bs/

Mehr

Pthreads. David Klaftenegger. Seminar: Multicore Programmierung Sommersemester

Pthreads. David Klaftenegger. Seminar: Multicore Programmierung Sommersemester Seminar: Multicore Programmierung Sommersemester 2009 16.07.2009 Inhaltsverzeichnis 1 Speichermodell 2 3 Implementierungsvielfalt Prioritätsinversion 4 Threads Speichermodell Was sind Threads innerhalb

Mehr

Tafelübung zu BS 2. Threadsynchronisation

Tafelübung zu BS 2. Threadsynchronisation Tafelübung zu BS 2. Threadsynchronisation Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/

Mehr

Linux Prinzipien und Programmierung

Linux Prinzipien und Programmierung Linux Prinzipien und Programmierung Dr. Klaus Höppner Hochschule Darmstadt Sommersemester 2014 1 / 28 Kritische Bereiche bei Threads Deadlocks Conditions/Semaphore 2 / 28 Beispiel aus der letzten Vorlesung

Mehr

Tafelübung zu BS 4. Speicherverwaltung

Tafelübung zu BS 4. Speicherverwaltung Tafelübung zu BS 4. Speicherverwaltung Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/ http://ess.cs.tu-dortmund.de/de/teaching/ss2014/bs/

Mehr

Threads. Foliensatz 8: Threads Folie 1. Hans-Georg Eßer, TH Nürnberg Systemprogrammierung, Sommersemester 2015

Threads. Foliensatz 8: Threads Folie 1. Hans-Georg Eßer, TH Nürnberg Systemprogrammierung, Sommersemester 2015 Sep 19 14:20:18 amd64 sshd[20494]: Accepted rsa for esser from ::ffff:87.234.201.207 port 61557 Sep 19 14:27:41 amd64 syslog-ng[7653]: STATS: dropped 0 Sep 20 01:00:01 amd64 /usr/sbin/cron[29278]: (root)

Mehr

Inhalt. Übungen zu Systemnahe Programmierung in C (SPiC) Inhalt. Motivation

Inhalt. Übungen zu Systemnahe Programmierung in C (SPiC) Inhalt. Motivation Übungen zu Systemnahe Programmierung in C (SPiC) Sebastian Maier (Lehrstuhl Informatik 4) Übung 0 Inhalt vs. Prozesse POSIX Stoppuhr Sommersemester 206 Lehrstuhl Informatik 4 Übungen zu SPiC (SS 206) 2

Mehr

Übungen zu Systemnahe Programmierung in C (SPiC)

Übungen zu Systemnahe Programmierung in C (SPiC) Übungen zu Systemnahe Programmierung in C (SPiC) Sebastian Maier (Lehrstuhl Informatik 4) Übung 10 Sommersemester 2016 Inhalt Threads Motivation Threads vs. Prozesse Kritische Abschnitte Speedup & Amdahl

Mehr

Übungen zu Systemnahe Programmierung in C (SPiC) Inhalt. Sebastian Maier (Lehrstuhl Informatik 4) Übung 10. Sommersemester 2016

Übungen zu Systemnahe Programmierung in C (SPiC) Inhalt. Sebastian Maier (Lehrstuhl Informatik 4) Übung 10. Sommersemester 2016 Übungen zu Systemnahe Programmierung in C (SPiC) Sebastian Maier (Lehrstuhl Informatik 4) Übung 10 Sommersemester 2016 Inhalt Motivation vs. Prozesse Kritische Abschnitte Speedup & Amdahl s Gesetz POSIX

Mehr

Tafelübung zu BS 1. Prozesse, Shell

Tafelübung zu BS 1. Prozesse, Shell Tafelübung zu BS 1. Prozesse, Shell Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/ http://ess.cs.tu-dortmund.de/de/teaching/ss2012/bs/

Mehr

Softwaresysteme I Übungen Jürgen Kleinöder Universität Erlangen-Nürnberg Informatik 4, 2007 U9.fm

Softwaresysteme I Übungen Jürgen Kleinöder Universität Erlangen-Nürnberg Informatik 4, 2007 U9.fm U9 9. Übung U9 9. Übung U9-1 Überblick Besprechung Aufgabe 6 (printdir) Posix-Threads U9.1 U9-2 Motivation von Threads U9-2 Motivation von Threads UNIX-Prozesskonzept: eine Ausführungsumgebung (virtueller

Mehr

Betriebssysteme. Tafelübung 4. Speicherverwaltung. Olaf Spinczyk.

