Theoretische Informatik 1

Größe: px
Ab Seite anzeigen:

Download "Theoretische Informatik 1"

Transkript

1 Theoretische Informatik 1 Registermaschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012

2 Übersicht Registermaschinen Algorithmusbegriff konkretisiert formale Beschreibung Kostenmaße uniformes Kostenmaße logarithmische Kostenmaße Komplexität Komplexität Effizienz Church-Turing These Church-Turing These Zusammenfassung

3 Begriff Algorithmus Das Zehnte Hilbert sche Problem 1 (dt. Originaltext) Eine diophantische (=ganzzahlige) Gleichung mit irgendwelchen Unbekannten und mit ganzen rationalen Zahlenkoeffizienten sei vorgelegt. Man soll ein Verfahren angeben, nach welchem sich mittels einer endlichen Anzahl von Operationen entscheiden lässt, ob die Gleichung in ganzen Zahlen lösbar ist. David Hilbert (1912) 2 1 David Hilbert präsentiert 1900 in Paris die 23 offenen Probleme der Mathematik 2 Aus Wikipedia - die freie Enzyklopädie

4 Begriff Algorithmus Hilbert hat also explizit und in definierter abstrakter Form nach einem Entscheidungsalgorithmus gefragt. Er war davon überzeugt, dass es einen solchen prinzipiell immer gibt. Tatsächlich konnte 1970 bewiesen werden, dass es keinen solchen Algorithmus geben kann.

5 Algorithmus konkretisiert endliche Anzahl an Operationen endliche, nummerierte Anweisungsliste (Programm) Rechenoperationen: + (Zwischen-)Ergebnisse: r 0, r 1,..., r k,... bedingte Verzweigung (JZERO), Sprung(GOTO) definierter Haltebefehl: END = Registermaschine (RM auch RAM (en.))

6 Schema einer Registermaschine (RM) 1 Graphik aus: Asteroth, Baier: Theoretische Informatik, Pearson Studium

7 Befehlssatz einer Registermaschine LOAD x r 0 := v(x) STORE k r k := r 0 STORE k r rk := r 0 ADD x r 0 := r 0 + v(x) SUB x r 0 := max {0, r 0 v(x)} MULT x r 0 := r 0 v(x) DIV x r 0 := r 0 v(x) GOTO k b := k JZERO k if r 0 = 0 then b := k END b := 0 danach: b := b + 1 (außer nach Verzweigungen) Argumentwert x v(x) #k k k r k k r rk Register: i N 0 : r i N 0 b = 0 HALT Falls R terminiert, erwarten wir das Ergebnis der Berechnung im Akkumulator r 0.

8 Formale Beschreibung Ein RM-Programm R = (π 1,..., π m ) ist eine endliche Sequenz von Anweisungen. Eine Registerbelegung R = {(j 1, r j1 ), (j 2, r j2 ),..., (j l, r jl )} ist eine endliche Menge von Register-Wert-Paaren. Alle Register, die nicht in R aufgezählt sind haben den Wert 0. Die Eingabe für eine RM R soll ein Tupel von k Zahlen x 1,..., x k N 0 sein. Die initiale Registerbelegung lautet: R[x 1,..., x k ] = {(1, x 1 ), (2, x 2 ),..., (k, x k )}

9 Definition (Konfiguration) Konfigurationen Die Konfiguration einer RM ist ein Tupel κ = (b, R), wobei b N 0 der nächste auszuführende Befehls ist und R N 2 0 die aktuelle Registerbelegung darstellt. Definition (Konfigurationsrelation R ) Sei κ = (b, R) und κ = (b, R ), dann ist κ κ wahr, gdw. R entweder π b ein Sprungbefehl nach b und R = R ist, oder b = b + 1 und R = {(j, x)} (R \ {(i, y) N 2 0 i = j}), wobei j das von π b adressierte Register und x dessen neu berechneter Inhalt ist. Eine terminierte Konfiguration (0, R) hat keine Nachfolgekonfiguration.

10 Konfigurationen Definition ( n R, R ) κ 0 R κ genau dann wenn κ = κ. κ n+1 R κ gdw κ N 2 N2 0 : κ n R κ κ R κ R ist die reflexive, transitive Hülle von R.

11 Definition (Berechnete partielle Funktion einer RM) Die durch R berechnete partielle Funktion f R : N k 0 N 0 ist gegeben durch r 0 : R : κ 0 R (0, R ) (0, r 0 ) R f R (x 1,..., x k ) = : R : κ 0 R (0, R ) wobei κ 0 = (1, R[x 1,..., x k ]) die Startkonfiguration darstellt. Definition (RM-Berechenbarkeit) Eine partielle Funktion f : N k 0 N 0 wird RM-berechenbar genannt, wenn es eine Registermaschine R gibt, sodass f = f R

