0x01? 0x01. 0x12 0x34. 0x34 0x12 0xBC 0x00 0x00 0x9A 0x00 0x78. 0x00 0x56. 0x56 0x00 0x78 0x00 0x9A 0x00 0xBC 0x00. 6.

Größe: px
Ab Seite anzeigen:

Download "0x01? 0x01. 0x12 0x34. 0x34 0x12 0xBC 0x00 0x00 0x9A 0x00 0x78. 0x00 0x56. 0x56 0x00 0x78 0x00 0x9A 0x00 0xBC 0x00. 6."

Transkript

1 6.5 MMIX Befehle 287 T q) Tragen Sie in nachfolgende Tabelle den Speicherinhalt ein, der sich nach Ausführung der angegebenen MMIX-Befehle im Falle von Big- und Little-Endian- Adressierung ergeben würde. LOC $254 BYTE 1 WYDE #1234 OCTA #56789ABC Adresse Niederwert. vier Adress-Bits Big Endian Little Endian 0x x01 0x01 0x x x12 0x34 0x x34 0x12 0x x x x x xBC 0x x9A 0x A x78 0x B x56 0x C x56 0x D x78 0x E x9A 0x F xBC

2 288 6 MMIX-Prozessor T r) Nehmen Sie die gezeigte Speicherbelegung an und geben Sie hexadezimal alle 64 Bit des Registers 0 nach Ausführung der folgenden Befehle an: LDB $0,$254,3: LDB $0,$254,14: LDBU $0,$254,15: LDT $0,$254,14: LDTU $0,$254,15: 0xFFFF FFFF FFFF FF9A 0x BC ABC ABC

3 6.5 MMIX Befehle 289 Daten vom Register in den Speicher schreiben (speichern) Befehl Operanden Name/Aktion : Definition M 1 [u($y)+u($z)] ($X) $X,$Y,$Z Store byte; with overflow s($x) 2 7 ) ra ra u64 0 (26 ) s($x) < 2 7 ) ra ra u64 0 STB ) M 1 [u($y)+u(z)] ($X) $X,$Y,Z Store byte immed.; ovf. s($x) 2 7 ) ra ra u64 0 (26 ) s($x) < 2 7 ) ra ra u64 0 (26 ) $X,$Y,$Z Store byte unsigned M 1 [u($y)+u($z)] ($X) STBU $X,$Y,Z Store byte uns. imm. M 1 [u($y)+u(z)] ($X) M 2 [u($y)+u($z)] ($X) $X,$Y,$Z Store wyde; with overflow s($x) 2 15 ) ra ra u64 0 (26 ) s($x) < 2 15 ) ra ra u64 0 STW ) M 2 [u($y)+u(z)] ($X) $X,$Y,Z Store wyde immed.; ovf. s($x) 2 15 ) ra ra u64 0 (26 ) s($x) < 2 15 ) ra ra u64 0 (26 ) $X,$Y,$Z Store wyde unsigned M 2 [u($y)+u($z)] ($X) STWU $X,$Y,Z Store wyde uns. imm. M 2 [u($y)+u(z)] ($X) M 4 [u($y)+u($z)] ($X) $X,$Y,$Z Store tetra; with overflow s($x) 2 31 ) ra ra u64 0 (26 ) STT s($x) < 2 31 ) ra ra u64 0 (26 ) M 4 [u($y)+u(z)] ($X) $X,$Y,Z Store tetra immed.; ovf. s($x) 2 31 ) ra ra u64 0 (26 ) s($x) < 2 31 ) ra ra u64 0 (26 ) STTU STO STOU STCO STHT ja 1 $X,$Y,$Z Store byte unsigned M 4 [u($y)+u($z)] ($X) $X,$Y,Z Store byte uns. imm. M 4 [u($y)+u(z)] ($X) $X,$Y,$Z Store octa M 8 [u($y)+u($z)] $X $X,$Y,Z Store octa immediate M 8 [u($y)+u(z)] $X $X,$Y,$Z Store octa unsigned M 8 [u($y)+u($z)] $X $X,$Y,Z Store octa uns. imm. M 8 [u($y)+u(z)] $X X,$Y,$Z Store constant octabyte M 8 [u($y)+u($z)] u64 0 ( u(x)) X,$Y,Z Store const. octa imm. M 8 [u($y)+u(z)] u64 0 ( u(x)) $X,$Y,$Z Store high tetra M 4 [u($y)+u($z)] ($X u 32) $X,$Y,Z Store high tetra imm. M 4 [u($y)+u(z)] ($X u 32)

4 290 6 MMIX-Prozessor Befehl Operanden Name/Aktion Definition STSF STUNC $X,$Y,$Z Store short float M 4 [u($y)+u($z)] f32 (f 64($X)) 1 $X,$Y,Z Store short float imm. M 4 [u($y)+u(z)] f32 (f 64($X)) $X,$Y,$Z Store uncached M 8 [u($y)+u($z)] $X $X,$Y,Z Store uncached imm. M 8 [u($y)+u(z)] $X 1 T a) Wie unterscheidet sich die Verwendung von X, Y und Z bei Speicher-Befehle von derjenigen aller anderen MMIX-Befehle Die Speicher-Befehle des MMIX verwenden Y und Z als Ziel und X als Quelle. Alle anderen MMIX-Befehle verwenden Y und Z als Quelle und X als Ziel. T b) Was ist beim MMIX der Unterschied zwischen vorzeichenbehaftetem und vorzeichenlosem Speichern Die vorzeichenbehafteten Speicherbefehle zeigen einen Festkomma- Überlauf an, wenn die abgespeicherten Werte bei STB kleiner als -128 oder größer als 127, bei STW kleiner als oder größer als , bei STT kleiner als 2,147,483,648 oder größer als 2,147,483,647 sind. Die vorzeichenlosen Speicherbefehle erzeugen keinen Überlauf. STO und STOU sind äquivalent.

5 6.5 MMIX Befehle 291 In folgendem Programmcode wird XXX XXXXXXXX als Platzhalter für einen einzelnen Befehl verwendet: LOC Data_Segment A OCTA #FFFFFFFFFFFFFFFF B TETRA # LOC #100 Main LDTU $0,B $0 : XXX XXXXXXXX TRAP 0,Halt,0 c) Geben Sie für das oben gezeigte Programm den Inhalt des 64 Bit breiten Wortes an, welches durch die Marke A adressiert wird, wenn XXX XXXXXXXX durch folgende Befehle ersetzt wird: STB $0,A: STTU $0,A: 0x21FF FFFF FFFF FFFF 0x FFFF FFFF STT $0,$254,6: 0xFFFF FFFF T d) Geben Sie für das oben gezeigte Programm den Inhalt des 64 Bit breiten Wortes an, welches durch die Marke A adressiert wird, wenn XXX XXXXXXXX durch folgende Befehle ersetzt wird: STW $0,A: STWU $0,A: STT $0,A: 0x4321 FFFF FFFF FFFF 0x4321 FFFF FFFF FFFF 0x FFFF FFFF STO $0,A: STB $0,$254,5: STW $0,$254,1: 0xFFFF FFFF FF21 FFFF 0x4321 FFFF FFFF FFFF ST0 $0,$254,5:

6 292 6 MMIX-Prozessor e) Geben Sie hexadezimal das 32 Bit breite Befehlswort des Befehls STBU $0,A an, wenn dieser in obigem Programmcode den Platzhalter XXX XXXXXXXX ersetzt. 0xA300FE00. T f) Geben Sie die Befehle an, mit denen Sie an Adresse 0x ein 64 Bit breites Datum anlegen, dieses Datum über die Marke Data ansprechbar machen und das Datenwort mit 0x initialisieren; an Adresse 0x100 ein Programm beginnen und das an Adresse Data gespeicherte Datenwort in Register 1 einlesen, Bits des Registers 1 an Adresse Data schreiben, Bits des Registers 1 an Adresse 0x schreiben, Bits des Registers 1 an Adresse 0x A schreiben. LOC Data_Segement Base Data OCTA # LOC #100 Main LDO $1,Data STB $1,Data STB $1,Base,2 STT $1,Base,#A

