Typen von Programmiersprachen
|
|
|
- Luisa Lorenz
- vor 8 Jahren
- Abrufe
Transkript
1 Typen von Programmiersprachen Berechenbarkeitstheorie: Formalisierung des intuitiven Berechenbarkeitsbegriffs man kann vier Typen von Programmiersprachen zum Berechnen von Zahlenfunktionen unterscheiden: Programmiersprache LOOP: enthält als wesentliches Element Schleifen mit fester Durchlaufzahl Programmiersprache WHILE: enthält als wesentliches Element Schleifen mit bedingungsabhängiger Durchlaufzahl Programmiersprache GOTO: enthält als wesentliches Element bedingte Sprungbefehle Programmiersprache RECUR: enthält als wesentliches Element rekursive Funktionsdefinitionen offensichtlich sind diese Sprachen unterschiedlich mächtig Mächtigkeit der Sprachen drückt sich durch die Funktionen aus, die man mit ihnen berechnen kann Welche Funktionen sind das? Berechenbarkeit 1
2 Elementare Funktionen Nullfunktion Z: N 0 mit n N 0 (Z(n) := 0) Nachfolgerfunktion S: N 0 mit n N 0 (S(n) := n'=n+1) Projektionsfunktion m,k N, k m (P k m : N 0 m ) mit x 1,...,x m N 0 (P k m (x 1,...,x m ) := x k ) Berechenbarkeit 2
3 Primitiv rekursive Funktionen primitiv rekursive Funktionen sind eine induktiv definierte Teilmenge aller Funktionen N 0 n mit n N elementare Funktionen sind primitiv rekursiv Nullfunktion, Nachfolgerfunktion, Projektion Komposition sind für m, n N die Funktionen g: N 0 m f i : N 0 n i=1,..., m primitiv rekursiv, dann ist auch die Funktion r: N 0 n r(x 1 ) := g(f 1 (x 1 ),..., f m (x 1 )) primitiv rekursiv primitive Rekursion sind für n N 0 die Funktionen g: N 0 n h: N 0 n+2 primitiv rekursiv, dann ist auch die Funktion r: N 0 n+1 r(x 1, 0) := g(x 1 ) r(x 1, y+1) := h(x 1, y, r(x 1, y)) primitiv rekursiv Berechenbarkeit 3
4 Primitiv rekursive Funktionen Fall n=0: g N 0 eine Konstante, h: N 02 primitiv rekursiv, dann ist r: N 0 primitiv rekursiv r(0) = g r(y+1) = h(y, r(y)) Beispiel g=0, h(x,y) =x r(0) = g = 0 r(y+1) = h(y, r(y)) = y d.h. r(y) = y-1 (Vorgängerfunktion für y>0) folgende weitere Funktionen sind primitiv rekursiv Addition Subtraktion Multiplikation Exponentialfunktion Signumfunktion Fakultät Funktionen sind genau dann primitiv rekursiv, wenn sie durch ein LOOP Programm berechnet werden können Sind alle Funktionen primitiv rekursiv? Berechenbarkeit 4
5 Ackermann Funktion Ackermann Funktion A: N 0 2 A(0, 0) = 1 A(0, 1) = 2 A(0, y+2) = y+4 A(x+1, 0) = A(x, 1) A(x+1, y+1) = A(x, A(x+1, y)) verschiedene Autoren definieren leicht abweichende Versionen der Ackermann Funktion Ackermann Funktion ist anders als die primitiv rekursiven Funktionen rein rekursiv definiert Ackermann Funktion ist nicht primitiv rekursiv, sondern gehört in die Klasse der partiell rekursiven Funktionen Berechenbarkeit 5
6 Partiell rekursive Funktionen partiell rekursive Funktionen sind eine induktiv definierte Teilmenge aller partiellen Funktionen N 0 n mit n N elementare Funktionen sind partiell rekursiv Nullfunktion, Nachfolgerfunktion, Projektion Komposition Komposition partiell rekursiver Funktionen ist partiell rekursiv primitive Rekursion primitive Rekursion partiell rekursiver Funktionen liefert wieder partiell rekursive Funktionen Minimierung ist für n N die Funktion f: N 0 n+1 partiell rekursiv, dann auch die Funktion µ(f) : N 0 n Dabei gilt: [µ(f)](x 1 ) = x wobei x die kleinste Lösung von f(x 1, x) = 0 ist; sonst ist [µ(f)](x 1 ) undefiniert Berechenbarkeit 6
