ALP I Primitiv-Rekursive Funktionen

Größe: px
Ab Seite anzeigen:

Download "ALP I Primitiv-Rekursive Funktionen"

Transkript

1 ALP I Primitiv-Rekursive Funktionen WS 2012/2013

2 Äquivalenz vieler Berechnungsmodelle Effektiv Berechenbare Funktionen Mathematische Modelle Maschinelle Modelle λ-kalkül Kombinatorische Logik Allgemein rekursive Funktionen Turing- Maschine Register Maschinen While- Programme µ-rekursive Funktionen Theoretische Informatik I ALP II GOTO-Programme LOOP- Programme equiv. primitiv-rekursive Funktionen

3 Der Begriff primitiv-rekursive Funktion wurde von Rózsa Péter geprägt. Rózsa Péter Text - Ungarische Mathematikerin ( ) , Buch "Rekursive Funktionen" , Vereinfachung der Ackermann-Funktion "Ackermann-Péter-Funktion"

4 Fast alle Beispiele, die wir in die Vorlesungen diskutiert haben, sind Beispiele aus der Menge der sogenannten primitivrekursiven Funktionen PR. Die primitiv-rekursiven Funktionen sind die einfachste Klasse von rekursiven Funktionen. Die PR-Funktionen sind eine Untermenge der Effektiv Berechenbaren Funktionen. Das bedeutet, es gibt rekursive Funktionen, die berechenbar sind aber nicht primitiv-rekursiv sind.

5 Kurt Gödel ( ) und Rózsa Péter ( ) haben sich mit der Theorie der rekursiven Funktionen auseinandergesetzt sowie diese stark geprägt. Was kann alles mit primitiv-rekursiven Funktionen berechnet werden? Gibt es ein allgemeines Schema zur Definition beliebiger berechenbarer Funktionen?

6 (PR) Das Schema zur Definition beliebiger primitiv-rekursiver Funktionen besteht aus folgenden drei Hauptteilen: 1. Eine Reihe von Grundfunktionen. 2. Ein Ersetzungsmechanismus zur Definition von Funktionen ohne Rekursion (Funktionskomposition). 3. Ein Mechanismus zur Definition von primitivrekursiven Funktionen mit Rekursion (PR).

7 (PR) Die Klasse der PR-Funktionen N m N wird wie folgt induktiv definiert. I Grundfunktionen 1. Die Nullfunktion Z : N m N ist primitiv rekursiv Z(x 1,,x m ) = 0 2. Die Nachfolgerfunktion S : N N ist primitiv rekursiv S(n) = n+1 3. Die Projektionsfunktionen definiert durch π m i (x 1,,x i,,x m ) = x i, 1 i m sind primitiv-rekursiv π m i : N m N Beispiel: π 3 (a, b, c) = b 2

8 (PR) II Kompositionsschema Die Funktionskomposition ist primitiv-rekursiv. Das bedeutet, für alle primitiv-rekursiven Funktionen f : N m N und g 1,, g m : N n N ist die Funktion C : N n N, definiert durch C (x 1,...,x n ) = f (g 1 ( x 1,...,x n ),, g m ( x 1,...,x n )) auch primitiv rekursiv.

9 III Rekursionsschema Jede Funktion, die sich durch primitive Rekursion (Induktion) aus primitiv-rekursiven Funktionen definieren lässt, ist auch primitivrekursiv. Das bedeutet: Wenn g : N m N und h : N m+2 N primitiv-rekursive Funktionen sind, dann ist die folgende (induktiv definierte) Funktion R : N m+1 N R (0, x 1,...,x m ) = g(x 1,...,x m ) R (S(n), x 1,...,x m ) = h( R(n, x 1,...,x m ), n, x 1,...,x m ) ebenfalls primitiv rekursiv. mit S = Nachfolgerfunktion

10 Eine Funktion heißt primitiv rekursiv, wenn sie zu den Grundfunktionen gehört oder aus diesen durch endliche viele Anwendungen von Komposition und primitiver Rekursion definiert werden kann. Beispiele: add2(n) = n+2 ist primitiv rekursiv: c(x 1 ) = f (g 1 (x 1 )) add2(x 1 ) = S(S(π 1 1 (x 1 )))... aus II Kompositionsschema

11 Eine konstante Funktion, die eine beliebige Zahl n in der Konstante 3 abbildet, sieht wie folgt aus: k3 : N N aus I: S und Z sind primitiv-rekursiv aus II: S S S Z k3 ( m ) = S(S(S(Z(m)))) = 3

12 Alle n-stellige konstante Funktion mit Wert k sind primitiv-rekursive Funktionen. C k n (x 1, x 2,..., x n ) = k mit x i, k Hierbei lassen wir auch die 0-stelligen Konstanten zu, die man mit der Zahl k identifizieren kann. C k 0

13 Die Identitätsfunktion kann wie folgt definiert werden: id : N N id ( m ) = π 1 1 (m) = m

14 Können wir die Additionsfunktion auf eine Definition, die nur aus primitiv-rekursiven Funktionen besteht, zurückführen? add : N 2 N add 0 m = m add (n+1) m = (add n m) +1 add 0 m = m add (S n) m = S (add n m)