7 6.5 MMIX Befehle 293 Gegeben ist der folgende Programmcode: LOC Data_Segement Label OCTA # LOC #100 Main LDO $0,Label STB $0,Label LDA $2,Label STB $0,$2,2 STT $0,$2,10 T g) Zeichnen Sie byteweise den Inhalt des Speichers von Adresse 0x bis 0x F, der sich nach Ausführung des o.g. Programms ergibt. 0x x78 0x x x78 0x x x12 0x x34 0x x56 0x x78 0x x12 0x x34 0x A 0x56 0x B 0x78 0x C 0x D 0x E 0x F $0: $2:

8 294 6 MMIX-Prozessor Adressen in ein Register laden Befehl Operanden Name/Aktion Definition LDA $X,$Y,$Z Get address (absolute) $X u 0 64 (u($y)+u($z)) $X,$Y,Z Get address immed. (absolute) $X u 0 64 (u($y)+u(z)) GETA $X,YZ Get address (relativ) $X u64 0 (u(@) + 4 s(yz))! 0x0.. 0x1.. 0x2.. 0x3.. 0x4.. 0x5.. 0x6.. 0x7.. 0x8.. 0x9.. 0xA.. 0xB.. 0xC.. 0xD.. 0xE.. 0xF..! 0x..0 0x..1 0x..2 0x..3 0x..4 0x..5 0x..6 0x..7 TRAP 5ν FCMP ν FUN ν FEQL ν FADD 4ν FIX 4ν FSUB 4ν FIXU 4ν FLOT[I] 4ν FLOTU[I] 4ν SFLOT[I] 4ν SFLOTU[I] 4ν FMUL 4ν FCMPE 4ν FUNE ν FEQLE 4ν FDIV 40ν FSQRT 40ν FREM 4ν FINT 4ν MUL[I] 10ν MULU[I] 10ν DIV[I] 60ν DIVU[I] 60ν ADD[I] ν 2ADDU[I] ν CMP[I] ν SL[I] ν BN[B] ν+π BNN[B] ν+π PBN[B] 3ν-π PBNN[B] 3ν-π CSN[I] ν ADDU[I] ν 4ADDU[I] ν CMPU[I] ν SLU[I] ν BZ[B] ν+π BNZ[B] ν+π PBZ[B] 3ν-π PBNZ[B] 3ν-π CSZ[I] ν SUB[I] ν 8ADDU[I] ν NEG[I] ν SR[I] ν BP[B] ν+π BNP[B] ν+π PBP[B] 3ν-π PBNP[B] 3ν-π CSP[I] ν SUBU[I] ν 16ADDU[I] ν NEGU[I] ν SRU[I]ν BOD[B] ν+π BEV[B] ν+π PBOD[B] 3ν-π PBEV[B] 3ν-π CSOD[I] ν CSNN[I] ν ZSN[I] ν CSNZ[I] ν ZSZ[I] ν CSNP[I] ν ZSP[I] ν CSEV[I] ν ZSOD[I] ν ZSNN[I] ν ZSNZ[I] ν ZSNP[I] ν ZSEV[I] ν LDB[I] µ+ν LDBU[I] µ+ν LDW[I] µ+ν LDWU[I] µ+ν LDT[I] µ+ν LDTU[I] µ+ν LDO[I] µ+ν LDOU[I] µ+ν LDSF[I] µ+ν LDHT[I] µ+ν CSWAP[I] 2µ+2ν LDUNC[I] µ+ν LDVTS[I] ν PRELD[I] ν PREGO[I] ν GO[I] 3ν STB[I] µ+ν STBU[I] µ+ν STW[I] µ+ν STWU[I] µ+ν STT[I] µ+ν STTU[I] µ+ν STO[I] µ+ν STOU[I] µ+ν STSF[I] µ+ν STHT[I] µ+ν STCO[I] µ+ν STUNC[I] µ+ν SYNCD[I] ν PREST[I] ν SYNCID[I] ν PUSHGO[I] 3ν OR[I] ν ORN[I] ν NOR[I] ν XOR[I] ν AND[I] ν ANDN[I] ν NAND[I] ν NXOR[I] ν BDIF[I] ν WDIF[I] ν TDIF[I] ν ODIF[I] ν MUX[I] ν SADD[I] ν MOR[I] ν MXOR[I] ν SETH ν SETMH ν SETML ν SETL ν INCH ν INCHM ν INCML ν INCL ν ORH ν ORMH ν ORML ν ORL ν ANDNH ν ANDNMH ν ANDNML ν ANDNL ν JMP[B] ν PUSHJ[B] ν GETA[B] ν PUT[I] ν POP 3ν RESUME 5ν [UN]SAVE 20µ+ν SYNC ν SWYM ν GET ν TRIP 5ν 0x..8 0x..9 0x..A 0x..B 0x..C 0x..D 0x..E 0x..F 0x0.. 0x1.. 0x2.. 0x3.. 0x4.. 0x5.. 0x6.. 0x7.. 0x8.. 0x9.. 0xA.. 0xB.. 0xC.. 0xD.. 0xE.. 0xF..! a) Was ist der Unterschied zwischen dem Befehl LDA und den Ladebefehlen LDB,... Die Ladebefehle LDB,... laden Datenworte vom Speicher in ein Register. Der Befehl LDA lädt eine Adresse in ein Register.

9 6.5 MMIX Befehle 295 Nehmen Sie die folgenden Befehle an: LOC Data_Segment A BYTE #12 LOC #100 Main LDA $0,A TRAP 0,Halt,0 b) Der Assembler übersetzt den Befehl LDA $0,A in 0x2300FE00. Warum Der Assembler löst die Marke A in $ auf und ersetzt den Befehl LDA $0,A durch ADDUI $0,$254,0. Der Befehl ADDUI addiert den Wert im Basisregister 254 und den Offset 0 und speichert das Ergebnis in Register 0. Damit enthält Register 0 dann die Adresse der Marke A. Gegeben sind die folgenden Befehle: LOC Data_Segment A BYTE #12 LOC #100 Main LDA $0,A GETA $0,Main TRAP 0,Halt,0 c) In welches 32 Bit breite Befehlswort wird der Befehl GETA $0,Main übersetzt 0xF500FFFF

10 296 6 MMIX-Prozessor Zugriff auf Spezialregister Befehl Operanden Name/Aktion Definition GET $X,Z Get value of special purpose register $X S(Z) PUT X,$Z Put value to special purpose register S(X) $Z X,Z Put immed. value to spec. purp. reg. S(X) u 0 64 (u(z)) T a) Tragen Sie in nachfolgender Befehlssequenz Befehle zur Berechnung der Festkommadivisioni dividend/divisor ein und speichern Sie das Ergebnis an der Marke Quotient und den Divisionsrest an der Marke Remainder ab. LOC Data_Segment Dividend OCTA 7 Divisor OCTA 3 Quotient OCTA Remainder OCTA dividend IS $0 divisor IS $1 quotient IS $2 remainder IS $3 LOC #100 Main LDO dividend,dividend LDO divisor,divisor DIV GET STO STO quotient,dividend,divisor remainder,rr quotient,quotient remainder,remainder TRAP 0,Halt,0