7 Church These Funktionen sind genau dann partiell rekursiv, wenn sie durch ein WHILE oder durch ein GOTO oder durch ein RECUR Programm berechnet werden können. in keiner Programmiersprache kann man mehr Funktionen berechnen als die partiell rekursiven These von Church Eine Funktion kann genau dann "nach vorgegebenen Regeln" berechnet werden, wenn sie partiell rekursiv ist, d.h. es gibt keine weiteren berechenbaren Funktionen. These von Church verbindet den intuitiven Begriff der Berechenbarkeit mit einer formalen Definition. Berechenbarkeit 7
8 Programmiersprachen WHILE, GOTO und RECUR Programmiersprachen sind gleich mächtig Grundlage für strukturierte Programmierung Substituierung von (bedingten) Sprüngen durch strukturierte Konstrukte für Sequenz, Iteration und Selektion Grundlage für die Substituierung von Rekursion durch Iteration Speicherplatz wird eingespart: Rekursion braucht für jeden Schritt zusätzlichen Speicherplatz, während Iteration Speicherplatz wieder verwenden kann neben der Mächtigkeit gibt es aber noch weitere Kriterien für die Wahl einer Programmiersprache, z.b. Ausdrucksfähigkeit: wie direkt kann man die Konzepte des Anwendungsbereiches in Konstrukten der Programmiersprache ausdrücken, wie lesbar ist das Programm? Strukturierungsmöglichkeiten, Wiederverwendung effiziente Implementierung Berechenbarkeit 8
9 Turingmaschinen Beispiel zeigte, dass Turingmaschinen zur Berechnung verwendet werden können partielle Funktion f: (A * ) n (A * ) m heisst Turingberechenbar, wenn es eine Turingmaschine mit dem Eingabealphabet A {%,#} gibt, die mit dem Bandinhalt w 1 % w 2 %...%w n startet, genau dann hält, wenn (w 1, w 2,..., w n ) im Definitionsbereich von f liegt und den Bandinhalt u 1 %u 2 %...%u m schreibt. Es gilt dann f(w 1,w 2,...,w n ) = (u 1,u 2,...,u m ) Funktionen sind genau dann Turing-berechenbar, wenn sie partiell rekursiv sind Berechenbarkeit 9
10 Berechenbarkeit und formale Sprachen Theorie der Berechenbarkeit kann von natürlichen Zahlen auf formale Sprachen ausgedehnt werden Gödelisierung: Wörter einer formalen Sprache werden als natürliche Zahlen kodiert A endliches Alphabet Gödelisierung über A ist eine linkseindeutige (injektive) Turing-berechenbare Funktion G: A * Standard-Gödelisierung: A endliches Alphabet α: A {1, 2,..., #A} eine linkseindeutige Funktion p n sei die n-te Primzahl (p 1 = 2, p 2 =3, p 3 =5,...) Gödelisierung : A * mit G(ε) :=0 G(a 1 a 2..a k ) := p 1 α(a 1 ) p 2 α(a 2 )... p k α(a k ) Beispiel: G(ende) = 2 5 * 3 14 * 5 4 * 7 5 Berechenbarkeit 10
Theoretische Informatik II
Theoretische Informatik II Einheit 4.2 Rekursive Funktionen 1. Primitiv- und µ-rekursive Funktionen 2. Analyse und Programmierung 3. Äquivalenz zu Turingmaschinen Berechenbarkeit auf N ohne Maschinenmodelle
ALP I Rekursive Funktionen
ALP I Rekursive Funktionen SS 2011 Äquivalenz vieler Berechnungsmodelle Effektiv Berechenbare Funktionen Mathematische Modelle Maschinelle Modelle Text λ-kalkül Kombinatorische Logik Allgemein rekursive
Primitiv rekursive und µ-rekursive Funktionen