Betriebssysteme. Tafelübung 4. Speicherverwaltung. Olaf Spinczyk. Betriebssysteme Tafelübung 4. Speicherverwaltung http://ess.cs.tu-dortmund.de/de/teaching/ss217/bs/ Olaf Spinczyk olaf.spinczyk@tu-dortmund.de http://ess.cs.tu-dortmund.de/~os AG Eingebettete Systemsoftware

Mehr

Betriebssysteme. Agenda. Tafelübung 4. Speicherverwaltung. Olaf Spinczyk.

Betriebssysteme. Agenda. Tafelübung 4. Speicherverwaltung. Olaf Spinczyk. Betriebssysteme Tafelübung 4. Speicherverwaltung http://ess.cs.tu-dortmund.de/de/teaching/ss217/bs/ Olaf Spinczyk olaf.spinczyk@tu-dortmund.de http://ess.cs.tu-dortmund.de/~os AG Eingebettete Systemsoftware

Mehr

Übungen zu Systemnahe Programmierung in C (SPiC) Sommersemester 2018

Übungen zu Systemnahe Programmierung in C (SPiC) Sommersemester 2018 Übungen zu Systemnahe Programmierung in C (SPiC) Sommersemester 2018 Übung 10 Benedict Herzog Sebastian Maier Lehrstuhl für Informatik 4 Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für

Mehr

Betriebssysteme. Tafelübung 4. Speicherverwaltung. Olaf Spinczyk.

Betriebssysteme. Tafelübung 4. Speicherverwaltung. Olaf Spinczyk. Betriebssysteme Tafelübung 4. Speicherverwaltung https://ess.cs.tu-dortmund.de/de/teaching/ss2018/bs/ Olaf Spinczyk olaf.spinczyk@tu-dortmund.de https://ess.cs.tu-dortmund.de/~os AG Eingebettete Systemsoftware

Mehr

U9-3 Vergleich von Thread-Konzepten. U9-2 Motivation von Threads. U9-3 Vergleich von Thread-Konzepten (2) U9-1 Überblick

U9-3 Vergleich von Thread-Konzepten. U9-2 Motivation von Threads. U9-3 Vergleich von Thread-Konzepten (2) U9-1 Überblick U9 9. Übung U9 9. Übung U9-1 Überblick Besprechung Aufgabe 6 (printdir) Posix-Threads U9.1 User-Level Threads: Federgewichtige Prozesse Realisierung von Threads auf Anwendungsebene innerhalb eines Prozesses

Mehr

Betriebssysteme. G: Parallele Prozesse. (Teil B: Klassische Problemstellungen, Mutual Exclusion, kritische Regionen)

Betriebssysteme. G: Parallele Prozesse. (Teil B: Klassische Problemstellungen, Mutual Exclusion, kritische Regionen) Betriebssysteme G: Parallele Prozesse (Teil B: Klassische Problemstellungen, Mutual Exclusion, kritische Regionen) 1 Allgemeine Synchronisationsprobleme Wir verstehen ein BS als eine Menge von parallel

Mehr

Tafelübung zu BSRvS 1 1. Prozesse, at

Tafelübung zu BSRvS 1 1. Prozesse, at Tafelübung zu BSRvS 1 1. Prozesse, at Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os http://ess.cs.tu-dortmund.de/de/teaching/ss2009/bsrvs1/

Mehr

I 7. Übung. I-1 Überblick. Besprechung Aufgabe 5 (mysh) Online-Evaluation. Posix Threads. Ü SoS I I.1

I 7. Übung. I-1 Überblick. Besprechung Aufgabe 5 (mysh) Online-Evaluation. Posix Threads. Ü SoS I I.1 I 7. Übung I 7. Übung I-1 Überblick Besprechung Aufgabe 5 (mysh) Online-Evaluation Posix Threads I.1 I-2 Evaluation I-2 Evaluation Online-Evaluation von Vorlesung und Übung SOS zwei TANs, zwei Fragebogen

Mehr

Besprechung Aufgabe 1: Prozesse verwalten Fortsetzung Grundlagen C-Programmierung Aufgabe 2: Threadsynchronisation

Besprechung Aufgabe 1: Prozesse verwalten Fortsetzung Grundlagen C-Programmierung Aufgabe 2: Threadsynchronisation Betriebssysteme Tafelübung 2. Thread-Synchronisation http://ess.cs.tu-dortmund.de/de/teaching/ss2016/bs/ Olaf Spinczyk olaf.spinczyk@tu-dortmund.de http://ess.cs.tu-dortmund.de/~os AG Eingebettete Systemsoftware

Mehr

Betriebssysteme. Tafelübung 2. Thread-Synchronisation. Olaf Spinczyk.