15 aus III: g und h müssen primitiv-rekursiv sein add ( 0, m ) = g(m) add ( S(n), m ) = h(add (n, m), n, m) wir wählen 1 g = π 1 und 3 h = s π 1 aus I, II und III: add ( 0, m ) = add ( S(n), m ) = π 1 1 (m) S(π 3 (add (n, m), n, m)) 1

16 Vorgänger-Funktion: pred : N N Weil die primitiv-rekursiven Funktionen nur über die natürlichen Zahlen definierbar sind, wird der Vorgänger von 0 als gleich 0 definiert. pred 0 = 0 pred (n+1) = n pred ( 0 ) = pred ( S(n) ) = C 0 0 π 2 ( pred (n), n ) 2

17 Die Multiplikation kann rekursiv über die Addition definiert werden. mult 0 m = 0 mult (n+1) m = (mult n m ) + m mult 0 m = 0 mult (S n) m = add ( (mult n m ) m )

18 Die Multiplikation kann rekursiv über die Addition definiert werden. mult ( 0, m ) = g ( m ) mult ( S(n), m ) = h (mult (n, m), n, m) mult ( 0, m ) = Z ( m ) III Rekursionsschema mult(s(n), m) = add (π 3 (mult(n, m),n,m), π 3 (mult (n,m),n,m)) 1 3 R = mult f g 1 g 2 g = Z h = add (π 1 3, π 3 3 ) I Grundfunktionen II Kompositionsschema

19 Eine primitiv-rekursive Definition der Subtraktion sieht wie folgt aus: sub m 0 = m sub m n = pred (sub m (pred n)) sub 2 1 pred (sub 2 (pred 1)) pred (sub 2 0) pred 2 1 sub 1 3 pred (sub 1 (pred 3)) pred (sub 1 2) pred (pred (sub 1 (pred 2))) pred (pred (sub 1 1)) pred (pred (pred (sub 1 (pred 1))) pred (pred (pred (sub 1 0))) pred (pred (pred 1)) pred (pred 0) pred 0 0

20 Eine primitiv-rekursive Definition der Subtraktion sieht wie folgt aus: sub m 0 = m sub m n = pred (sub m (pred n)) sub (m,n) = sub' (π 2 2 (m,n), π 1 2 (m,n)) sub' (0,m) = π 1 1 (m) sub' (S(n),m) = pred (π 1 3 (sub'(n,m),n, m))

21 weitere Beispiele an der Tafel...

ALP I Rekursive Funktionen

ALP I Rekursive Funktionen ALP I Rekursive Funktionen SS 2011 Äquivalenz vieler Berechnungsmodelle Effektiv Berechenbare Funktionen Mathematische Modelle Maschinelle Modelle Text λ-kalkül Kombinatorische Logik Allgemein rekursive

Mehr

Funktionale Programmierung ALP I. µ-rekursive Funktionen WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda

Funktionale Programmierung ALP I. µ-rekursive Funktionen WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda ALP I µ-rekursive Funktionen WS 2012/2013 Primitiv-rekursive Funktionen Jede primitiv-rekursive Funktion ist Loop-berechenbar. Das bedeutet, dass jede PR-Funktion in der Loop-Programmiersprache formuliert

Mehr

Mächtigkeit von WHILE-Programmen

Mächtigkeit von WHILE-Programmen Mächtigkeit von WHILE-Programmen und rekursive Funktionen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 16. November 2010 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Theorie der Informatik Einleitung. Theorie der Informatik Basisfunktionen und Einsetzung Primitive Rekursion. 14.

Theorie der Informatik Einleitung. Theorie der Informatik Basisfunktionen und Einsetzung Primitive Rekursion. 14. Theorie der Informatik 16. April 2014 14. primitive Rekursion und µ-rekursion Theorie der Informatik 14. primitive Rekursion und µ-rekursion 14.1 Einleitung 14.2 Basisfunktionen und Einsetzung Malte Helmert

Mehr

Ausgewählte Kapitel Diskreter Mathematik mit Anwendungen

Ausgewählte Kapitel Diskreter Mathematik mit Anwendungen Wahlpflichtfach Bachelor Informatik 4. Semester Ausgewählte Kapitel Diskreter Mathematik mit Anwendungen Kurt-Ulrich Witt Sommersemester 2011 Kurt-Ulrich Witt Diskrete Mathematik Lektion 4 1/33 Inhaltsverzeichnis

Mehr

Typen von Programmiersprachen

Typen von Programmiersprachen Typen von Programmiersprachen Berechenbarkeitstheorie: Formalisierung des intuitiven Berechenbarkeitsbegriffs man kann vier Typen von Programmiersprachen zum Berechnen von Zahlenfunktionen unterscheiden:

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 15. primitive Rekursion und µ-rekursion Malte Helmert Gabriele Röger Universität Basel 22. April 2015 Überblick: Vorlesung Vorlesungsteile I. Logik II. Automatentheorie und formale

Mehr

1.3 Primitiv rekursive und µ-rekursive Funktionen

1.3 Primitiv rekursive und µ-rekursive Funktionen Definition 1.11 Die Klasse der primitiv rekursiven Funktionen (a) Basisfunktionen: (1.) die konstanten Funktionen c (c N) (2.) die Projektionen Π m i (x 1,...,x m ) = x i (1 i m) (3.) die Nachfolgerfunktion