12 Beispiel: Berechne x y Startkonfiguration: κ 0 = (1, R[x, y]), x, y N 0 Gesucht: RM-Programm R, sodass f R (x, y) = x y Pseudocode für z = x y z = 1; while y > 0 z := z x; y := y 1; wend RM Programm 1 LOAD #1 2 STORE 3 3 LOAD 2 4 JZERO 11 5 SUB #1 6 STORE 2 7 LOAD 3 8 MULT 1 9 STORE 3 10 GOTO 3 11 LOAD 3 12 END

13 uniforme Kostenmaße Es gilt: (1, R[x 1,..., x k ]) i R (b i, R i ), mit b N = 0 Definition (uniforme Zeitkosten) Die uniformen Zeitkosten der RM R bei Eingabe von x 1,..., x k sind definiert als t u R (x 1,..., x k ) = N Definition (uniforme Platzkosten) Die uniformen Platzkosten der RM R bei Eingabe von x 1,..., x k sind definiert als { sr u 1 0 i N : (x ri,j 0 1,..., x k ) = 0 0 i N : r i,j = 0 j=0

14 Uniforme Zeitkosten: Beispiel x y tr u (x, y) = 4 + Zeile y + Zeile 5-10,3,4; y Durchläufe + 2 Zeile 11,12 = 8y + 6 Uniforme Platzkosten: sr u (x, y) = 4 Entspricht das unserer Vorstellung von intuitiver Komplexität?

15 Logarithmische Länge L(x) Definition (Logarithmische Länge) Sei x N 0, dann ist die Logarithmische Länge von x die Anzahl der für die binäre Darstellung von x benötigten Bits. { 1 : x = 0 L(x) = log x + 1 : x 1

16 logarithmische Zeitkosten Definition (logarithmische Zeitkosten) Die logarithmischen Zeitkosten der RM R bei Eingabe von x 1,..., x k sind definiert als t R (x 1,..., x k ) = N 1 i=0 1 π bi =GOTO END L(r i,0 ) π bi =JZERO op L(r i,0 )+L(op) π bi =ADD SUB MULT DIV #op L(r i,0 )+L(op) π bi =STORE op L(r i,0 )+L(op)+L(r i,op ) π bi =ADD SUB MULT DIV op L(r i,0 )+L(op)+L(r i,op ) π bi =STORE op L(r i,0 )+L(op)+L(r i,op )+ +L(r i,ri,op ) π bi =ADD SUB MULT DIV op L(op) π bi =LOAD #op L(op)+L(r i,op ) π bi =LOAD op L(op)+L(r i,op )+L(r i,ri,op ) π bi =LOAD op.

17 logarithmische Platzkosten Definition (logarithmische Platzkosten) Die logarithmischen Platzkosten der RM R bei Eingabe von x 1,..., x k sind definiert als s R (x 1,..., x k ) = j=0 { max0 i N L(r i,j ) 0 i N : r i,j i N : r i,j = 0

18 Beispiel x y, logarithmische Zeitkosten pro Befehl uniform logarithmisch 1 LOAD #1 r STORE 3 r 3 r LOAD 2 r 0 r L(r 2 ) 4 JZERO 11? r 0 = 0 1 L(r0 ) 5 SUB #1 r 0 r L(r 0 ) STORE 2 r 2 r L(r 0 ) 7 LOAD 3 r 0 r L(r 3 ) 8 MULT 1 r 0 r 0 r 1 1 L(r 0 ) L(r 1 ) 9 STORE 3 r 3 r L(r 0 ) 10 GOTO LOAD 3 r 0 r L(r 3 ) 12 END 1 1

19 Uniforme Zeitkosten: Beispiel x y tr u (x, y) = 4 + Zeile y + Zeile 5-10,3,4; y Durchläufe + 2 Zeile 11,12 = 8y + 6 Logarithmische Zeitkosten: ( y i=1 L(i) y(l(y) 1)) t R (x, y) = 9 + 2L(y) + yl(x) Z 1-4, y i=1 L(i) + 3L(x) y i=1 i yl(x) + 11y Z 5-10, y 2 L(x) + (4y + 2)L(y) + y(7 3 2 L(x)) + 9

20 Komplexität Definition (Zeitkomplexität, Laufzeit) Die Zeitkomplexität T R (n) einer RM R in Abhängigkeit der logarithmischen Länge n der Eingabe ist definiert als T R (n) = max t R (x 1,..., x k ) (x 1,...,x k ) N k 0 : L(x 1)+ +L(x k ) n Definition (Platzkomplexität, Speicherbedarf) Die Platzkomplexität S R (n) einer RM R in Abhängigkeit der logarithmischen Länge n der Eingabe ist definiert als S R (n) = max s R (x 1,..., x k ) (x 1,...,x k ) N k 0 : L(x 1)+...+L(x k ) n

21 Beispiel x y, Komplexität T u R Unter dem uniformen Kostenmaß: tr u (x, y) = 8y + 6 L(x) = n x, L(y) = n y <= 8 2 ny + 6 n = n x + n y T u R (n) <= 8 2n = O(2 n ) Linear im Eingabewert heißt exponentiell in der EingabeLänge!