Betriebssysteme. Tafelübung 2. Thread-Synchronisation. Olaf Spinczyk. Betriebssysteme Tafelübung 2. Thread-Synchronisation http://ess.cs.tu-dortmund.de/de/teaching/ss2016/bs/ Olaf Spinczyk olaf.spinczyk@tu-dortmund.de http://ess.cs.tu-dortmund.de/~os AG Eingebettete Systemsoftware

Mehr

Tafelübung zu BS 1. Prozesse, Shell

Tafelübung zu BS 1. Prozesse, Shell Tafelübung zu BS 1. Prozesse, Shell Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/ http://ess.cs.tu-dortmund.de/de/teaching/ss2012/bs/

Mehr

Betriebssysteme, Rechnernetze und verteilte Systeme 1. Crashkurs C (2)

Betriebssysteme, Rechnernetze und verteilte Systeme 1. Crashkurs C (2) Betriebssysteme, Rechnernetze und verteilte Systeme 1 Crashkurs C (2) Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/teaching/ss2008/bsrvs1/

Mehr

Betriebssysteme (BS)

Betriebssysteme (BS) Betriebssysteme (BS) Probeklausur Olaf Spinczyk, Horst Schirmeier Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund Vorname.Nachname@tu-dortmund.de http://ess.cs.uni-dortmund.de/

Mehr

Tafelübung zu BS 2. Threadsynchronisation

Tafelübung zu BS 2. Threadsynchronisation Tafelübung zu BS 2. Threadsynchronisation Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/

Mehr

Leser-Schreiber-Realisierung mit Semaphoren

Leser-Schreiber-Realisierung mit Semaphoren Leser-Schreiber-Realisierung mit Semaphoren Reader: down(semwriter); down(semcounter); rcounter++; up(semwriter); read(); down(semcounter); rcounter--; Writer: Problem: down(semwriter); Busy Waiting siehe

Mehr

Michael Golm, Universität Erlangen-Nürnberg, IMMD 4, 1999/ / Tafelübung 5. Prozeß2 Prozeß3. Kernel

Michael Golm, Universität Erlangen-Nürnberg, IMMD 4, 1999/ / Tafelübung 5. Prozeß2 Prozeß3. Kernel 5. Tafelübung Lösung der ldir-aufgabe Erläuterung der jsh-aufgabe POSIX-Signale 46 IPC mit Signalen - Beispiele Ereignis ist eingetreten (SIGUSR1) Prozeß1 Prozeß2 Prozeß3 Prozeß4 kill-signal (SIGKILL)

Mehr

Betriebssysteme. Vorlesung im Herbstsemester 2010 Universität Mannheim. Kapitel 6: Speicherbasierte Prozessinteraktion

Betriebssysteme. Vorlesung im Herbstsemester 2010 Universität Mannheim. Kapitel 6: Speicherbasierte Prozessinteraktion Betriebssysteme Vorlesung im Herbstsemester 2010 Universität Mannheim Kapitel 6: Speicherbasierte Prozessinteraktion Felix C. Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung

Mehr

Tafelübung zu BS 2. Threadsynchronisation

Tafelübung zu BS 2. Threadsynchronisation Tafelübung zu BS 2. Threadsynchronisation Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/

Mehr

Aufgaben Semaphore Übersicht (Dijkstra)

Aufgaben Semaphore Übersicht (Dijkstra) Übersicht (Dijkstra) Einsatz von Semaphoren: Wechselseitiger Ausschluss (INIT = 1): REQ. Kritischer Bereich. REL Zählende Semaphore (INIT = N): Bis zu N verschiedene Prozesse dürfen in den kritischen Bereich

Mehr

Tafelübung zu BS 4. Dateioperationen

Tafelübung zu BS 4. Dateioperationen Tafelübung zu BS 4. Dateioperationen Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/ http://ess.cs.tu-dortmund.de/de/teaching/ss2013/bs/

Mehr

POSIX-Threads. Aufgabe 9 SP - Ü U10.1

POSIX-Threads. Aufgabe 9 SP - Ü U10.1 U10 10. Übung U10 10. Übung POSIX-Threads Aufgabe 9 U10.1 U10-1 Motivation von Threads U10-1 Motivation von Threads UNIX-Prozesskonzept: eine Ausführungsumgebung (virtueller Adressraum, Rechte, Priorität,...)