Mehr

2. Imperative Programmierung und Berechenbarkeit - Registermaschinen -

2. Imperative Programmierung und Berechenbarkeit - Registermaschinen - 2. Imperative Programmierung und Berechenbarkeit - Registermaschinen - 2.1 Definition 2.2 Loop-Programme 2.3 While Programme 2.4 While Programme und rekursive Funktionen Im Wesentlichen: Tafel! Maschinenmodell

Mehr

Primitiv rekursive und µ-rekursive Funktionen

Primitiv rekursive und µ-rekursive Funktionen Primitiv rekursive und µ-rekursive Funktionen Slide 1 Primitiv rekursive und µ-rekursive Funktionen Hans U. Simon (RUB) Email: simon@lmi.rub.de Homepage: http://www.ruhr-uni-bochum.de/lmi Primitiv rekursive

Mehr

Primitiv rekursive Funktionen

Primitiv rekursive Funktionen Primitiv rekursive Funktionen Primitiv rekursive Funktionen Historisch: Die Einführung der primitiven Rekursivität war ein erster (und erfolgloser) Versuch, den Begriff der Berechenbarkeit (oft synonym

Mehr

Rekursive Funktionen Basisfunktionen

Rekursive Funktionen Basisfunktionen Rekursive Funktionen Basisfunktionen die nullstellige Funktion Z, die den konstanten Wert 0 liefert, die Funktion S : N N, bei der jeder natürlichen Zahl ihr Nachfolger zugeordnet wird, die Funktion P

Mehr

Funktionale Programmierung ALP I. Kombinatorische Logik (CL) SS Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda

Funktionale Programmierung ALP I. Kombinatorische Logik (CL) SS Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda ALP I Kombinatorische Logik (CL) SS 2011 Äquivalenz vieler Berechnungsmodelle Alonzo Church λ-kalkül Kombinatorische Logik Alan Turing Turing-Maschine Mathematische Präzisierung µ-rekursive Funktionen

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 15. Ackermannfunktion Malte Helmert Gabriele Röger Universität Basel 28. April 2014 Überblick: Vorlesung Vorlesungsteile I. Logik II. Automatentheorie und formale Sprachen III. Berechenbarkeitstheorie

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2011 Lösungsblatt 8 18. Juli 2011 Einführung in die Theoretische Informatik

Mehr

Theoretische Informatik II

Theoretische Informatik II Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Wintersemester 2007/2008 B. Beckert Theoretischen Informatik II: WS 2007/08 1 / 175 Dank Diese Vorlesungsmaterialien basieren

Mehr

Theoretische Informatik II. WS 2007/2008 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch. 1. Teilklausur Vorname:... Nachname:...

Theoretische Informatik II. WS 2007/2008 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch. 1. Teilklausur Vorname:... Nachname:... Theoretische Informatik II WS 2007/2008 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch 1. Teilklausur 11. 12. 2007 Persönliche Daten bitte gut leserlich ausfüllen! Vorname:... Nachname:... Matrikelnummer:...

Mehr

Die primitiv rekursiven Funktionen

Die primitiv rekursiven Funktionen Priv.-Doz. Dr.rer.nat.habil. Karl-Heinz Niggl Technische Universität Ilmenau Fakultät für Informatik und Automatisierung Institut für Theoretische Informatik Fachgebiet Komplexitätstheorie und Effiziente

Mehr

ALP I Turing-Maschine

ALP I Turing-Maschine ALP I Turing-Maschine Teil I WS 2012/2013 Äquivalenz vieler Berechnungsmodelle Alonzo Church λ-kalkül Kombinatorische Logik Alan Turing Turing-Maschine Mathematische Präzisierung Effektiv Berechenbare

Mehr

Funktionale Programmierung ALP I. λ Kalkül WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda

Funktionale Programmierung ALP I. λ Kalkül WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda ALP I λ Kalkül WS 2012/2013 Berechenbarkeit - inspiriert durch Hilbert's Frage - im Jahr 1900, Paris - Internationaler Mathematikerkongress Gibt es ein System von Axiomen, aus denen alle Gesetze der Mathematik

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 4.2 Rekursive Funktionen 1. Primitiv- und µ-rekursive Funktionen 2. Analyse und Programmierung 3. Äquivalenz zu Turingmaschinen Berechenbarkeit auf N ohne Maschinenmodelle

Mehr

Primitiv rekursive und µ-rekursive Funktionen

Primitiv rekursive und µ-rekursive Funktionen Primitiv rekursive und µ-rekursive Funktionen Loop-, While- und Goto-Programme sind vereinfachte imperative Programme und stehen für imperative Programmiersprachen, bei denen Programme als Folgen von Befehlen

Mehr

GOTO simuliert Turingmaschinen

GOTO simuliert Turingmaschinen GOTO simuliert Turingmaschinen Wir wissen bisher: LOOP ( GOTO = WHILE TM Jetzt zeigen wir, dass auch WHILE = TM gilt: Die Turingmaschine M =(Z,,,,z 1,, E) berechne f. Wir simulieren M mit einem GOTO-Programm