11 6.5 MMIX Befehle 297 Gegeben ist das Format des Spezialregisters ra. Interrupt Enable (Freischalten) Interrupt Event (Auftreten) 0 0 R1 R0 D V W I O U Z X D V W I O U Z X nicht verwendet Gleitkommazahl ungenau (z.b. 1.0 / 3.0) Gleitkomma-Division durch 0 Gleitkomma-Unterlauf Gleitkomma-Überlauf Unerlaubte Gleitkommaoperation, z.b. sqrt(-1.0) Überlauf bei Wandlung Gleitkomma- in Festkommazahl Festkomma-Überlauf Festkomma-Division durch 0 Gleitkomma-Rundungsmodus 00: Nächster Wert (standard) 01: Abrunden (Richtung 0) 10: Aufrunden (Richtung + ) 11: Abrunden (Richtung - ) b) Geben Sie den MMIX-Code an, mit dem Sie den Gleitkomma-Rundungsmodus auf aufrunden setzen. Bits die geändert werden müssen: 17, 16 GET $0,rA ANDNML $0,3 ORML $0,2 PUT ra,$0 c) Ändern Sie das Interrupt-Enable Bit integer overflow (0 ) 1, 1 ) 0). GET $0,rA SET $1,#4000 XOR $0,$0,$1 PUT ra,$0

12 298 6 MMIX-Prozessor Verzweigungsbefehle Unbedingte Verzweigung Befehl Operanden Name/Aktion Definition JMP XYZ u64 0 ( u(@) + 4 s(xyz)) Bedingte Verzweigungen Befehl Operanden Name/Aktion Definition BZ $X,YZ Branch if zero s($x) u64 0 ( u(@) + 4 s(yz)) PBZ $X,YZ Probable br. if zero s($x) u64 0 ( u(@) + 4 s(yz)) BNZ $X,YZ Branch if nonzero s($x) 6= u64 0 ( u(@) + 4 s(yz)) PBNZ $X,YZ Prob. br. if nonzero s($x) 6= u64 0 ( u(@) + 4 s(yz)) BN $X,YZ Branch if negative s($x) < 0 u64 0 ( u(@) + 4 s(yz)) PBN $X,YZ Prob. br. if negative s($x) < 0 u64 0 ( u(@) + 4 s(yz)) BNN $X,YZ Branch if nonneg. s($x) 0 u64 0 ( u(@) + 4 s(yz)) PBNN $X,YZ Prob. br. if nonneg. s($x) 0 u64 0 ( u(@) + 4 s(yz)) BP $X,YZ Branch if positive s($x) > 0 u64 0 ( u(@) + 4 s(yz)) PBP $X,YZ Prob. br. if positive s($x) > 0 u64 0 ( u(@) + 4 s(yz)) BNP $X,YZ Branch if nonpositive s($x) apple 0 u64 0 ( u(@) + 4 s(yz)) PBNP $X,YZ Prob. br. if nonpos. s($x) apple 0 u64 0 ( u(@) + 4 s(yz)) BEV $X,YZ Branch if even u 0 64 ( u(@)+4 s(yz)) PBEV $X,YZ Prob. branch if even u 0 64 ( u(@)+4 s(yz)) BOD $X,YZ Branch if odd u 0 64 ( u(@)+4 s(yz)) PBOD $X,YZ Prob. branch if odd u 0 64 ( u(@)+4 s(yz))

6.5 MMIX Befehle 287. LOC $254 BYTE 1 WYDE #1234 OCTA #56789ABC 0x x x

6.5 MMIX Befehle 287. LOC  $254 BYTE 1 WYDE #1234 OCTA #56789ABC 0x x x 6.5 MMIX Befehle 287 T q) Tragen Sie in nachfolgende Tabelle den Speicherinhalt ein, der sich nach Ausführung der angegebenen MMIX-Befehle im Falle von Big- und Little-Endian- Adressierung ergeben würde.

Mehr

T e) Wie unterscheiden sich die Opcodes von vorzeichenlosen und vorzeichenbehafteten Ladebefehlen?

T e) Wie unterscheiden sich die Opcodes von vorzeichenlosen und vorzeichenbehafteten Ladebefehlen? - 282 6 MMIX-Prozessor T e) Wie unterscheiden sich die Opcodes von vorzeichenlosen und vorzeichenbehafteten Ladebefehlen? f) Nehmen Sie an, dass die vorzeichenbehaftete 8 Bit breite Zahl -64 mit dem LDB-Befehl

Mehr

T a) Welche Wortgrößen kann der MMIX vom Speicher in Register laden? Die MMIX-Ladebefehle unterstützen Wortbreiten von 8, 16, 32 und 64 Bit.

T a) Welche Wortgrößen kann der MMIX vom Speicher in Register laden? Die MMIX-Ladebefehle unterstützen Wortbreiten von 8, 16, 32 und 64 Bit. 6.5 MMIX Befehle 265 T a) Welche Wortgrößen kann der MMIX vom Speicher in Register laden Die MMIX-Ladebefehle unterstützen Wortbreiten von 8, 16, 32 und 64 Bit. T b) Was ist der Unterschied zwischen vorzeichenbehaftetem

Mehr

Übungsblätter zur Vorlesung IT-Systeme 1. 1 Zahldarstellung und Codierung

Übungsblätter zur Vorlesung IT-Systeme 1. 1 Zahldarstellung und Codierung Hochschule für angewandte Wissenschaften (FH) München Wintersemester 2009/2010 Fakultät für Informatik und Mathematik 11. Januar 2010 Prof. Dr. A. Böttcher Übungsblätter zur Vorlesung IT-Systeme 1 1 Zahldarstellung

Mehr

276 6 MMIX-Prozessor. Befehl Operanden Name/Aktion Definition. $X,$Y,$Z Bitwise AND $X $Y & $Z $X,$Y,Z Bitwise AND immediate $X $Y & u64 0 ( u(z)) AND

276 6 MMIX-Prozessor. Befehl Operanden Name/Aktion Definition. $X,$Y,$Z Bitwise AND $X $Y & $Z $X,$Y,Z Bitwise AND immediate $X $Y & u64 0 ( u(z)) AND 276 6 MMIX-Prozessor Logische Operationen auf Bit-Ebene Befehl Operanden Name/Aktion Definition AND ANDN $X,$Y,$Z Bitwise AND $X $Y & $Z $X,$Y,Z Bitwise AND immediate $X $Y & u64 0 ( u(z)) $X,$Y,$Z Bitwise

Mehr

Nachfolgende Tabelle übersetzt MMIX-Opcodes in diejenigen Zahlen, die im Befehlswort in den Bits abgelegt werden müssen.

Nachfolgende Tabelle übersetzt MMIX-Opcodes in diejenigen Zahlen, die im Befehlswort in den Bits abgelegt werden müssen. 256 6 MMIX-Prozessor Nachfolgende Tabelle übersetzt MMIX-Opcodes in diejenigen Zahlen, die im Befehlswort in den Bits 3124 abgelegt werden müssen! 0x0 0x1 0x2 0x3 0x4 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 TRAP

Mehr

q) Geben Sie Befehle an, die ein neues globales Register anlegen und dieses mit Speicheradresse 0x initialisieren,

q) Geben Sie Befehle an, die ein neues globales Register anlegen und dieses mit Speicheradresse 0x initialisieren, 6.4 MMIX-Programme 251 q) Geben Sie Befehle an, die ein neues globales Register anlegen und dieses mit Speicheradresse 0x2000000000000000 initialisieren, an dieser Speicheradresse ein Bit breites Datenwort

Mehr

Aufgabenkatalog. Computersysteme 1 Dr. Michael Zwick. Technische Universität München

Aufgabenkatalog. Computersysteme 1 Dr. Michael Zwick. Technische Universität München Aufgabenkatalog Computersysteme 1 Dr. Michael Zwick Technische Universität München Inhalt 1 Komponenten eines Computer-Systems 5 Netzteil.................................... 5 Grafikkarten.................................

Mehr

T b) Wo findet man den Arbeitsspeicher in einem Computersystem? Auf dem Prozessor-Kern? Auf dem Mainboard? Als externes Gerät?

T b) Wo findet man den Arbeitsspeicher in einem Computersystem? Auf dem Prozessor-Kern? Auf dem Mainboard? Als externes Gerät? 234 6 MMIX-Prozessor Aufgaben Verständnis Speicher T a) Wozu verwendet ein Computer Arbeitsspeicher? T b) Wo findet man den Arbeitsspeicher in einem Computersystem? Auf dem Prozessor-Kern? Auf dem Mainboard?