Mehr

1 Prozesse und Scheduling (12 Punkte)

1 Prozesse und Scheduling (12 Punkte) 1 Prozesse und Scheduling (12 Punkte) a) UNIX Shell-Operatoren (insgesamt 4 Punkte) 1. Operator (1,5 Punkte) Beschreiben Sie die Funktionsweise des Operators. 2. Operator Beispiel (1 Punkt) Geben Sie für

Mehr

Betriebssysteme (BS)

Betriebssysteme (BS) Betriebssysteme (BS) Verklemmungen Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund Olaf.Spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/ http://ess.cs.tu-dortmund.de/de/teaching/ss2014/bs/

Mehr

Das Signalkonzept (T) Signale und Signalbehandlung (P)

Das Signalkonzept (T) Signale und Signalbehandlung (P) Systempraktikum im Wintersemester 2009/2010 (LMU): Vorlesung vom 10.12. Foliensatz 6 Das Signalkonzept (T) (P) Thomas Schaaf, Nils gentschen Felde Lehr- und Forschungseinheit für Kommunikationssysteme

Mehr

Homogene Multi-Core-Prozessor-Architekturen

Homogene Multi-Core-Prozessor-Architekturen Homogene Multi-Core-Prozessor-Architekturen Praktikum Parallele Rechnerarchitekturen Stefan Potyra Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2009

Mehr

Übung zu Grundlagen der Betriebssysteme. 10. Übung 18.12.2012

Übung zu Grundlagen der Betriebssysteme. 10. Übung 18.12.2012 Übung zu Grundlagen der Betriebssysteme 10. Übung 18.12.2012 Aufgabe 1 a) Was versteht man unter einem kritischen Abschnitt oder kritischen Gebiet (critical area)? b) Welche Aufgabe hat ein Semaphor? c)

Mehr

Tafelübung zu BS 1. Prozesse, ToothBrush

Tafelübung zu BS 1. Prozesse, ToothBrush Tafelübung zu BS 1. Prozesse, ToothBrush Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/

Mehr

U8 POSIX-Threads U8 POSIX-Threads

U8 POSIX-Threads U8 POSIX-Threads U8 POSIX-Threads U8 POSIX-Threads Motivation Thread-Konzepte pthread-api pthread-koordinierung U8.1 U8-1 Motivation von Threads U8-1 Motivation von Threads UNIX-Prozesskonzept: eine Ausführungsumgebung

Mehr

Betriebssysteme (BS) Verklemmungen. Olaf Spinczyk.

Betriebssysteme (BS) Verklemmungen. Olaf Spinczyk. Betriebssysteme (BS) Verklemmungen http://ess.cs.tu-dortmund.de/de/teaching/ss2018/bs/ Olaf Spinczyk olaf.spinczyk@tu-dortmund.de http://ess.cs.tu-dortmund.de/~os AG Eingebettete Systemsoftware Informatik

Mehr

9. Vorlesung Betriebssysteme

9. Vorlesung Betriebssysteme Dr. Christian Baun 9. Vorlesung Betriebssysteme Hochschule Mannheim WS1213 1/39 9. Vorlesung Betriebssysteme Dr. Christian Baun Hochschule Mannheim Fakultät für Informatik wolkenrechnen@gmail.com Dr. Christian

Mehr

U8-1 Motivation von Threads. U8-2 Vergleich von Thread-Konzepten. U8-2 Vergleich von Thread-Konzepten (2) Motivation

U8-1 Motivation von Threads. U8-2 Vergleich von Thread-Konzepten. U8-2 Vergleich von Thread-Konzepten (2) Motivation U8 POSIX-Threads U8 POSIX-Threads U8-1 Motivation von Threads U8-1 Motivation von Threads Motivation Thread-Konzepte UNIX-Prozesskonzept: eine Ausführungsumgebung (virtueller Adressraum, Rechte, Priorität,...)