Mehr

Mächtigkeit von WHILE-Programmen

Mächtigkeit von WHILE-Programmen Mächtigkeit von WHILE-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 23 Turingmaschine (TM) M = (Q, Σ, Γ, B, q 0, q, δ) Unendliches Band... 0 c

Mehr

LOOP-Programme 1. Def (Meyer/Ritchie). LOOP-Programme werden induktiv aufgebaut aus den (Basis-) Anweisungen. Führe P X-mal aus ) LOOP-Programme 2

LOOP-Programme 1. Def (Meyer/Ritchie). LOOP-Programme werden induktiv aufgebaut aus den (Basis-) Anweisungen. Führe P X-mal aus ) LOOP-Programme 2 LOOP-Programme 1 LOOP-Programme verwenden (jeweils) endlich viele Variablen aus VAR := {X 0,X 1,X 2,...}, oft nur mit X,Y,Z,U,V,W bezeichnet, die als Register fungieren. Slide 1 Def (Meyer/Ritchie). LOOP-Programme

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I LOOP Programme, rekursive Funktionen und der Turm von Hanoi Prof. Dr. Nikolaus Wulff Berechenbarkeit Mitte des 20. Jahrhunderts beantworteten Pioniere, wie Alan M. Turing

Mehr

Theoretische Informatik II

Theoretische Informatik II Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Wintersemester 2007/2008 B. Beckert Theoretischen Informatik II: WS 2007/08 1 / 258 Dank Diese Vorlesungsmaterialien basieren

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 4.3 Rekursive Funktionen 1. Primitiv- und µ-rekursive Funktionen 2. Analyse und Programmierung 3. Äquivalenz zu Turingmaschinen Berechenbarkeit ohne Maschinenmodell Welche

Mehr

GTI. Hannes Diener. 18. Juni. ENC B-0123,

GTI. Hannes Diener. 18. Juni. ENC B-0123, GTI Hannes Diener ENC B-0123, diener@math.uni-siegen.de 18. Juni 1 / 32 Als Literatur zu diesem Thema empfiehlt sich das Buch Theoretische Informatik kurzgefasst von Uwe Schöning (mittlerweile in der 5.

Mehr

Rekursive und primitiv rekursive Funktionen. Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen

Rekursive und primitiv rekursive Funktionen. Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen Rekursive und primitiv rekursive Funktionen Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen IDEE: Definiere eine Klasse von (partiell) berechenbaren Funktionen über N induktiv

Mehr

VL-11: Primitiv rekursive Funktionen. (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger

VL-11: Primitiv rekursive Funktionen. (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger VL-11: Primitiv rekursive Funktionen (Berechenbarkeit und Komplexität, WS 2018) Gerhard Woeginger WS 2018, RWTH BuK/WS 2018 VL-11: Primitiv rekursive Funktionen 1/48 Organisatorisches Nächste Vorlesung:

Mehr

Proseminar Theoretische Informatik - WS07/08 - Prof. Helmut Alt. I. Einleitung Berechnungsmodelle LOOP, WHILE, GOTO, rekursive Funktionen

Proseminar Theoretische Informatik - WS07/08 - Prof. Helmut Alt. I. Einleitung Berechnungsmodelle LOOP, WHILE, GOTO, rekursive Funktionen Proseminar Theoretische Informatik - WS07/08 - Prof. Helmut Alt I. Einleitung Berechnungsmodelle LOOP, WHILE, GOTO, rekursive Funktionen Berechenbarkeitsmodelle Welchen Sinn haben diese? Wie kann man effizient

Mehr

Primitive Rekursion. Basisfunktionen: Konstante Funktion: const 3 3 (1,1, pr 1,3(g,h) (1,1)) Projektion: proj 3 (1,1, pr. Komposition: comp 3,2

Primitive Rekursion. Basisfunktionen: Konstante Funktion: const 3 3 (1,1, pr 1,3(g,h) (1,1)) Projektion: proj 3 (1,1, pr. Komposition: comp 3,2 Primitive Rekursion Basisfunktionen: Konstante Funktion: const Stelligkeit. Wert des Ergebnisses. Unabhängig von den Parametern. const (,, pr,(g,h) (,)) Stelligkeit. Projektion: proj Gibt die Komponente

Mehr

Wiederholung. Organisatorisches. VL-11: LOOP und WHILE Programme I. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

Wiederholung. Organisatorisches. VL-11: LOOP und WHILE Programme I. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Organisatorisches VL-11: LOOP und WHILE Programme I (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Nächste Vorlesung: Mittwoch, November 29, 14:15 15:45 Uhr, Roter Hörsaal Webseite: http://algo.rwth-aachen.de/lehre/ws1718/buk.php

Mehr

VL-11: LOOP und WHILE Programme I. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

VL-11: LOOP und WHILE Programme I. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger VL-11: LOOP und WHILE Programme I (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger WS 2017, RWTH BuK/WS 2017 VL-11: LOOP und WHILE Programme I 1/46 Organisatorisches Nächste Vorlesung: Mittwoch,

Mehr

Berechenbarkeit und Komplexität: Mächtigkeit von Programmiersprachen: WHILE- und LOOP-Programme

Berechenbarkeit und Komplexität: Mächtigkeit von Programmiersprachen: WHILE- und LOOP-Programme Berechenbarkeit und Komplexität: Mächtigkeit von Programmiersprachen: WHILE- und LOOP-Programme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 29. November 2007 Turing-mächtige

Mehr

Berechenbarkeit und Komplexität Vorlesung 11

Berechenbarkeit und Komplexität Vorlesung 11 Berechenbarkeit und Komplexität Vorlesung 11 Prof. Dr. Wolfgang Thomas Lehrstuhl Informatik 7 RWTH Aachen 7. Dezember 2014 Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 7.