Mehr

Bachelorprüfung Modul Computertechnik

Bachelorprüfung Modul Computertechnik Prüfungsfähigkeit: Bachelorprüfung Modul Computertechnik Computersysteme 24.7.24 Hiermit bestätige ich, dass ich vor Prüfungsbeginn darüber in Kenntnis gesetzt wurde, dass ich im Falle einer plötzlich

Mehr

6.3 Speicher 233. Virtueller Speicher dreier Programme. realer Speicher Interrupt-Vektoren. Text-Segment.

6.3 Speicher 233. Virtueller Speicher dreier Programme. realer Speicher Interrupt-Vektoren. Text-Segment. 6.3 Speicher 233 Virtueller Speicher Die gezeigte Einteilung des Speichers in verschiedene Segmente bezieht sich auf den sog. virtuellen Speicher. Virtueller Speicher meint, dass die Speicheradressen,

Mehr

den Loader; der Loader ist derjenige Teil des Betriebssystems, der auszuführende Programme vom der Festplatte/SSD in den Speicher lädt

den Loader; der Loader ist derjenige Teil des Betriebssystems, der auszuführende Programme vom der Festplatte/SSD in den Speicher lädt 242 6 MMIX-Prozessor 64 MMIX-Programme MMIX-Programme bzw Assembler-Programme für den MMIX-Prozessor sind Quelltext- Dateien mit Befehlen für den MMIX-Prozessor; die vom MMIX unterstützen Befehle nennt

Mehr

MMIX Assembler Programmierung Dr. Michael Zwick. Zahldarstellung

MMIX Assembler Programmierung Dr. Michael Zwick. Zahldarstellung MMIX Assembler Programmierung Dr. Michael Zwick Zahldarstellung Festkommazahlen Vorzeichenlose Zahlen n Bit => 2 n verschiedene Werte darstellbar Wertebereich: 0... 2 n - 1 Kodierung: 0... 000, 0... 001,

Mehr

GOP Computertechnik. Computersysteme

GOP Computertechnik. Computersysteme Prüfungsfähigkeit: Weitere Hinweise: - - - - - - - - GOP Computertechnik Computersysteme 7.8.27 Hiermit bestätige ich, dass ich vor Prüfungsbeginn darüber in Kenntnis gesetzt wurde, dass ich im Falle einer

Mehr

GOP Computertechnik. Computersysteme

GOP Computertechnik. Computersysteme Prüfungsfähigkeit: Weitere Hinweise: - - - - - - - - GOP Computertechnik Computersysteme 3.7.2 Hiermit bestätige ich, dass ich vor Prüfungsbeginn darüber in Kenntnis gesetzt wurde, dass ich im Falle einer

Mehr

MMIX Assembler Programmierung. Computersysteme 1 Dr. Michael Zwick

MMIX Assembler Programmierung. Computersysteme 1 Dr. Michael Zwick MMIX Assembler Programmierung Computersysteme 1 Dr. Michael Zwick Zahldarstellung Festkommazahlen Vorzeichenlose Zahlen n Bit => 2 n verschiedene Werte darstellbar Wertebereich: 0... 2 n - 1 Kodierung:

Mehr

GOP Computertechnik. Computersysteme Probeklausur 2

GOP Computertechnik. Computersysteme Probeklausur 2 Prüfungsfähigkeit: Weitere Hinweise: - - - - - - - - Die Prüfungsdauer beträgt 75 Minuten. Es sind keine Hilfsmittel erlaubt, auch keine Taschenrechner! Heftung nicht öffnen - keine Blätter abtrennen!

Mehr

GOP Computertechnik. Computersysteme

GOP Computertechnik. Computersysteme Prüfungsfähigkeit: Weitere Hinweise: - - - - - - - - GOP Computertechnik Computersysteme 22.7.26 Hiermit bestätige ich, dass ich vor Prüfungsbeginn darüber in Kenntnis gesetzt wurde, dass ich im Falle

Mehr

q) Geben Sie Befehle an, die ein neues globales Register anlegen und dieses mit Speicheradresse 0x initialisieren,

q) Geben Sie Befehle an, die ein neues globales Register anlegen und dieses mit Speicheradresse 0x initialisieren, 6.4 MMIX-Programme 235 q) Geben Sie Befehle an, die ein neues globales Register anlegen und dieses mit Speicheradresse 0x2000000000000000 initialisieren, an dieser Speicheradresse ein Bit breites Datenwort

Mehr

Aufgabenkatalog. Computersysteme 1 Dr. Michael Zwick. Technische Universität München

Aufgabenkatalog. Computersysteme 1 Dr. Michael Zwick. Technische Universität München Aufgabenkatalog Computersysteme Dr. Michael Zwick Technische Universität München Inhalt Komponenten eines Computer-Systems 5 Netzteil.................................... 5 Grafikkarten.................................

Mehr

k) Wie kann man beim MMIX auf die Parameter zugreifen? $1 + 8 $

k) Wie kann man beim MMIX auf die Parameter zugreifen? $1 + 8 $ 63 Speicher 241 k) Wie kann man beim MMIX auf die Parameter zugreifen? $0 : arge $1 : argv $1 +0 Virtueller Speicher $1 + 8 $1 16 +,, ARGUED Argus argv IZJ - a) Wenn alle Programme an Adresse 0x100 beginnen

Mehr

GOP Computertechnik. Computersysteme Probeklausur 2

GOP Computertechnik. Computersysteme Probeklausur 2 Prüfungsfähigkeit: Weitere Hinweise: - - - - - - - - Die Prüfungsdauer beträgt 75 Minuten. Es sind keine Hilfsmittel erlaubt, auch keine Taschenrechner! Heftung nicht öffnen - keine Blätter abtrennen!

Mehr

6.3 Speicher 233. Virtueller Speicher dreier Programme. realer Speicher Interrupt-Vektoren. Text-Segment.

6.3 Speicher 233. Virtueller Speicher dreier Programme. realer Speicher Interrupt-Vektoren. Text-Segment. 6.3 Speicher 233 Virtueller Speicher Die gezeigte Einteilung des Speichers in verschiedene Segmente bezieht sich auf den sog. virtuellen Speicher. Virtueller Speicher meint, dass die Speicheradressen,

Mehr

GOP Computertechnik. Computersysteme Probeklausur 1

GOP Computertechnik. Computersysteme Probeklausur 1 Prüfungsfähigkeit: Weitere Hinweise: - - - - - - - - Die Prüfungsdauer beträgt 75 Minuten. Es sind keine Hilfsmittel erlaubt, auch keine Taschenrechner! Heftung nicht öffnen - keine Blätter abtrennen!

Mehr

Aufgabenkatalog. Computersysteme 1 Dr. Michael Zwick. Technische Universität München

Aufgabenkatalog. Computersysteme 1 Dr. Michael Zwick. Technische Universität München Aufgabenkatalog Computersysteme 1 Dr. Michael Zwick Technische Universität München Inhalt 1 Komponenten eines Computer-Systems 5 Netzteil.................................... 5 Grafikkarten.................................