Primitiv rekursive und µ-rekursive Funktionen Loop-, While- und Goto-Programme sind vereinfachte imperative Programme und stehen für imperative Programmiersprachen, bei denen Programme als Folgen von Befehlen
Primitiv rekursive und µ-rekursive Funktionen
Primitiv rekursive und µ-rekursive Funktionen Slide 1 Primitiv rekursive und µ-rekursive Funktionen Hans U. Simon (RUB) Email: [email protected] Homepage: http://www.ruhr-uni-bochum.de/lmi Primitiv rekursive
Rekursive und primitiv rekursive Funktionen. Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen
Rekursive und primitiv rekursive Funktionen Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen IDEE: Definiere eine Klasse von (partiell) berechenbaren Funktionen über N induktiv
Syntax von LOOP-Programmen
LOOP-Berechenbarkeit Syntax von LOOP-Programmen Definition LOOP-Programme bestehen aus: Variablen: x 0, x 1, x 2, x 3,... Konstanten: 0, 1, 2, 3,... Trennsymbolen:; und := Operationen: + und Befehlen:
Die Church-Turing-These
Die Church-Turing-These Elmar Eder () Die Church-Turing-These 1 / 12 Formale Systeme Formale Systeme µ-partiellrekursive Funktionen Logikkalküle SLD-Resolution (Prolog) Chomsky-Grammatiken Turing-Maschinen
Zusammenfassung Grundzüge der Informatik 4
Zusammenfassung Grundzüge der Informatik 4 Sommersemester 04 Thorsten Wink 21. September 2004 Version 1.2 Dieses Dokument wurde in L A TEX 2εgeschrieben. Stand: 21. September 2004 Inhaltsverzeichnis 1
Wir suchen Antworten auf die folgenden Fragen: Was ist Berechenbarkeit? Wie kann man das intuitiv Berechenbare formal fassen?
Einige Fragen Ziel: Wir suchen Antworten auf die folgenden Fragen: Wie kann man das intuitiv Berechenbare formal fassen? Was ist ein Algorithmus? Welche Indizien hat man dafür, dass ein formaler Algorithmenbegriff
Berechenbarkeits- und Komplexitätstheorie
Berechenbarkeits- und Komplexitätstheorie Verschiedene Berechenbarkeitsbegriffe, Entscheidbarkeit von Sprachen, Wachstumsordnungen und Komplexitätsklassen Inhaltsübersicht und Literatur Verschiedene Berechenbarkeitsbegriffe:
Def.: Die Menge der LOOP-Programme ist induktiv wie folgt definiert:
3. LOOP-, WHILE- und GOTO-Berechenbarkeit 3.1 LOOP-Programme Komponenten: Variablen: x 0, x 1, x 2,, y, z, Konstanten: 0, 1, 2, Trennsymbole: ; := Operationszeichen: +, - Schlüsselwörter: LOOP, DO, END
Theoretische Informatik SS 03 Übung 3
Theoretische Informatik SS 03 Übung 3 Aufgabe 1 a) Sind die folgenden Funktionen f : partiell oder total: f(x, y) = x + y f(x, y) = x y f(x, y) = x y f(x, y) = x DIV y? Hierbei ist x DIV y = x y der ganzzahlige
6. Rekursive und primitiv rekursive Funktionen. Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen
6. Rekursive und primitiv rekursive Funktionen Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen IDEE: Definiere eine Klasse von (partiell) berechenbaren Funktionen über N
Theorie der Informatik
Theorie der Informatik 13. LOOP-, WHILE- und GOTO-Berechenbarkeit Malte Helmert Gabriele Röger Universität Basel 9. April 2014 Überblick: Vorlesung Vorlesungsteile I. Logik II. Automatentheorie und formale
1.2 LOOP-, WHILE- und GOTO-Berechenbarkeit
Die Programmiersprache LOOP (i) Syntaktische Komponenten: Variable: x 0, x 1, x 2,... Konstanten: 0, 1, 2,... Trennsymbole: ; := Operationszeichen: + Schlüsselwörter: LOOP DO END (ii) LOOP-Programme: Wertzuweisungen:
Berechenbarkeit. Script, Kapitel 2
Berechenbarkeit Script, Kapitel 2 Intuitiver Berechenbarkeitsbegriff Turing-Berechenbarkeit WHILE-Berechenbarkeit Church sche These Entscheidungsprobleme Unentscheidbarkeit des Halteproblems für Turingmaschinen
Kapitel III. Aufbau des Zahlensystems
Kapitel III. Aufbau des Zahlensystems 1 Addition und Multiplikation natürlicher Zahlen Wir wollen erklären, wie man natürliche Zahlen addiert und multipliziert und dabei nur den Begriff das Zählens verwenden.
Primitive Rekursion. Basisfunktionen: Konstante Funktion: const 3 3 (1,1, pr 1,3(g,h) (1,1)) Projektion: proj 3 (1,1, pr. Komposition: comp 3,2
Primitive Rekursion Basisfunktionen: Konstante Funktion: const Stelligkeit. Wert des Ergebnisses. Unabhängig von den Parametern. const (,, pr,(g,h) (,)) Stelligkeit. Projektion: proj Gibt die Komponente
1 falls n ein Anfangsabschnitt der Dezimalbruchentwicklung von π ist, f(n) = 0 sonst
21 2 Berechenbarkeit Dieses Kapitel entspricht im Wesentlichen dem Kapitel 2 (Berechenbarkeitstheorie) in [9] Jeder, der programmieren kann, weiß, dass es so etwas wie einen intuitiven Berechenbarkeitsbegriff
LOOP-Programme: Syntaktische Komponenten
LOOP-Programme: Syntaktische Komponenten LOOP-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: 0 1 2... Operationssymbole: + Trennsymbole: ; :=
Rekursive und primitiv-rekursive Funktionen
Rekursive und primitiv-rekursive Funktionen Patrik Lengacher 02. Mai 2012 Dieses Handout richtet sich nach Kapitel 6.1 in [R]. Grundsätzlich wird dieselbe Notation wie in den vorhergehenden Vorträgen verwendet.
Algorithmen und Programmierung
Algorithmen und Programmierung Kapitel 5 Formale Algorithmenmodelle A&P (WS 14/15): 05 Formale Algorithmenmodelle 1 Überblick Motivation Formale Algorithmenmodelle Registermaschine Abstrakte Maschinen
Referat rekursive Mengen vs. rekursiv-aufzählbare Mengen
Kapitel 1: rekursive Mengen 1 rekursive Mengen 1.1 Definition 1.1.1 informal Eine Menge heißt rekursiv oder entscheidbar, wenn ihre charakteristische Funktion berechenbar ist. 1.1.2 formal Eine Menge A
11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P
11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie
Mitschrift BFS WS 13/14
Mitschrift BFS WS 13/14 Stand: 4. Juni 2014 Dieses Skript zum Teil Primitive und µ-rekursion der Vorlesung Berechenbarkeit und Formale Sprachen im Wintersemester 2013/14 bei Prof. Wanka wurde von untenstehenden
Mächtigkeit von WHILE-Programmen
Mächtigkeit von WHILE-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 26. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit
Einführung in die Informatik I
Einführung in die Informatik I Berechenbarkeit und Komplexität Prof. Dr. Nikolaus Wulff Berechenbarkeit Im Rahmen der Turingmaschine fiel zum ersten Mal der Begriff Berechenbarkeit. Ein Funktion f heißt
Rekursive Funktionen Basisfunktionen
Rekursive Funktionen Basisfunktionen die nullstellige Funktion Z, die den konstanten Wert 0 liefert, die Funktion S : N N, bei der jeder natürlichen Zahl ihr Nachfolger zugeordnet wird, die Funktion P
Theoretische Informatik 1