Mehr

Was machen wir heute? Betriebssysteme Tutorium 3. Organisatorisches. Prozesskontrollblock (PCB) Programmieraufgaben. Frage 3.1.a

Was machen wir heute? Betriebssysteme Tutorium 3. Organisatorisches. Prozesskontrollblock (PCB) Programmieraufgaben. Frage 3.1.a Was machen wir heute? Betriebssysteme Tutorium 3 Philipp Kirchhofer philipp.kirchhofer@student.kit.edu http://www.stud.uni-karlsruhe.de/~uxbtt/ Lehrstuhl Systemarchitektur Universität Karlsruhe (TH) 1

Mehr

Übungen zu Systemprogrammierung 1 (SP1)

Übungen zu Systemprogrammierung 1 (SP1) Übungen zu Systemprogrammierung 1 (SP1) Ü5 Threads und Koordinierung Andreas Ziegler, Stefan Reif, Jürgen Kleinöder Lehrstuhl für Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität

Mehr

PThreads. Pthreads. Jeder Hersteller hatte eine eigene Implementierung von Threads oder light weight processes

PThreads. Pthreads. Jeder Hersteller hatte eine eigene Implementierung von Threads oder light weight processes PThreads Prozesse und Threads Ein Unix-Prozess hat IDs (process,user,group) Umgebungsvariablen Verzeichnis Programmcode Register, Stack, Heap Dateideskriptoren, Signale message queues, pipes, shared memory

Mehr

Threads Einführung. Zustände von Threads

Threads Einführung. Zustände von Threads Threads Einführung Parallelität : Zerlegung von Problemstellungen in Teilaufgaben, die parallelel ausgeführt werden können (einfachere Strukturen, eventuell schneller, Voraussetzung für Mehrprozessorarchitekturen)

Mehr

Klausur zur Vorlesung Grundlagen der Betriebssysteme

Klausur zur Vorlesung Grundlagen der Betriebssysteme Prof. Dr. L. Wegner Dipl.-Math. K. Schweinsberg Klausur zur Vorlesung Grundlagen der Betriebssysteme 19.2.2004 Name:... Vorname:... Matrikelnr.:... Studiengang:... Hinweise: Bearbeitungszeit 2 Stunden.

Mehr

Wiederholung: Übernahmeprüfung bei terminbasierter Einplanung

Wiederholung: Übernahmeprüfung bei terminbasierter Einplanung Echtzeitsysteme Übungen zur Vorlesung Evaluation Evaluation der Veranstaltung Eure Meinung (Lob/Kritik) ist uns wichtig! Eure Rückmeldung hat Konsequenzen A Bitte evaluiert Vorlesung und Übungen Betriebsmittelprotokolle

Mehr

Tafelübung zu BS 1. Prozesse, ToothBrush

Tafelübung zu BS 1. Prozesse, ToothBrush Tafelübung zu BS 1. Prozesse, ToothBrush Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/

Mehr

Die Anweisungen zweier Prozesse werden parallel bearbeitet, wenn die Anweisungen unabhängig voneinander zur gleichen Zeit ausgeführt werden.

Die Anweisungen zweier Prozesse werden parallel bearbeitet, wenn die Anweisungen unabhängig voneinander zur gleichen Zeit ausgeführt werden. 7 Parallelität und Nebenläufigkeit Mehrere Prozessen oder Threads Parallelität Die Anweisungen zweier Prozesse werden parallel bearbeitet, wenn die Anweisungen unabhängig voneinander zur gleichen Zeit

Mehr

Betriebssysteme, Rechnernetze und verteilte Systeme 1 (BSRvS 1)

Betriebssysteme, Rechnernetze und verteilte Systeme 1 (BSRvS 1) Betriebssysteme, Rechnernetze und verteilte Systeme 1 (BSRvS 1) Verklemmungen Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund Olaf.Spinczyk@tu-dortmund.de

Mehr

Lehrstuhl für Datenverarbeitung. Technische Universität München. Leistungskurs C++ Multithreading

Lehrstuhl für Datenverarbeitung. Technische Universität München. Leistungskurs C++ Multithreading Leistungskurs C++ Multithreading Threading mit Qt Plattformübergreifende Thread-Klasse Sehr einfach zu benutzen Leider etwas schlecht dokumentiert Leistungskurs C++ 2 QThread Plattformübergreifende Thread-Klasse

Mehr

Lehrstuhl für Datenverarbeitung. Technische Universität München. Leistungskurs C++ Multithreading