Mehr

Bachelorprüfung Modul Computertechnik

Bachelorprüfung Modul Computertechnik Prüfungsfähigkeit: Bachelorprüfung Modul Computertechnik Computersysteme Probeklausur 2 Hiermit bestätige ich, dass ich vor Prüfungsbeginn darüber in Kenntnis gesetzt wurde, dass ich im Falle einer plötzlich

Mehr

q) Geben Sie Befehle an, die ein neues globales Register anlegen und dieses mit Speicheradresse 0x2000000000000000 initialisieren,

q) Geben Sie Befehle an, die ein neues globales Register anlegen und dieses mit Speicheradresse 0x2000000000000000 initialisieren, At AZOCTA 6.4 MMIX-Programme 235 q) Geben Sie Befehle an, die ein neues globales Register anlegen und dieses mit Speicheradresse 0x2000000000000000 initialisieren, an dieser Speicheradresse ein Bit breites

Mehr

LOC Data_Segment

LOC Data_Segment 65 MMIX Befehle 291 In folgendem Programmcode wird XXX XXXXXXXX als Platzhalter für einen einzelnen Befehl verwendet: : LOC Data_Segment a iii GREG @ :;fff ±t A OCTA #FFFFFFFFFFFFFFFF B TETRA #87654321

Mehr

MMIX - Crashkurs. TI-II Rechnerarchitektur

MMIX - Crashkurs. TI-II Rechnerarchitektur MMIX - Crashkurs TI-II Rechnerarchitektur MMIX Einführung Aussprache: em-micks MMIX ist ein virtueller Prozessor, mit eigener Assemblersprache Um MMIX-Programme assemblieren und ausführen zu können, benötigt

Mehr

IM P label = Bedingte Verzweigungen

IM P label = Bedingte Verzweigungen 298 6 MMIX-Prozessor Verzweigungsbefehle Unbedingte Verzweigung 23 0 opc X 4 z Befehl Operanden Name/Aktion Definition JMP XYZ Jump @ u64 0 ( u(@) + 4 s(xyz)) IM P label = Bedingte Verzweigungen Befehl

Mehr

Beim Programmieren mit MMIX habt ihr vielleicht schon öfter eine der folgenden Fehlermeldungen von MMIXAL bekommen:

Beim Programmieren mit MMIX habt ihr vielleicht schon öfter eine der folgenden Fehlermeldungen von MMIXAL bekommen: 1 ADRESSIERUNG IN MMIX Beim Programmieren mit MMIX habt ihr vielleicht schon öfter eine der folgenden Fehlermeldungen von MMIXAL bekommen: no base address is close enough to the address A! relative address

Mehr

MMIX: Einführung. Einführung. Ressourcen. Aussprache: em-micks Autor: Donald Knuth

MMIX: Einführung. Einführung. Ressourcen. Aussprache: em-micks Autor: Donald Knuth MMIX: Einführung Einführung Aussprache: em-micks Autor: Donald Knuth MMIX ist ein virtueller Prozessor, mit eigener Programmiersprache MMIX-Programme sind maschinennah, d.h. eng an die Prozessorhardware

Mehr

T e) Welche Eigenschaft müssen Byte-, Wyde-, Tetra- und Octa-Adressen beim MMIX haben?

T e) Welche Eigenschaft müssen Byte-, Wyde-, Tetra- und Octa-Adressen beim MMIX haben? 236 6 MMIX-Prozessor T e) Welche Eigenschaft müssen Byte-, Wyde-, Tetra- und Octa-Adressen beim MMIX haben? Byte : Reine besondere Eigenschaft wyde : durch 2 tutbar eetztesrstto Tetra : dutch 4 teicbar

Mehr

T c) Daten welcher Größenordnung kann ein Register aufnehmen: Byte, kilobytes, megabytes, gigabytes or terabytes?

T c) Daten welcher Größenordnung kann ein Register aufnehmen: Byte, kilobytes, megabytes, gigabytes or terabytes? 222 6 MMIXProzessor Verständnisfragen/Aufgaben Allgemein T a) Was ist ein Register? Kleiner aber Schneller Speicher T b) Wo findet man Register in einem ComputerSystem? Prozessor T c) Daten welcher Größenordnung

Mehr

Übersicht. Quelle: Kapitel 3, 4 und 5 aus Anlauff, Böttcher, Ruckert: Das MMIX-Buch. Springer, 2002

Übersicht. Quelle: Kapitel 3, 4 und 5 aus Anlauff, Böttcher, Ruckert: Das MMIX-Buch. Springer, 2002 Übersicht Wiederholung: ein einfaches MMIX-Programm Speicherorganisation, Speicherzugriff Zahlen und Arithmetik Zeichenketten und Ein-/Ausgabe Kontrollstrukturen Unterprogramme Quelle: Kapitel 3, 4 und

Mehr

4. TÜ-Zusammenfassung zum Modul Computersysteme

4. TÜ-Zusammenfassung zum Modul Computersysteme 4. TÜ-Zusammenfassung zum Modul Computersysteme Kurzzusammenfassung 6. Kapitel MMIX 256 Allzweckregister um Operanden abzuspeichern 32 Spezialregister bilden Schnittstelle zwischen Soft- und Hardware ALU(Arithmetic

Mehr

Hinweise. Auswertung. Einführung in die Technische Informatik WS 2006/2007 Bachelor-Klausur. Aachen, 07. März 2007 SWS: V2/Ü2, ECTS: 4

Hinweise. Auswertung. Einführung in die Technische Informatik WS 2006/2007 Bachelor-Klausur. Aachen, 07. März 2007 SWS: V2/Ü2, ECTS: 4 Professor Dr.-Ing. Stefan Kowalewski Dipl.-Inform. Andreas Polzer Dipl.-Inform. Ralf Mitsching LEHRSTUHL INFORMATIK XI SOFTWARE FÜR EINGEBETTETE SYSTEME Aachen, 07. März 2007 SWS: V2/Ü2, ECTS: 4 Einführung

Mehr

Hinweise. Auswertung. Einführung in die Technische Informatik WS 2007/2008 Bachelor-Klausur (TI) Aachen, 05. März 2008 SWS: V4/Ü2, ECTS: 7

Hinweise. Auswertung. Einführung in die Technische Informatik WS 2007/2008 Bachelor-Klausur (TI) Aachen, 05. März 2008 SWS: V4/Ü2, ECTS: 7 Professor Dr.-Ing. Stefan Kowalewski Dipl.-Inform. Philipp Kranen Dipl.-Inform. Andreas Polzer LEHRSTUHL INFORMATIK XI SOFTWARE FÜR EINGEBETTETE SYSTEME Aachen, 5. März 28 SWS: V4/Ü2, ECTS: 7 Einführung

Mehr

Welche Register werden zur Parameterübergabe verwendet? In welcher Reihenfolge werden die Parameter auf dem Stack bzw. in den Registern abgelegt?

Welche Register werden zur Parameterübergabe verwendet? In welcher Reihenfolge werden die Parameter auf dem Stack bzw. in den Registern abgelegt? 6.5 MMIX Befehle 291 Aufrufkonventionen Eine Aufrufkonvention (engl. calling convention) legt fest, wie einer Funktion Parameter übergeben werden und wie der Rückgabewert zurückgegeben wird. Damit spezifiziert

Mehr

6 MMIX-Prozessor. 6.1 Programmiermodell. S.219 alles wichtig. 6.2 Register. Allzweckregister

6 MMIX-Prozessor. 6.1 Programmiermodell. S.219 alles wichtig. 6.2 Register. Allzweckregister 6 MMIXProzessor Modell eines Prozessors (keine LegacyEffekte) RegisterRegister Architektur mit 256 Allzweck Register und 32 Spezialregister Wortbreite der Register, des Rechenwerks, der Daten und AdressBusse:

Mehr

Technische Informatik II Rechnerarchitektur

Technische Informatik II Rechnerarchitektur Technische Informatik II Rechnerarchitektur MMIX-Crashkurs Matthias Dräger, Markus Rudolph E-Mail: mdraeger@mi.fu-berlin.de rudolph@mi.fu-berlin.de www: tinyurl.com/mmix2010 www.matthias-draeger.info/lehre/sose2010ti2/mmix.php

Mehr

Nachfolgende Abbildung zeigt das Spezialregister ra, das Arithmetische Status Register. Interrupt Enable (Freischalten)

Nachfolgende Abbildung zeigt das Spezialregister ra, das Arithmetische Status Register. Interrupt Enable (Freischalten) 62 Register 205 Spezialregister Spezialregister (engl special purpose registers) haben im Gegensatz zu Allzweckregistern einen bestimmten Zweck, dh jedes Spezialregister hat seine ganz eigene Aufgabe Spezialregister