Mehr

Berechenbarkeit und Komplexität Vorlesung 10

Berechenbarkeit und Komplexität Vorlesung 10 Berechenbarkeit und Komplexität Vorlesung 10 Prof. Dr. Wolfgang Thomas Lehrstuhl Informatik 7 RWTH Aachen 27. November 2014 Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 27.

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Prof. Meer, Dr. Gengler Aufgabenblatt 12 Besprechung in KW 03 / Abgabe in KW 04 Heften Sie unbedingt alle Blätter Ihrer Lösung zusammen und geben Sie oben auf dem ersten Blatt Ihren

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 5.2 Rekursive Funktionen 1. Primitiv- und µ-rekursive Funktionen 2. Analyse und Programmierung 3. Äquivalenz zu Turingmaschinen Berechenbarkeit ohne Maschinen Welche

Mehr

Berechenbarkeit und Komplexität: Mächtigkeit von Programmiersprachen: WHILE- und LOOP Programme

Berechenbarkeit und Komplexität: Mächtigkeit von Programmiersprachen: WHILE- und LOOP Programme Berechenbarkeit und Komplexität: Mächtigkeit von Programmiersprachen: WHILE- und LOOP Programme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 13. November 2006 Turing-mächtige

Mehr

Def.: Die Menge der LOOP-Programme ist induktiv wie folgt definiert:

Def.: Die Menge der LOOP-Programme ist induktiv wie folgt definiert: 3. LOOP-, WHILE- und GOTO-Berechenbarkeit 3.1 LOOP-Programme Komponenten: Variablen: x 0, x 1, x 2,, y, z, Konstanten: 0, 1, 2, Trennsymbole: ; := Operationszeichen: +, - Schlüsselwörter: LOOP, DO, END

Mehr

Theoretische Informatik SS 03 Übung 5

Theoretische Informatik SS 03 Übung 5 Theoretische Informatik SS 03 Übung 5 Aufgabe 1 Im Buch von Schöning ist auf S. 106-108 beschrieben, wie eine Turing-Maschine durch ein GOTO-Programm simuliert werden kann. Zeigen Sie, wie dabei die Anweisungen

Mehr

Nachklausur zur Vorlesung

Nachklausur zur Vorlesung Lehrstuhl für Theoretische Informatik Prof. Dr. Markus Lohrey Grundlagen der Theoretischen Informatik Nachklausur Nachklausur zur Vorlesung Grundlagen der Theoretischen Informatik WS 2016/17 / 27. Februar

Mehr

ALP I Turing-Maschine

ALP I Turing-Maschine ALP I Turing-Maschine Teil I SS 2011 Äquivalenz vieler Berechnungsmodelle Alonzo Church λ-kalkül Kombinatorische Logik Alan Turing Turing-Maschine Mathematische Präzisierung Effektiv Berechenbare Funktionen

Mehr

Unterlagen zur Veranstaltung Algorithmen, Komplexität, Formale Sprachen WS 2005//06. Prof. Dr. R. Reischuk Institut für Theoretische Informatik

Unterlagen zur Veranstaltung Algorithmen, Komplexität, Formale Sprachen WS 2005//06. Prof. Dr. R. Reischuk Institut für Theoretische Informatik Unterlagen zur Veranstaltung Algorithmen, Komplexität, Formale Sprachen Universität zu Lübeck WS 2005//06 Prof. Dr. R. Reischuk Institut für Theoretische Informatik Oktober 2005 1 2 AKF, UzL WS2004/05

Mehr

Wir suchen Antworten auf die folgenden Fragen: Was ist Berechenbarkeit? Wie kann man das intuitiv Berechenbare formal fassen?

Wir suchen Antworten auf die folgenden Fragen: Was ist Berechenbarkeit? Wie kann man das intuitiv Berechenbare formal fassen? Einige Fragen Ziel: Wir suchen Antworten auf die folgenden Fragen: Wie kann man das intuitiv Berechenbare formal fassen? Was ist ein Algorithmus? Welche Indizien hat man dafür, dass ein formaler Algorithmenbegriff

Mehr

Universität Hannover Fakultät für Elektrotechnik und Informatik Institut für Theoretische Informatik. Thema: von. Paul Krüger

Universität Hannover Fakultät für Elektrotechnik und Informatik Institut für Theoretische Informatik. Thema: von. Paul Krüger 1 Universität Hannover Fakultät für Elektrotechnik und Informatik Institut für Theoretische Informatik Thema: - Kalkül von Paul Krüger Betreuer: Prof. Dr. Heribert Vollmer Das Rahmenthema ist " Berechenbarkeit

Mehr

Primitive Rekursion. Alexander Hölzle

Primitive Rekursion. Alexander Hölzle Primitive Rekursion Alexander Hölzle 14.01.2007 Inhaltsverzeichnis Motivation i 1 Rekursive Funktionen 1 1.1 Nicht berechenbare Funktionen........................ 1 1.2 Primitiv rekursive Funktionen.........................