Lehrstuhl für Datenverarbeitung. Technische Universität München. Leistungskurs C++ Multithreading Leistungskurs C++ Multithreading Zeitplan 16.10. Vorlesung 23.10. Vorlesung, Gruppeneinteilung 30.10. Vorlesung, HA1 06.11. Vorlesung, HA2 13.11. Vorlesung entfällt wegen SVV 20.11. Präsentation Vorprojekt

Mehr

Übungspaket 29 Dynamische Speicherverwaltung: malloc() und free()

Übungspaket 29 Dynamische Speicherverwaltung: malloc() und free() Übungspaket 29 Dynamische Speicherverwaltung malloc() und free() Übungsziele Skript In diesem Übungspaket üben wir das dynamische Alloziieren 1. und Freigeben von Speicherbereichen 2. von Zeichenketten

Mehr

Lehrstuhl für Datenverarbeitung. Technische Universität München. Leistungskurs C++ Multithreading

Lehrstuhl für Datenverarbeitung. Technische Universität München. Leistungskurs C++ Multithreading Leistungskurs C++ Multithreading Threading mit Qt Plattformübergreifende Thread-Klasse Sehr einfach zu benutzen Leider etwas schlecht dokumentiert Leistungskurs C++ 2 QThread Plattformübergreifende Thread-Klasse

Mehr

Übungen zu Systemprogrammierung 1

Übungen zu Systemprogrammierung 1 Übungen zu Systemprogrammierung 1 Ü5 Threads und Koordinierung Sommersemester 2018 Christian Eichler, Jürgen Kleinöder Lehrstuhl für Informatik 4 Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl

Mehr

Klausur Nichtsequentielle Programmierung

Klausur Nichtsequentielle Programmierung Klausur Nichtsequentielle Programmierung Prof. Dr. Marcel Kyas 22. Juli 2009 Nachname: Bachelor Magister Vorname: Master Lehramt Diplom Hinweise zur Klausur Bitte überprüfen Sie, dass Sie alle Seiten dieser

Mehr

Systemnahe Programmierung in C/C++

Systemnahe Programmierung in C/C++ Systemnahe Programmierung in C/C++ Signalbehandlung & MMap Knut Stolze stolze@informatik.uni-jena.de Lehrstuhl für Datenbanken und Informationssysteme Fakultät für Mathematik und Informatik 2006 11 29

Mehr

2.3 Prozessverwaltung

2.3 Prozessverwaltung Realisierung eines Semaphors: Einem Semaphor liegt genau genommen die Datenstruktur Tupel zugrunde Speziell speichert ein Semaphor zwei Informationen: Der Wert des Semaphors (0 oder 1 bei einem binären

Mehr

9. Foliensatz Betriebssysteme

9. Foliensatz Betriebssysteme Prof. Dr. Christian Baun 9. Foliensatz Betriebssysteme Frankfurt University of Applied Sciences SS2016 1/32 9. Foliensatz Betriebssysteme Prof. Dr. Christian Baun Frankfurt University of Applied Sciences

Mehr

Übung zu Grundlagen der Betriebssysteme. 11. Übung

Übung zu Grundlagen der Betriebssysteme. 11. Übung Übung zu Grundlagen der Betriebssysteme 11. Übung 08.01.2012 Organisation Anmeldung zur Klausur Klausur Grundlagen der Betriebssysteme Datum: 05.02.2013 Raum F414 (steht aber noch nicht sicher fest) Anmeldung

Mehr

Betriebssysteme (BS)

Betriebssysteme (BS) Betriebssysteme (BS) Verklemmungen Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund Olaf.Spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/ http://ess.cs.tu-dortmund.de/de/teaching/ss2011/bs/

Mehr

Verklemmungen - Deadlocks

Verklemmungen - Deadlocks Verklemmungen - Deadlocks Betriebsmittel Verklemmung Vogelstrauss Algorithmus Erkennung und Auflösung Vermeidung SS2001 Prof. H.D. Clausen - unisal 1 Kritische Betriebsmittel Beispiele Drucker Magnetbandgeräte

Mehr

Betriebssysteme (BS) Synchronisation. Olaf Spinczyk.