Mehr

6 MMIX-Prozessor MMIX-Prozessor

6 MMIX-Prozessor MMIX-Prozessor 218 6 MMI-Prozessor 6 MMI-Prozessor In diesem Kapitel beschäftigen wir uns mit dem MMI-Prozessor. Der MMI-Prozessor wurde von Donald Ervin Knuth zu Lehr- und Forschungszwecken an der Stanford University

Mehr

6 MMIX-Prozessor MMIX-Prozessor

6 MMIX-Prozessor MMIX-Prozessor 218 6 MMI-Prozessor 6 MMI-Prozessor In diesem Kapitel beschäftigen wir uns mit dem MMI-Prozessor. Der MMI-Prozessor wurde von Donald Ervin Knuth zu Lehr- und Forschungszwecken an der Stanford University

Mehr

4.3 Assembler 207 SET R0,0 INPUT R1,0 MUL R1,R1,R1 ADD R0,R0,R1 INPUT R1,1 MUL R1,R1,R1 ADD R0,R0,R1 INPUT R1,2 MUL R1,R1,R1 ADD R0,R0,R1 SQRT R0,R0

4.3 Assembler 207 SET R0,0 INPUT R1,0 MUL R1,R1,R1 ADD R0,R0,R1 INPUT R1,1 MUL R1,R1,R1 ADD R0,R0,R1 INPUT R1,2 MUL R1,R1,R1 ADD R0,R0,R1 SQRT R0,R0 4. Assembler 27 c) Schreiben Sie für den Universalrechner ein Programm in Assembler-Sprache, welches die an den Eingängen, 1 und 2 anliegenden Koordinaten eines Vektors im dreidimensionlen Raum einliest,

Mehr

LOC Data_Segment A OCTA a) Bestimmen Sie das 32 Bit breite Befehlswort des Befehls JMP Start.

LOC Data_Segment A OCTA a) Bestimmen Sie das 32 Bit breite Befehlswort des Befehls JMP Start. humpl 6.5 MMIX Befehle 299 Betrachten Sie die folgenden Befehle: LOC Data_Segment GREG @ A OCTA 1000 a IS $1 b IS $2 LOC #100 Main LDB aa Start SUB aa1 swathe 2 Befehl OR aa0 BZ aend JMP Start End TRAP

Mehr

T e) Wie wird im Speicher an der Adresse 0x die 32 Bit-Zahl

T e) Wie wird im Speicher an der Adresse 0x die 32 Bit-Zahl 63 Speicher 237 T e) Wie wird im Speicher an der Adresse 0x2000000000000008 die 32 BitZahl 0x12345678 abgelegt im Falle einer BigEndian und einer LittleEndianMaschine? Adresse Big Endian Little Endian

Mehr

4 Prozessor-Datenpfad 4.1 Vom zu lösenden Problem abhängige Schaltung

4 Prozessor-Datenpfad 4.1 Vom zu lösenden Problem abhängige Schaltung 4 ProzessorDatenpfad 4.1 Vom zu lösenden Problem abhängige Schaltung Die Idee ist es nun nicht unflexible Schaltungen, die aus einer großen Anzahl von Komponenten bestehen und nur eine Aufgabe erledigen

Mehr

4.3 Assembler. Assembler als leicht verständliche hardwarenahe Sprache Prozessor-Datenpfad

4.3 Assembler. Assembler als leicht verständliche hardwarenahe Sprache Prozessor-Datenpfad 24 4 Prozessor-Datenpfad 4.3 Assembler Die Programmierung des Universalrechners durch Niederschreiben der einzelnen Befehlswort-Bits aller Befehle ist sehr aufwendig. Aus diesem Grund wird dieser Schritt

Mehr

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik, Register und Speicherzugriff Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik und Zuweisungen Einfache Arithmetik mit Zuweisung C Programm: a = b + c; d = a e; MIPS Instruktionen: Komplexere

Mehr

Technische Informatik II Rechnerarchitektur

Technische Informatik II Rechnerarchitektur Technische Informatik II Rechnerarchitektur 3.Unterprogramme in MMIX Matthias Dräger E-Mail: www: mdraeger@mi.fu-berlin.de www.matthias-draeger.info/lehre/sose2010ti2/ tinyurl.com/sose2010ti2 Zuletzt bearbeitet:

Mehr

Der Nachfolger von MIX MMIX

Der Nachfolger von MIX MMIX Der Nachfolger von MIX MMIX Autor: Sven Bormann Matr.No.: 33196 Semester: I7EI Datum: 07.02.2004-1 - Inhaltsverzeichnis Inhaltsverzeichnis...2 1. Wofür einen neuen RISC-Prozessor?...5 2. Was bedeutet der

Mehr

Speicher. T c) Daten welcher Größenordnung kann ein Register aufnehmen: Byte, kilobytes, megabytes, gigabytes or terabytes? einige Byte.

Speicher. T c) Daten welcher Größenordnung kann ein Register aufnehmen: Byte, kilobytes, megabytes, gigabytes or terabytes? einige Byte. R lzieloperanden rich 222 6 MMIXProzessor Verständnisfragen/Aufgaben Allgemein T a) Was ist ein Register? ein Schneller ate kleiner Speicher T b) Wo findet man Register in einem ComputerSystem? im Haupt

Mehr

ARM-Cortex-M4 / Thumb-2-Befehlssatz Adressierungsarten und arithmetische Operationen

ARM-Cortex-M4 / Thumb-2-Befehlssatz Adressierungsarten und arithmetische Operationen ARM-Cortex-M4 / Thumb-2-Befehlssatz Adressierungsarten und arithmetische Operationen Aufgabenstellung: - das beigefügte Assembler-Programm schrittweise ausführen - sich mit der Handhabung der Entwicklungswerkzeuge

Mehr

SUB $2,$5,10 Zeile 1 LDO $5,$0,2*8 Zeile 2 OR $1,$2,$3 Zeile 3 SRU $1,$5,$1 Zeile 4.

SUB $2,$5,10 Zeile 1 LDO $5,$0,2*8 Zeile 2 OR $1,$2,$3 Zeile 3 SRU $1,$5,$1 Zeile 4. 33 7 Pipelining Gegeben ist der folgende Ausschnitt aus einer MMIX Codesequenz: SUB $2,$5, Zeile LDO $5,$,2* Zeile 2 OR $,$2,$3 Zeile 3 SRU $,$5,$ Zeile 4 Zeile und 3 wg b) Geben Sie alle auftretenden

Mehr

Nachfolgende Abbildung zeigt das Spezialregister ra, das Arithmetische Status Register. Interrupt Enable (Freischalten)

Nachfolgende Abbildung zeigt das Spezialregister ra, das Arithmetische Status Register. Interrupt Enable (Freischalten) 6.2 Register 205 Spezialregister Spezialregister (engl. special purpose registers) haben im Gegensatz zu Allzweckregistern einen bestimmten Zweck, d.h. jedes Spezialregister hat seine ganz eigene Aufgabe.