Mehr

LOOP-Programme: Syntaktische Komponenten

LOOP-Programme: Syntaktische Komponenten LOOP-Programme: Syntaktische Komponenten LOOP-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: 0 1 2... Operationssymbole: + Trennsymbole: ; :=

Mehr

Theoretische Informatik SS 03 Übung 4

Theoretische Informatik SS 03 Übung 4 Fakten aus Übung 3 Theoretische Informatik SS 03 Übung 4 In Übung 3 wurden einigen Fakten bewiesen, die für diese Übung benötigt werden. Folgende Konstrukte können mit LOOP-Programmen simuliert werden:

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung SS 05 Prof. Dr. K. Madlener Lösungshinweise zu Übungsblatt 6 Aufgabe 6.1. Sei f(x, b) = µy b.(y y x (y + 1) (y + 1) > x) f.a. x, b N. Sei weiter f(x) = f(x, x) f.a. x N. Aufgabe

Mehr

Berechenbarkeits- und Komplexitätstheorie

Berechenbarkeits- und Komplexitätstheorie Berechenbarkeits- und Komplexitätstheorie Verschiedene Berechenbarkeitsbegriffe, Entscheidbarkeit von Sprachen, Wachstumsordnungen und Komplexitätsklassen Inhaltsübersicht und Literatur Verschiedene Berechenbarkeitsbegriffe:

Mehr

6. Rekursive und primitiv rekursive Funktionen. Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen

6. Rekursive und primitiv rekursive Funktionen. Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen 6. Rekursive und primitiv rekursive Funktionen Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen IDEE: Definiere eine Klasse von (partiell) berechenbaren Funktionen über N

Mehr

6. REKURSIVE FUNKTIONEN Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen

6. REKURSIVE FUNKTIONEN Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2012 6. REKURSIVE FUNKTIONEN Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen Theoretische

Mehr

Unentscheidbarkeitssätze der Logik

Unentscheidbarkeitssätze der Logik Unentscheidbarkeitssätze der Logik Elmar Eder () Unentscheidbarkeitssätze der Logik 1 / 30 Die Zahlentheorie ist nicht formalisierbar Satz (Kurt Gödel) Zu jedem korrekten formalen System der Zahlentheorie

Mehr

Dank. Theoretische Informatik II. Teil II. Registermaschinen. Vorlesung

Dank. Theoretische Informatik II. Teil II. Registermaschinen. Vorlesung Dank Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von Katrin Erk (gehalten an der Universität

Mehr

Primitiv rekursive Codier- und Decodierfunktionen

Primitiv rekursive Codier- und Decodierfunktionen Primitiv rekursive Codier- und Decodierfunktionen Paarungsfunktionen, Codierung von Zahlenfolgen 6.26 Definition Die Cauchysche Paarungsfunktion, : N 2 N wird definiert durch x, y = ((x + y)(x + y + 1)

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 9 2. Juli 2010 Einführung in die Theoretische

Mehr

Rekursive und primitiv-rekursive Funktionen

Rekursive und primitiv-rekursive Funktionen Rekursive und primitiv-rekursive Funktionen Patrik Lengacher 02. Mai 2012 Dieses Handout richtet sich nach Kapitel 6.1 in [R]. Grundsätzlich wird dieselbe Notation wie in den vorhergehenden Vorträgen verwendet.

Mehr

6.4 Entscheidbarkeit. nein sein müssen, ist klar. THEO 6.4 Entscheidbarkeit 205/307 c Ernst W. Mayr

6.4 Entscheidbarkeit. nein sein müssen, ist klar. THEO 6.4 Entscheidbarkeit 205/307 c Ernst W. Mayr 6.4 Entscheidbarkeit Wortproblem Leerheit Äquivalenz Schnittproblem Typ 3 ja ja ja ja DCFL ja ja ja nein (*) Typ 2 ja ja nein (*) nein Typ 1 ja nein (*) nein nein Typ 0 nein (*) nein nein nein (*) Diese

Mehr

Mächtigkeit von LOOP-Programmen. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen

Mächtigkeit von LOOP-Programmen. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Mächtigkeit von LOOP-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 23 Die Programmiersprache LOOP Syntax Elemente eines LOOP-Programms Variablen

Mehr

Grundlagen der Theoretischen Informatik: Übung 10

Grundlagen der Theoretischen Informatik: Übung 10 Grundlagen der Theoretischen Informatik: Übung 10 Joachim Selke Fachgebiet Theoretische Informatik Universität Hannover 20. Januar 2005 Turing-Maschinen als Rechenmaschinen gegeben sei eine Funktion f

Mehr

Theoretische Informatik für Wirtschaftsinformatik und Lehramt

Theoretische Informatik für Wirtschaftsinformatik und Lehramt Theoretische Informatik für Wirtschaftsinformatik und Lehramt Universelle Turingmaschinen und Church sche These Priv.-Doz. Dr. Stefan Milius stefan.milius@fau.de Theoretische Informatik Friedrich-Alexander