Theoretische Informatik 1 Registermaschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Registermaschinen Algorithmusbegriff konkretisiert formale Beschreibung
13. Funktionen in einer Variablen
13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier
Theorie der Informatik (CS206) Fortsetzung LOOP-Programme, primitiv-rekursive Funktionen
Theorie der Informatik (CS206) Fortsetzung LOOP-Programme, primitiv-rekursive Funktionen 26. März 2012 Proff Malte Helmert und Christian Tschudin Departement Mathematik und Informatik, Universität Basel
Einführung in die Theoretische Informatik
Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2011/12 Die Registermaschine (random access machine, RAM) 0 I 0 1 I 1 2 I 2 m I m Programm
Primitive Rekursion. Alexander Hölzle
Primitive Rekursion Alexander Hölzle 14.01.2007 Inhaltsverzeichnis Motivation i 1 Rekursive Funktionen 1 1.1 Nicht berechenbare Funktionen........................ 1 1.2 Primitiv rekursive Funktionen.........................
Turing-Maschine. Berechenbarkeit und Komplexität Turing-Maschinen. Turing-Maschine. Beispiel
Berechenbarkeit und Komplexität Turing-Maschinen Wolfgang Schreiner [email protected] Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.jku.at
Formale Sprachen. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marian KOGLER
Formale Sprachen Grammatiken und die Chomsky-Hierarchie Rudolf FREUND, Marian KOGLER Grammatiken Das fundamentale Modell zur Beschreibung von formalen Sprachen durch Erzeugungsmechanismen sind Grammatiken.
Theoretische Informatik Kap 2: Berechnungstheorie
Gliederung der Vorlesung 0. Grundbegriffe 1. Formale Sprachen/Automatentheorie 1.1. Grammatiken 1.2. Reguläre Sprachen 1.3. Kontextfreie Sprachen 2. Berechnungstheorie 2.1. Berechenbarkeitsmodelle 2.2.
Programmieren lernen mit Groovy Rekursion Rekursion und Iteration
Programmieren lernen mit Groovy Rekursion Seite 1 Rekursion Rekursion Ursprung lat. recurrere ~ zurücklaufen rekursive Definition Definition mit Bezug auf sich selbst Beispiel Fakultätsfunktion n! 0! =
3. Turingmaschinen FORMALISIERUNG VON ALGORITHMEN. Turingmaschinen Registermaschinen Rekursive Funktionen UNTERSCHEIDUNGSMERKMALE DER ANSÄTZE:
FORMALISIERUNG VON ALGORITHMEN Wegen der beobachteten Zusammenhänge zwischen Berechnungs-, Entscheidungs- und Aufzählungsverfahren genügt es Berechnungsverfahren zu formalisieren. Weiter genügt es Verfahren
Deterministische Turing-Maschinen (DTM) F3 03/04 p.46/395
Deterministische Turing-Maschinen (DTM) F3 03/04 p.46/395 Turing-Machine Wir suchen ein Modell zur formalen Definition der Berechenbarkeit von Funktionen und deren Zeit- und Platzbedarf. Verschiedene Modelle
Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie
Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann
Theoretische Informatik: Berechenbarkeit und Formale Sprachen
Prof. Dr. F. Otto 26.09.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen SS 2011 Name:................................
GTI. µ-rekursive Funktionen. Hannes Diener. 20. Juni 2. Juli. ENC B-0123,
GTI µ-rekursive Funktionen Hannes Diener ENC B-0123, [email protected] 20. Juni 2. Juli 1 / 31 µ-rekursive Funktionen Kommen wir als nächstes zu unserem dritten Ansatz zur Berechenbarkeit. Diesmal
Surjektive, injektive und bijektive Funktionen.
Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens
Die Ackermannfunktion
Die Ackermannfunktion Slide 1 Die Ackermannfunktion Hans U. Simon (RUB) Email: [email protected] Homepage: http://www.ruhr-uni-bochum.de/lmi Die Ackermannfunktion Slide 2 Eine Frage zu Anfang Ist jede intuitiv
Beispiel: Fibonacci-Zahlen
Beispiel: Fibonacci-Zahlen Unendliche Reihe: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,... Fibonacci-Kaninchen: L. P. Fibonacci (1170-1250) G. Zachmann Informatik 1 - WS 05/06 Rekursion 23 Fibonacci Zahlen in der
Deterministischer endlicher Automat A ohne Ausgabe (deterministischer endlicher Akzeptor)
Deterministischer endlicher Automat A ohne Ausgabe (deterministischer endlicher Akzeptor) wobei A = (E, Z, f, z 0, F ) E Z f : Z E Z z 0 Z Eingabealphabet Zustandsmenge (Zustands )Überführungsfunktion
Turing-Maschinen. Definition 1. Eine deterministische Turing-Maschine (kurz DTM) ist ein 6- Dem endlichen Alphabet Σ von Eingabesymbolen.
Turing-Maschinen Nachdem wir endliche Automaten und (die mächtigeren) Kellerautomaten kennengelernt haben, werden wir nun ein letztes, noch mächtigeres Automatenmodell kennenlernen: Die Turing-Maschine
Einführung in Berechenbarkeit, Komplexität und formale Sprachen
Johannes Blömer Skript zur Vorlesung Einführung in Berechenbarkeit, Komplexität und formale Sprachen Universität Paderborn Wintersemester 2011/12 Inhaltsverzeichnis 1 Einleitung 2 1.1 Ziele der Vorlesung...................................
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Turing-Maschine, Berechenbarkeit INSTITUT FÜR THEORETISCHE 0 KIT 07.11.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen
Kapitel 5: Abstrakte Algorithmen und Sprachkonzepte. Elementare Schritte
Elementare Schritte Ein elementarer Berechnungsschritt eines Algorithmus ändert im Allgemeinen den Wert von Variablen Zuweisungsoperation von fundamentaler Bedeutung Zuweisungsoperator In Pascal := In
Berechenbarkeits- und Komplexitätstheorie
Berechenbarkeits- und Komplexitätstheorie Verschiedene Berechenbarkeitsbegriffe, Entscheidbarkeit von Sprachen, Wachstumsordnungen und Komplexitätsklassen Inhaltsübersicht und Literatur Verschiedene Berechenbarkeitsbegriffe:
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Brückenkurs Mathematik 2015
Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass
Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)
WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16
1 Potenzen und Polynome
1 Potenzen und Polynome Für eine reelle Zahl x R und eine natürliche Zahl n N definieren wir x n := x x x... x }{{} n-mal Einschub über die bisher aufgetretenen mathematischen Symbole: Definition mittels
Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f.