Mehr

Nachfolgende Abbildung zeigt das Spezialregister ra, das Arithmetische Status Register. Interrupt Enable (Freischalten)

Nachfolgende Abbildung zeigt das Spezialregister ra, das Arithmetische Status Register. Interrupt Enable (Freischalten) 62 Register 221 Spezialregister Spezialregister (engl special purpose registers) haben im Gegensatz zu Allzweckregistern einen bestimmten Zweck dh jedes Spezialregister hat seine ganz eigene Aufgabe Spezialregister

Mehr

RO.RO, ADD RO, 120,121 MUL 120,120,121 INPUT RO, MUL INPUT 120,0 ADD RO, INPUT 121,1 INPUT R 1,2 INPUT 121,2 RO, IN put 121,1 N RO, ROIRA SET 121,3

RO.RO, ADD RO, 120,121 MUL 120,120,121 INPUT RO, MUL INPUT 120,0 ADD RO, INPUT 121,1 INPUT R 1,2 INPUT 121,2 RO, IN put 121,1 N RO, ROIRA SET 121,3 6 4 Prozessor-Datenpfad a) Schreiben Sie für den Universalrechner ein Programm in Assembler-Sprache, welches die drei Seiten eines Würfels von den Eingängen, und einliest, das Volumen des Würfels berechnet

Mehr

Assembler als Übersetzer

Assembler als Übersetzer 4 ProzessorDatenpfad Assembler als Übersetzer Um ein AssemblerProgramm für den Universalrechner zu übersetzen iteriert der Assembler der Reihe nach über alle Programmzeilen und führt für jede Zeile folgendes

Mehr

MMIX Crashkurs Teil 3 Unterprogramme und Parameterübergabe. Freiling/Wienzek/Mink Vorlesung Rechnerstrukturen RWTH Aachen Sommersemester 2005

MMIX Crashkurs Teil 3 Unterprogramme und Parameterübergabe. Freiling/Wienzek/Mink Vorlesung Rechnerstrukturen RWTH Aachen Sommersemester 2005 MMIX Crashkurs Teil 3 Unterprogramme und Parameterübergabe Freiling/Wienzek/Mink Vorlesung Rechnerstrukturen RWTH Aachen Sommersemester 2005 Unterprogramme Hauptproblem heutiger Softwareentwicklung liegt

Mehr

TI II. Sommersemester 2009 Prof. Dr. Mesut Güneş 7. Aufgabenblatt mit Lösungen

TI II. Sommersemester 2009 Prof. Dr. Mesut Güneş 7. Aufgabenblatt mit Lösungen 7. Aufgabenblatt mit Lösungen Problem 1: IEEE-Gleitkommazahlen (2+2+4=8) a) Welchen Bereich der positiven Zahlen kann man mit normalisierten Gleitkommazahlen im IEEE-754-Format mit 64 Bit darstellen? b)

Mehr

Assembler am Beispiel der MIPS Architektur

Assembler am Beispiel der MIPS Architektur Assembler am Beispiel der MIPS Architektur Frühere Einsatzgebiete MIPS Silicon Graphics Unix Workstations (z. B. SGI Indigo2) Silicon Graphics Unix Server (z. B. SGI Origin2000) DEC Workstations (z.b.

Mehr

Lösung 5. Übungsblatt

Lösung 5. Übungsblatt Fakultät Informatik, Technische Informatik, Lehrstuhl für Eingebettete Systeme Lösung 5. Übungsblatt Entwicklung eines Mikroprogrammsteuerwerks und Maschinen-programmierung für einen einfachen Rechner.

Mehr

6 MMIX-Prozessor MMIX-Prozessor

6 MMIX-Prozessor MMIX-Prozessor 218 6 MMIProzessor 6 MMIProzessor In diesem Kapitel beschäftigen wir uns mit dem MMIProzessor Der MMIProzessor wurde von Donald Ervin Knuth zu Lehr und Forschungszwecken an der Stanford University entwickelt

Mehr

"Organisation und Technologie von Rechensystemen 4"

Organisation und Technologie von Rechensystemen 4 Klausur OTRS-4, 29.09.2004 Seite 1 (12) INSTITUT FÜR INFORMATIK Lehrstuhl für Rechnerarchitektur (Informatik 3) Universität Erlangen-Nürnberg Martensstr. 3, 91058 Erlangen 29.09.2004 Klausur zu "Organisation

Mehr

Assembler-Unterprogramme

Assembler-Unterprogramme Assembler-Unterprogramme Rolle des Stack Prinzipieller Ablauf Prinzipieller Aufbau Unterprogramme void main(void) int sub(int i) { { int i,k; return i*2; i = sub(13); } k = sub(14); } Wie macht man das

Mehr

5 Befehlssätze und deren Klassifikation

5 Befehlssätze und deren Klassifikation 215 5 Befehlssätze und deren Klassifikation Befehlssatz Unser Universalrechner kennt 7 verschiedene Befehle: ADD SUB MUL DIV FSQRT INPUT und SET Die Menge (im mathematischen Sinne) der Befehle die ein

Mehr

Technische Informatik I - HS 18

Technische Informatik I - HS 18 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik I - HS 18 Musterlösung zu Übung 3 Datum : 25.-26. Oktober 2018 Aufgabe 1: Wurzelverfahren nach Heron Das

Mehr

Assembler als Übersetzer

Assembler als Übersetzer 4 ProzessorDatenpfad Assembler als Übersetzer Um ein AssemblerProgramm für den Universalrechner zu übersetzen iteriert der Assembler der Reihe nach über alle Programmzeilen und führt für jede Zeile folgendes

Mehr

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht Kap.2 Befehlsschnittstelle Prozessoren, externe Sicht 2 Befehlsschnittstelle 2.1 elementare Datentypen, Operationen 2.2 logische Speicherorganisation 2.3 Maschinenbefehlssatz 2.4 Klassifikation von Befehlssätzen

Mehr

05. Assembler-Programmierung. Datenstrukturen des ATMega32. Literatur

05. Assembler-Programmierung. Datenstrukturen des ATMega32. Literatur 0. Assembler-Programmierung Datenstrukturen des ATMega32 Literatur mikrocontroller.net avr-asm-tutorial.net asm Alles über AVR AVR-Assembler-Einführung Assembler AVR-Aufbau, Register, Befehle 2008: ouravr.com/attachment/microschematic/index.swf

Mehr

Sprungbefehle und Kontroll-Strukturen

Sprungbefehle und Kontroll-Strukturen Sprungbefehle und Kontroll-Strukturen Statusregister und Flags Sprungbefehle Kontrollstrukturen Das Status-Register 1 Register-Satz des ATmega128 Universal-Register (8Bit) R0..R15 16 Bit Program counter

Mehr

Grundlagen der Rechnerarchitektur. MIPS Assembler

Grundlagen der Rechnerarchitektur. MIPS Assembler Grundlagen der Rechnerarchitektur MIPS Assembler Übersicht Arithmetik, Register und Speicherzugriff Darstellung von Instruktionen Logische Operationen Weitere Arithmetik Branches und Jumps Prozeduren 32

Mehr

2. Aufgabenblatt mit Lösungen

2. Aufgabenblatt mit Lösungen Problem 1: (6*1 = 6) TI II 2. Aufgabenblatt mit Lösungen Geben Sie für jede der folgenden Zahlen deren Ziffernschreibweisen im Dezimal-, Dual-, Oktal- und Hexadezimal-System an. a) (2748) 10 b) (1010011011)

Mehr

32 Bit Konstanten und Adressierung. Grundlagen der Rechnerarchitektur Assembler 78

32 Bit Konstanten und Adressierung. Grundlagen der Rechnerarchitektur Assembler 78 32 Bit Konstanten und Adressierung Grundlagen der Rechnerarchitektur Assembler 78 Immediate kann nur 16 Bit lang sein Erinnerung: Laden einer Konstante in ein Register addi $t0, $zero, 200 Als Maschinen

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 3. Vorlesung Inhalt Zahlensysteme Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag Binary Offset 1er-Komplement 2er-Komplement Addition und Subtraktion binär dargestellter

Mehr

RISC-Prozessoren (1)

RISC-Prozessoren (1) RISC-Prozessoren (1) 1) 8 Befehlsklassen und ihre mittlere Ausführungshäufigkeit (Fairclough): Zuweisung bzw. Datenbewegung 45,28% Programmablauf 28,73% Arithmetik 10,75% Vergleich 5,92% Logik 3,91% Shift

Mehr

Zur Multiplikation von Gleitkommazahlen müssen die Mantissen inkl. führender 1, als Festkommazahlen multipliziert werden.