Mehr

Grundlagen der Theoretischen Informatik II

Grundlagen der Theoretischen Informatik II 1 Grundlagen der Theoretischen Informatik II Till Mossakowski Fakultät für Informatik Otto-von-Guericke-Universität Magdeburg Sommersemester 2015 2 Prädikate Eine Funktion, die nur die Werte 0 und 1 annimmt,

Mehr

8. Rekursive und primitiv rekursive Funktionen

8. Rekursive und primitiv rekursive Funktionen 8. Rekursive und primitiv rekursive Funktionen In diesem Abschnitt führen wir eine weitere (letzte) Formalisierung des Berechenbarkeitskonzeptes für Funktionen über den natürlichen Zahlen ein. Hatten wir

Mehr

Grundbegriffe der mathematischen Logik

Grundbegriffe der mathematischen Logik Grundbegriffe der mathematischen Logik Vorlesung WS 2005/2006 Jakob Kellner http://www.logic.univie.ac.at/ kellner Kurt Gödel Research Center for Mathematical Logic 1. Vorlesung, 2005-10-05 Jakob Kellner

Mehr

Die primitiv rekursiven Funktionen

Die primitiv rekursiven Funktionen Priv.-Doz. Dr.rer.nat.habil. Karl-Heinz Niggl Technische Universität Ilmenau Fakultät IA, Institut für Theoretische Informatik Fachgebiet Komplexitätstheorie und Effiziente Algorithmen J Die primitiv rekursiven

Mehr

Mitschrift BFS WS 13/14

Mitschrift BFS WS 13/14 Mitschrift BFS WS 13/14 Stand: 4. Juni 2014 Dieses Skript zum Teil Primitive und µ-rekursion der Vorlesung Berechenbarkeit und Formale Sprachen im Wintersemester 2013/14 bei Prof. Wanka wurde von untenstehenden

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK Was bisher geschah... Grundbegriffe, die wir verstehen und erklären können: DTM, NTM, Entscheider, Aufzähler, berechenbar/entscheidbar, semi-entscheidbar, unentscheidbar, Church-Turing-These THEORETISCHE

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2011 Lösungsblatt 9 25. Juli 2011 Einführung in die Theoretische Informatik

Mehr

Ausgewählte Kapitel Diskreter Mathematik mit Anwendungen

Ausgewählte Kapitel Diskreter Mathematik mit Anwendungen Wahlpflichtfach Bachelor Informatik 4. Semester Ausgewählte Kapitel Diskreter Mathematik mit Anwendungen Lektion 6: utm- und Kurt-Ulrich Witt Sommersemester 2011 Kurt-Ulrich Witt Diskrete Mathematik Lektion

Mehr

Syntax von LOOP-Programmen

Syntax von LOOP-Programmen LOOP-Berechenbarkeit Syntax von LOOP-Programmen Definition LOOP-Programme bestehen aus: Variablen: x 0, x 1, x 2, x 3,... Konstanten: 0, 1, 2, 3,... Trennsymbolen:; und := Operationen: + und Befehlen:

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 5.3 Funktionale & Logische Programme 1. Der λ-kalkül 2. Arithmetische Repräsentierbarkeit 3. Die Churchsche These Der λ-kalkül Grundlage funktionaler Programmiersprachen

Mehr

2.1 Deterministische endliche Automaten (DFAs) Wie sind DFAs deniert und wie stellt man sie graphisch dar? Aufgaben: B1T2, B1T3.

2.1 Deterministische endliche Automaten (DFAs) Wie sind DFAs deniert und wie stellt man sie graphisch dar? Aufgaben: B1T2, B1T3. Themenüberblick Dies ist eine Art Checkliste für die Klausurvorbereitung. Zu jedem Thema im Skript habe ich ein paar Leitfragen aufgelistet und die ganzen Übungsaufgaben in den 13 Blättern + Altklausuren

Mehr

T H E O R E T I S C H E I N F O R M A T I K

T H E O R E T I S C H E I N F O R M A T I K Prof. Dr. Jürgen Dassow Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik T H E O R E T I S C H E I N F O R M A T I K Vorlesungsmanuskript Magdeburg, November 2005 Einleitung Dieses Manuskript

Mehr

Logik und Beweisbarkeit

Logik und Beweisbarkeit Logik und Beweisbarkeit VL 10 Martin Mundhenk Univ. Jena, Institut für Informatik 22. Januar 2019 Vorlesung 11: Beweissysteme 3. Berechenbarkeitstheorie VL08: URM-berechenbare Funktionen und die These

Mehr

Kapitel 3: Berechnungstheorie Gliederung

Kapitel 3: Berechnungstheorie Gliederung Gliederung 0. Einführung und Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 3.1. Algorithmische Probleme und Berechnungsmodelle 3.2. Das Berechnungsmodell

Mehr

Kapitel 5. Entscheidbarkeit und Berechenbarkeit. 5.1 Entscheidbarkeit

Kapitel 5. Entscheidbarkeit und Berechenbarkeit. 5.1 Entscheidbarkeit Kapitel 5 Entscheidbareit und Berechenbareit Wir wenden uns nun grundsätzlichen Fragen zu, nämlich den Fragen nach der prinzipiellen Lösbareit von Problemen. Dazu stellen wir auch einen Zusammenhang zwischen