Betriebssysteme (BS) Synchronisation. Olaf Spinczyk. Betriebssysteme (BS) Synchronisation http://ess.cs.tu-dortmund.de/de/teaching/ss2017/bs/ Olaf Spinczyk olaf.spinczyk@tu-dortmund.de http://ess.cs.tu-dortmund.de/~os AG Eingebettete Systemsoftware Informatik

Mehr

Info B VL 16: Monitore und Semaphoren

Info B VL 16: Monitore und Semaphoren Info B VL 16: Monitore und Semaphoren Objektorientiere Programmierung in Java 2003 Ute Schmid (Vorlesung) Elmar Ludwig (Übung) FB Mathematik/Informatik, Universität Osnabrück Info B VL 16: Monitore und

Mehr

Betriebssysteme (BS)

Betriebssysteme (BS) Betriebssysteme (BS) Synchronisation Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund Olaf.Spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/ http://ess.cs.tu-dortmund.de/de/teaching/ss2013/bs/

Mehr

Betriebssysteme, Rechnernetze und verteilte Systeme 1 (BSRvS 1)

Betriebssysteme, Rechnernetze und verteilte Systeme 1 (BSRvS 1) Betriebssysteme, Rechnernetze und verteilte Systeme 1 (BSRvS 1) Synchronisation Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund Olaf.Spinczyk@tu-dortmund.de

Mehr

Betriebssysteme, Rechnernetze und verteilte Systeme 1 (BSRvS 1)

Betriebssysteme, Rechnernetze und verteilte Systeme 1 (BSRvS 1) Betriebssysteme, Rechnernetze und verteilte Systeme 1 (BSRvS 1) Synchronisation Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund Olaf.Spinczyk@tu-dortmund.de

Mehr

Parallele Prozesse. Prozeß wartet

Parallele Prozesse. Prozeß wartet Parallele Prozesse B-66 Prozeß: Ausführung eines Programmes in seinem Adressraum (zugeordneter Speicher) Parallele Prozesse: gleichzeitig auf mehreren Prozessoren laufende Prozesse p1 p2 verzahnte Prozesse:

Mehr

I.2 Transparenz beim RPC

I.2 Transparenz beim RPC I 8. Übung I 8. Übung 2 Fehler & RPC I.1 Überblick RPC-Aufrufsemantiken Fehlermodell Lokaler Fall Ich rufe eine Methode auf, diese wird genau einmal ausgeführt, und kehrt dann zurück: "Exactly-Once-Semantik"

Mehr

Threads. Netzwerk - Programmierung. Alexander Sczyrba Jan Krüger

Threads. Netzwerk - Programmierung. Alexander Sczyrba Jan Krüger Netzwerk - Programmierung Threads Alexander Sczyrba asczyrba@cebitec.uni-bielefeld.de Jan Krüger jkrueger@cebitec.uni-bielefeld.de Übersicht Probleme mit fork Threads Perl threads API Shared Data Mutexes

Mehr

2. Aufgabenblatt Threads

2. Aufgabenblatt Threads Fakultät Informatik Institut für Systemarchitektur, Professur für Betriebssysteme Betriebssysteme und Sicherheit, WS 2016/17 2. Aufgabenblatt Threads Geplante Bearbeitungszeit: drei Wochen TEIL A THREADS

Mehr

Betriebssysteme (BS) Verklemmungen. Olaf Spinczyk.

Betriebssysteme (BS) Verklemmungen. Olaf Spinczyk. Betriebssysteme (BS) Verklemmungen http://ess.cs.tu-dortmund.de/de/teaching/ss2017/bs/ Olaf Spinczyk olaf.spinczyk@tu-dortmund.de http://ess.cs.tu-dortmund.de/~os AG Eingebettete Systemsoftware Informatik

Mehr

U3 UNIX-Signale U3 UNIX-Signale

U3 UNIX-Signale U3 UNIX-Signale U3 UNIX-Signale U3 UNIX-Signale Besprechung der Aufgabe 2: sister Nebenläufigkeit durch Signale Aktives Warten auf Ereignisse Probleme beim passiven Warten (auf Signale) Nachtrag zur Signalbehandlungsschnittstelle

Mehr

Nicht-blockierende Synchronisation für Echtzeitsysteme

Nicht-blockierende Synchronisation für Echtzeitsysteme Nicht-blockierende Synchronisation für Echtzeitsysteme Seminar Mobile Systeme Florian Schricker 15. März 2005 Seminarleiter: Prof. Dr. Dieter Zöbel 1 INHALTSVERZEICHNIS INHALTSVERZEICHNIS Inhaltsverzeichnis