3 Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f 4 Auf der Menge aller Restklassen [f] g kann man Addition und
Repetitorium zur Informatik IV
Repetitorium zur Informatik IV Christoph Kreitz 6. 10. September 1993 Zusammenfassung Diese Wiederholung geht nicht nach didaktischen Gesichtspunkten vor sondern faßt systematisch in Stichworten die wichtigsten
Formale Sprachen und Automaten
Formale Sprachen und Automaten Kapitel 5: Typ 1 und Typ 0 Vorlesung an der DHBW Karlsruhe Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2012 Kapitel 5 Typ 1
(Prüfungs-)Aufgaben zur Berechenbarkeits- und Komplexitätstheorie
(Prüfungs-)Aufgaben zur Berechenbarkeits- und Komplexitätstheorie 1) Schreiben Sie ein LOOP-Programm, das die Funktion f: N \ {0} N, f (n) = n n berechnet. Sie dürfen in Ihrem Programm die Multiplikation
2.4 Kontextsensitive und Typ 0-Sprachen
Definition 2.43 Eine Typ 1 Grammatik ist in Kuroda Normalform, falls alle Regeln eine der folgenden 4 Formen haben: Dabei: A, B, C, D V und a Σ. Satz 2.44 A a, A B, A BC, AB CD. Für jede Typ 1 Grammatik
Lösung zur Klausur zu Krypographie Sommersemester 2005
Lösung zur Klausur zu Krypographie Sommersemester 2005 1. Bestimmen Sie die zwei letzten Ziffern der Dezimaldarstellung von 12 34 Es gilt: 12 34 = 12 32+2 = 12 32 12 2 = 12 (25) 12 2 = ((((12 2 ) 2 ) 2
Klausur zur Vorlesung Mathematische Logik
Universität Heidelberg 13. Februar 2014 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Mathematische Logik Musterlösung Aufgabe 1 (Aussagenlogik
Einführung in die Informatik 1
Einführung in die Informatik 1 Algorithmen und algorithmische Sprachkonzepte Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 [email protected] Sprechstunde: Freitag,
Theoretische Informatik
Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:
Einführung in die Informatik I
Einführung in die Informatik I Algorithmen und deren Programmierung Prof. Dr. Nikolaus Wulff Definition Algorithmus Ein Algorithmus ist eine präzise formulierte Handlungsanweisung zur Lösung einer gleichartigen
(P3 ) Ist M D mit d M und S(M) M, dann gilt M = D.
Kapitel 2 Die natürlichen Zahlen 2.1 Peano-Systeme Definition 2.1. Ein Tripel (D, S, d) mit den Eigenschaften (P1) d D, (P2) S : D D, (P3) S(n) d für alle n D, (P4) S ist injektiv, (P5) Ist M D mit d M
Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)
Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff
Kapitel 1. Grundlagen Mengen
Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig
Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung
Rekursion Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-12-13/infoeinf WS12/13 Aufgabe 1: Potenzfunktion Schreiben Sie eine Methode, die
Theoretische Informatik SS 03 Übung 4
Fakten aus Übung 3 Theoretische Informatik SS 03 Übung 4 In Übung 3 wurden einigen Fakten bewiesen, die für diese Übung benötigt werden. Folgende Konstrukte können mit LOOP-Programmen simuliert werden:
Theoretische Informatik
Theoretische Informatik Einheit 1 Mathematische Methodik 1. Problemlösen 2. Beweistechniken 3. Wichtige Grundbegriffe Methodik des Problemlösens Klärung der Voraussetzungen Welche Begriffe sind zum Verständnis
31 Polynomringe Motivation Definition: Polynomringe
31 Polynomringe 31.1 Motivation Polynome spielen eine wichtige Rolle in vielen Berechnungen, einerseits weil oftmals funktionale Zusammenhänge durch Polynome beschrieben werden, andererseits weil Polynome
Einführung in die Programmierung
Prof. Dr. Rudolf Berrendorf Fachbereich Informatik Fachhochschule Bonn-Rhein-Sieg URM - Programmierung Dipl.-Inf. Sigrid Weil Fachbereich Informatik Fachhochschule Bonn-Rhein-Sieg Einordnung Programmier-Paradigma:
GTI. Hannes Diener. 6. Juni - 13. Juni. ENC B-0123, [email protected]
GTI Hannes Diener ENC B-0123, [email protected] 6. Juni - 13. Juni 1 / 49 Die Turingmaschine war das erste (bzw. zweite) formale Modell der Berechenbarkeit. Sie wurden bereits 1936 (also lange
DLP. Adolphe Kankeu Tamghe [email protected] ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27
DLP Adolphe Kankeu Tamghe [email protected] Fachbereich Mathematik und Informatik ALZAGK SEMINAR Bremen, den 18. Januar 2011 1 / 27 Inhaltsverzeichnis 1 Der diskrete Logarithmus Definition
Der λ-kalkül. Frank Huch. Sommersemester 2015
Der λ-kalkül Frank Huch Sommersemester 2015 In diesem Skript werden die Grundlagen der Funktionalen Programmierung, insbesondere der λ-kalkül eingeführt. Der hier präsentierte Stoff stellt einen teil der
Vorlesung. Funktionen/Abbildungen 1
Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.