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 13. LOOP-, WHILE- und GOTO-Berechenbarkeit Malte Helmert Gabriele Röger Universität Basel 9. April 2014 Überblick: Vorlesung Vorlesungsteile I. Logik II. Automatentheorie und formale

Mehr

Einführung in die Theoretische Informatik Tutorium IX

Einführung in die Theoretische Informatik Tutorium IX Einführung in die Theoretische Informatik Tutorium IX Michael R. Jung 16. & 17. 12. 2014 EThI - Tutorium IX 1 1 Entscheidbarkeit, Semi-Entscheidbarkeit und Unentscheidbarkeit 2 EThI - Tutorium IX 2 Definitionen

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Berechenbarkeit und Komplexität Prof. Dr. Nikolaus Wulff Berechenbarkeit Im Rahmen der Turingmaschine fiel zum ersten Mal der Begriff Berechenbarkeit. Ein Funktion f heißt

Mehr

1 Geschichte. 2 Syntax und Konzepte. Lamdba-Kalkül

1 Geschichte. 2 Syntax und Konzepte. Lamdba-Kalkül 1 Geschichte 1673 Gottfried Wilhelm Leibniz entwickelt eine mechanische Rechenmaschine, beginnt zu träumen: Gibt es eine universelle Sprache, in der alle Probleme dargestellt werden können? Gibt es eine

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

Grundlagen der Informatik Kapitel 19. Harald Krottmaier Sven Havemann

Grundlagen der Informatik Kapitel 19. Harald Krottmaier Sven Havemann Grundlagen der Informatik Kapitel 19 Harald Krottmaier Sven Havemann Agenda Begriffe Turingmaschine Beispiele Berechenbarkeit Hilfsmittel Beispiele WS2007 2 Motivation Sind Computer allmächtig? Präziser:

Mehr

Vorlesung Diskrete Strukturen Abbildungen

Vorlesung Diskrete Strukturen Abbildungen Vorlesung Diskrete Strukturen Abbildungen Bernhard Ganter WS 2009/10 Hashfunktionen Wenn eine Datenbank Millionen von Dokumenten enthält und immer neue dazu kommen, stellt sich folgendes Problem: Bei neuen

Mehr

GTI. µ-rekursive Funktionen. Hannes Diener. 20. Juni 2. Juli. ENC B-0123,

GTI. µ-rekursive Funktionen. Hannes Diener. 20. Juni 2. Juli. ENC B-0123, GTI µ-rekursive Funktionen Hannes Diener ENC B-0123, diener@math.uni-siegen.de 20. Juni 2. Juli 1 / 31 µ-rekursive Funktionen Kommen wir als nächstes zu unserem dritten Ansatz zur Berechenbarkeit. Diesmal

Mehr

8. Der Äquivalenzsatz

8. Der Äquivalenzsatz 8. Der Äquivalenzsatz ÄQUIVALENZSATZ. Für eine (partielle) Funktion f : N n N sind folgende Aussagen äquivalent: f ist (partiell) Turing-berechenbar. f wird von einer k-band-turingmaschine berechnet (k

Mehr

Vorlesung Diskrete Strukturen Abbildungen

Vorlesung Diskrete Strukturen Abbildungen Vorlesung Diskrete Strukturen Abbildungen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung in die

Mehr

Beispiel: Fibonacci-Zahlen

Beispiel: Fibonacci-Zahlen Beispiel: Fibonacci-Zahlen Fibonacci Zahlen in der Natur Unendliche Reihe: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,... Fibonacci-Kaninchen: Pinienzapfen Blumenkohl L. P. Fibonacci (1170-1250) G. Zachmann Informatik

Mehr

Kapitel III. Aufbau des Zahlensystems

Kapitel III. Aufbau des Zahlensystems Kapitel III. Aufbau des Zahlensystems 1 Addition und Multiplikation natürlicher Zahlen Wir wollen erklären, wie man natürliche Zahlen addiert und multipliziert und dabei nur den Begriff das Zählens verwenden.

Mehr

Turing-Maschinen: Ein abstrakes Maschinenmodell

Turing-Maschinen: Ein abstrakes Maschinenmodell Wann ist eine Funktion (über den natürlichen Zahlen) berechenbar? Intuitiv: Wenn es einen Algorithmus gibt, der sie berechnet! Was heißt, eine Elementaroperation ist maschinell ausführbar? Was verstehen

Mehr

Informatik Rechnerinterne Vorgänge: Programmstrukt. (Lsg.) Gierhardt

Informatik Rechnerinterne Vorgänge: Programmstrukt. (Lsg.) Gierhardt Informatik Rechnerinterne Vorgänge: Programmstrukt. (Lsg.) Gierhardt 1. Die Zahlen von 1 bis 10 sollen ausgegeben werden (a) absteigend mit einer do while-schleife 3 zehn DEF 10 ; int zehn = 10 4 Anfang

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK 8. DER ÄQUIVALENZSATZ. Prof. Dr. Klaus Ambos-Spies. Sommersemester 2017

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK 8. DER ÄQUIVALENZSATZ. Prof. Dr. Klaus Ambos-Spies. Sommersemester 2017 EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2017 8. DER ÄQUIVALENZSATZ Theoretische Informatik (SoSe 2017) 8. Der Äquivalenzsatz 1 / 36 Übersicht In diesem Kapitel

Mehr