Mehr

Erstes Leser-Schreiber-Problem

Erstes Leser-Schreiber-Problem Erstes Leser-Schreiber-Problem Szenario: mehrere Leser und mehrere Schreiber gemeinsamer Datenbereich Schreiber haben exklusiven Zugriff Leser können parallel zugreifen (natürlich nur, wenn kein Schreiber

Mehr

Übungen zu Systemprogrammierung 1 (SP1)

Übungen zu Systemprogrammierung 1 (SP1) Übungen zu Systemprogrammierung 1 (SP1) Ü7 Threads und Koordinierung Jens Schedel, Christoph Erhardt, Jürgen Kleinöder Lehrstuhl für Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität

Mehr

Deadlocks. Christoph Lindemann. Betriebssysteme. Betriebssysteme WS 2004/05. Fahrplan. Inhalt. Das Deadlock Problem

Deadlocks. Christoph Lindemann. Betriebssysteme. Betriebssysteme WS 2004/05. Fahrplan. Inhalt. Das Deadlock Problem Betriebssysteme WS 2004/05 Deadlocks Christoph Lindemann Fahrplan 14.10. Organisation der Vorlesung, Einführung in Betriebssysteme 21.10. Strukturen von Betriebssystemen 28.10. Prozesse und Threads 4.11.

Mehr

Legende: Running Ready Blocked P1 P2 P3. t[ms] 1 Prozesse und Scheduling (16 Punkte)

Legende: Running Ready Blocked P1 P2 P3. t[ms] 1 Prozesse und Scheduling (16 Punkte) 1 Prozesse und Scheduling (16 Punkte) a) UNIX Shell (insgesamt 5 Punkte) 1) $ ls > Dateien.txt (2 Punkte) Was bewirkt die Ausführung dieses Kommandos in einer UNIX-Shell? 2) $ cat Dateien.txt grep txt

Mehr

Gegenseitiger Ausschluss 102

Gegenseitiger Ausschluss 102 Gegenseitiger Ausschluss 102 MX = M (P 1... P n ) M = (lock unlock M) P i = (lock begin_critical_region i end_critical_region i unlock private_work i P i ) n Prozesse P 1... P n wollen konkurrierend auf

Mehr

Informatik. Strukturen und Aufzählungstypen. Vorlesung

Informatik. Strukturen und Aufzählungstypen. Vorlesung Informatik Vorlesung 06 Strukturen und Aufzählungstypen 03. Dezember 2018 WiSe 2018 FB Ing - SB Umwelttechnik und Dienstleistung - Informatik Thomas Hoch 1 Datentypen Die bisher benutzten Datentypen waren

Mehr

Aufgaben zum Thema Threads (Prozesse)

Aufgaben zum Thema Threads (Prozesse) Aufgaben zum Thema Threads (Prozesse) T1. Erläutern Sie zwei Methoden, mit denen ein Prozeß seinen kritischen Abschnitt schützen kann! Geben Sie jeweils eine Implementationsmöglichkeit (in Pseudocode)

Mehr

Betriebssysteme (BS)

Betriebssysteme (BS) Betriebssysteme (BS) Probeklausur Olaf Spinczyk, Daniel Cordes und Matthias Meier Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund http://ess.cs.uni-dortmund.de/ http://ess.cs.tu-dortmund.de/de/teaching/ss2012/bs/

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung Objektorientierte Programmierung Ausnahmebehandlung und Nebenläufigkeit 9. Vorlesung am 15. Dezember 2010 Ausnahmebehandlung in Java class A { void foo() throws Help, SyntaxError {... class B extends A

Mehr

U6 POSIX-Prozesse. U6-1 Prozesse: Überblick. U6-1 UNIX-Prozesshierarchie. U6-2 POSIX Prozess-Systemfunktionen. Prozesse

U6 POSIX-Prozesse. U6-1 Prozesse: Überblick. U6-1 UNIX-Prozesshierarchie. U6-2 POSIX Prozess-Systemfunktionen. Prozesse U6 POSIX-Prozesse U6 POSIX-Prozesse U6-1 Prozesse: Überblick U6-1 Prozesse: Überblick Prozesse Prozesse sind eine Ausführumgebung für Programme POSIX-Prozess-Systemfunktionen POSIX-Signale haben eine Prozess-ID

Mehr