Zur Multiplikation von Gleitkommazahlen müssen die Mantissen inkl. führender 1, als Festkommazahlen multipliziert werden. 70 Arithmetische Schaltungen Multiplikation vorzeichenbehafteter Zahlen Zur Multiplikation vorzeichenbehafteter Zahlen (er-komplement) kann auf die Schaltung für vorzeichenlose Multiplikation zurückgegriffen

Mehr

Einführung. Computertechnik Dr. Michael Zwick

Einführung. Computertechnik Dr. Michael Zwick Einführung Computertechnik Dr. Michael Zwick Vorlesung, Übung & Fragestunde Dr.-Ing. Michael Zwick Raum Z945 zwick@tum.de (089) 289 23609 Modul Computertechnik und Programmieren Computertechnik V/Ü/P =

Mehr

2. Teilklausur Informatik II

2. Teilklausur Informatik II 1. Aufgabe (4 + 6 Punkte) Beweise: n (a) i = (b) i=0 n i 2 = i=0 n (n + 1) 2 n (n + 1) (2n + 1) 6 2. Aufgabe (10 Punkte) Seien a, b {0, 1} n. Wir definieren: a < lex b i {0,..., n 1} : a[n 1 : i + 1] =

Mehr

Name: ES2 Klausur Thema: ARM Name: Punkte: Note:

Name: ES2 Klausur Thema: ARM Name: Punkte: Note: Name: Punkte: Note: Hinweise für das Lösen der Aufgaben: Zeit: 75 min. Name nicht vergessen! Geben Sie alle Blätter ab. Die Reihenfolge der Aufgaben ist unabhängig vom Schwierigkeitsgrad. Erlaubte Hilfsmittel

Mehr

Selbststudium Informationssysteme - H1102 Christian Bontekoe & Felix Rohrer

Selbststudium Informationssysteme - H1102 Christian Bontekoe & Felix Rohrer Übung RA, Kapitel 1.5 1. Beantworten Sie bitte folgende Repetitionsfragen 1. Beschreiben Sie in eigenen Worten und mit einer Skizze die Schichtung einer Multilevel Maschine. Folie 5, rechte Seite 2. Welche

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen Mikroprozessoren Grundlagen Aufbau, Blockschaltbild Grundlegende Datentypen AVR-Controller Anatomie Befehlssatz Assembler Speicherzugriff Adressierungsarten Kontrollstrukturen Stack Input / Output (I/O)

Mehr

Skriptum Informatik II

Skriptum Informatik II ii Skriptum Informatik II The Engineer s Approach Sommersemester 2005 Kopien. Sie dürfen von diesem Skriptum zum persönlichen Gebrauch elektronische Kopien und Ausdrucke anfertigen. Außerhalb dieser Ausnahme

Mehr

Rechnerorganisation 2 TOY. Karl C. Posch. co1.ro_2003. Karl.Posch@iaik.tugraz.at 16.03.2011

Rechnerorganisation 2 TOY. Karl C. Posch. co1.ro_2003. Karl.Posch@iaik.tugraz.at 16.03.2011 Technische Universität Graz Institut tfür Angewandte Informationsverarbeitung und Kommunikationstechnologie Rechnerorganisation 2 TOY Karl C. Posch Karl.Posch@iaik.tugraz.at co1.ro_2003. 1 Ausblick. Erste

Mehr

PC/XT/AT ASSEMBLER-BUCH

PC/XT/AT ASSEMBLER-BUCH PC/XT/AT ASSEMBLER-BUCH Alle Befehle + Makro-Assembler KLAUS-DIETER THIES t

Mehr

Vorlesung IT-Systeme I

Vorlesung IT-Systeme I Vorlesung IT-Systeme I H. Anlauff A. Böttcher M. Ruckert 7. Oktober 2008 Einleitung Definition IT-System Ein IT-System besteht aus unterschiedlichen Hardwarekomponenten (Rechner, Drucker, Netzwerkkomponenten,

Mehr

Rechner- organisa-on 2 TOY. Karl C. Posch.

Rechner- organisa-on 2 TOY. Karl C. Posch. Rechner- Technische Universität Graz Ins-tut für Angewandte Informa-onsverarbeitung und Kommunika-onstechnologie organisa-on 2 TOY Karl C. Posch Karl.Posch@iaik.tugraz.at co1.ro_2012. Ausblick. Erste HälEe

Mehr

Assembler Programmierung Motivation. Informatik II SS 2004 Teil 4: Assembler Programmierung. Assembler vs. Maschinensprache

Assembler Programmierung Motivation. Informatik II SS 2004 Teil 4: Assembler Programmierung. Assembler vs. Maschinensprache Assembler Programmierung Motivation Informatik II SS 2004 Teil 4: Assembler Programmierung Was ist ein Programm? Eine Reihe von Befehlen, die der Ausführung einer Aufgabe dient Dazu wird das Programm sequentiell

Mehr

Daniel Betz Wintersemester 2011/12

Daniel Betz Wintersemester 2011/12 Daniel Betz Wintersemester 2011/12 Digitally signed by daniel.betz@daniel-betz.com Date: 2011.12.04 17:24:40 +01'00' Insgesamt 16 Register von je 16 Bit (=WORD) Breite Untere 8 Register auch als 2 Register

Mehr

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen Mikroprozessoren Grundlagen Aufbau, Blockschaltbild Grundlegende Datentypen AVR-Controller Anatomie Befehlssatz Assembler Speicherzugriff Adressierungsarten Kontrollstrukturen Stack Input / Output (I/O)

Mehr

Aufgabe 4 : Virtueller Speicher

Aufgabe 4 : Virtueller Speicher Sommer 216 Technische Informatik I Lösungsvorschlag Seite 16 Aufgabe 4 : Virtueller Speicher (maximal 27 Punkte) 4.1: Generelle Funktionsweise (maximal 5 Punkte) (a) (1 Punkt) Nennen Sie zwei Gründe, weshalb

Mehr

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 9 und Präsenzaufgaben Übung 10

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 9 und Präsenzaufgaben Übung 10 Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 9 und Präsenzaufgaben Übung 10 Dominik Schoenwetter Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität

Mehr

1 Rechnerstrukturen 1: Der Sehr Einfache Computer

1 Rechnerstrukturen 1: Der Sehr Einfache Computer David Neugebauer, Informationsverarbeitung - Universität zu Köln, Seminar BIT I Inhaltsverzeichnis 1 Rechnerstrukturen 1: Der Sehr Einfache Computer 1 1.1 Komponenten................................. 1

Mehr

Darstellung von Instruktionen. Grundlagen der Rechnerarchitektur Assembler 21

Darstellung von Instruktionen. Grundlagen der Rechnerarchitektur Assembler 21 Darstellung von Instruktionen Grundlagen der Rechnerarchitektur Assembler 21 Übersetzung aus Assembler in Maschinensprache Assembler Instruktion add $t0, $s1, $s2 0 17 18 8 0 32 6 Bit Opcode Maschinen

Mehr

3. Aufgabenblatt mit Lösungen

3. Aufgabenblatt mit Lösungen 3. Aufgabenblatt mit Lösungen Problem 1: Gleitkomma-Darstellung (2+2+2+2=8) Stellen Sie die Zahlen 2/3 und 2/7 als IEEE single unter Verwendung der dar. a) round-to-even -Regel b) Rundung zum nächsten

Mehr

HaDePrak WS 05/ Versuch

HaDePrak WS 05/ Versuch HaDePrak WS 05/06 10. Versuch 1 Das IEEE-Format Das Ziel dieser letzten Übung ist es, ein Fließkommapaket für die DLXzu implementieren. Der Einfachheit halber vernachlässigen wir hier im Praktikum jeglichen

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM. Die MARS Umgebung

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM. Die MARS Umgebung Die MARS Umgebung MARS ist ein Simulationswerkzeug für MIPS Prozessoren Es enthält einen Assembler und eine Laufzeitumgebung Da das Wirtsystem (z.b. Windows) auf einem anderen Prozessor basiert, werden

Mehr