Überblick. 1 Vorbemerkungen. 2 Algorithmen. 3 Eigenschaften von Algorithmen. 4 Historischer Überblick. Einführung
Teil I Einführung Überblick 1 Vorbemerkungen 2 Algorithmen 3 4 Historischer Überblick Prof. G. Stumme Algorithmen & Datenstrukturen Sommersemester 2009 1 1 Vorbemerkungen Was ist Informatik? Informatik
Funktionale Programmiersprachen
Funktionale Programmiersprachen An den Beispielen Haskell und Erlang Übersicht Programmiersprachen λ-kalkül Syntax, Definitionen Besonderheiten von funktionalen Programmiersprache, bzw. Haskell Objektorientierte
Informatik. Teil 1 Wintersemester 2011/2012. Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik
Informatik Teil 1 Wintersemester 2011/2012 Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik Dieser Foliensatz wurde z.t. von Herrn Prof. Grossmann übernommen Inhalt 1. Algorithmen -
EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK 1. ALPHABETE, WÖRTER, SPRACHEN. Prof. Dr. Klaus Ambos-Spies. Sommersemester 2011
EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2011 1. ALPHABETE, WÖRTER, SPRACHEN Theoretische Informatik (SoSe 2011) 1. Alphabete, Wörter, Sprachen 1 / 25 Vorbemerkung:
Einführung in die Theoretische Informatik
Einführung in die Theoretische Informatik Woche 10 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Satz Sei G = (V, Σ, R, S) eine kontextfreie
4.4.1 Statisches perfektes Hashing. des Bildbereichs {0, 1,..., n 1} der Hashfunktionen und S U, S = m n, eine Menge von Schlüsseln.
4.4 Perfektes Hashing Das Ziel des perfekten Hashings ist es, für eine Schlüsselmenge eine Hashfunktion zu finden, so dass keine Kollisionen auftreten. Die Größe der Hashtabelle soll dabei natürlich möglichst
18 Höhere Ableitungen und Taylorformel
8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a
Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie
Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,
Rekursive Funktionen
Rekursive Funktionen Christoph Kreitz & Nuria Brede Institut für Informatik, Universität Potsdam, 14482 Potsdam Zusammenfassung Dieser Artikel gibt einen Überblick über die primitiv- und µ-rekursiven Funktionen.
Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum
Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume
3. Ziel der Vorlesung
3. Ziel der Vorlesung Der Zweck der Vorlesung ist das Studium fundamentaler Konzepte in der Algorithmentheorie. Es werden relevante Maschinenmodelle, grundlegende und höhere Datenstrukturen sowie der Entwurf
Kapitel 1. Grundlagen
Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig
Minimalismen in der. Informatik
Minimalismen in der Informatik Andreas Schwill Institut für Informatik Universität Potsdam Überblick Einstieg Maschinenbegriff Bausteinsätze Modellierung Phantasien zu Komplexität und Kompliziertheit 2
Grundlagen der Theoretischen Informatik Musterlösungen zu ausgewählten Übungsaufgaben
Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekt mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten
In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)
34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Rekursion
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Rekursion Rekursion Neue Denkweise Wikipedia: Als Rekursion bezeichnet man den Aufruf
Algorithmen und Datenstrukturen Laufzeitabschätzung
Algorithmen und Datenstrukturen Laufzeitabschätzung Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Lernziele der Vorlesung Algorithmen Sortieren, Suchen,