22 Beispiel x y, Komplexität T R Unter dem logarithmischen Kostenmaß: t R (x, y) = 3 2 y 2 L(x) + (4y + 2)L(y) + y(7 3 2 L(x)) ny n x + (4 2 ny + 2)n y + 2 ny (6 3 2 n x) + 9 T R (n) n n + (4 2 n + 2)n + 2 n (6 3 2 n) n22n n2n n + 2n + 9 = O(n2 2n ) also sogar superexponentielle Laufzeit (/ O(poly(n)))

23 Effizientere Berechnung von x y Grundidee (Square & Multiply): Reduziere die Anzahl der Schleifendurchläufe Ersetzte z = z x durch z = z z Anzahl der Schleifendurchläufe nur mehr: log y Zeitbedarf unter dem uniformen Kostenmaß: TR u (n) = O(n) Zeitbedarf unter dem logarithmischen Kostenmaß: T R (n) = O(2 n )

24 Polynomielle Zeitbeschränkung Definition (Polynomielle Zeitbeschränkung) Wir nennen eine RM R polynomiell Zeitbeschränkt, falls die Kostenfunktion T R polynomiell Zeitbeschränkt ist. T R (n) = O (poly(n)) d.h. es gibt ein Polynom p für das gilt T R (n) p(n) n N Ein Problem heißt effizient lösbar, wenn es eine polynomiell Zeitbeschränkte Registermaschine R gibt, die das Problem löst.

25 uniforme vs. logarithmische Kosten Solange man nur die Frage der polynomiellen Laufzeit beantworten möchte, kann man unter folgenden Voraussetzungen das uniforme Kostenmaß verwenden. TR u (n) = O(poly(n))) max i,j L(r i,j ) = O(poly(n)) Sind beide Voraussetzungen erfüllt, dann gilt T R (n) = O(poly(n))

26 N 1 tr u (x 1,..., x k ) = 1 Beweisskizze i=0 N 1 t R (x 1,..., x k ) = {1 L(op) L(r i,op ) L(r i,ri,op )} }{{} i=0 bis zu 4 Summanden h(x 1,...,k ) := max L(r i,j ) und H(n) = max h(x 1,...,k ) i,j L(x 1 )+...+L(x k ) n t R (x 1,...,k ) 4 N 1 T R (n) i=0 max L(x 1 )+...+L(x k ) n h(x 1,...,k ) = 4t u R (x 1,...,k) h(x 1,...,k ) (4tR u (x 1,...,k) h(x 1,...,k )) 4TR u (n) H(n) T R (n) = O (TR u (n) H(n))

27 Beweisskizze T R (n) = O (TR u (n) H(n)) laut Annahme: H(n) = O(poly(n)) TR u (n) = O(poly(n)) T R (n) = O(poly(n))

28 RM ohne Multiplikation Das RM - Modell kann ohne Verlust der Berechnungsstärke eingeschränkt werden indem (z.b.) auf die Multiplikation verzichtet wird: Eine RM R ohne MULT Simuliert eine RM R mit MULT sodass T R (n) = O(T R (n) 2 ) (ohne Beweis)

29 Church-Turing These Church-Turing These Die Klasse der intuitiv berechenbaren Funktion ist genau die Klasse der Turing-berechenbaren, d.h. durch ein Turing-vollständiges Prozessmodell (z.b. RM), berechenbaren Funktionen. Erweiterte Church sche These Jedes sinnvolle Prozessmodell kann effizient auf einem Standardmodell (Turing-Maschine, Registermaschine) simuliert werden. Effizient heißt, dass der Zeitverlust maximal polynomiell ist Diese These ist für alle bekannten Prozessmodelle bewiesen.

30 Zusammenfassung Algorithmusbegriff konkretisieren: Maschinenmodelle Registermaschine: ähnlich zu modernem Computer Grundrechenarten als Basisfunktionen Aufpassen bei Kostenmaßen (uniform/logarithmisch) Polynomiell Zeitbeschränkte RM effiziente Berechenbarkeit Viele unterschiedliche Maschinenmodelle Beliebig austauschbar Church-Turing These

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Teil 2 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Codierung, Gödelisierung Paare, Tupel, Listen Überabzählbarkeit 2 Ist universell?

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 heoretische Informatik 1 uringmaschinen David Kappel Institut für Grundlagen der Informationsverarbeitung U Graz SS 2014 Übersicht uring Maschinen Algorithmusbegriff konkretisiert Modelldefinition uring-berechenbarkeit

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 heoretische Informatik 1 uringmaschinen David Kappel Institut für Grundlagen der Informationsverarbeitung echnische Universität Graz 11.03.2016 Übersicht uring Maschinen Algorithmusbegriff konkretisiert

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Allgemein Teilgebiete der Informatik ohne Theoretische Grundlagen 2 Fragen an

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Die Komplexitätsklasse P David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Äquivalenz von RM und TM Äquivalenz, Sätze Simulation DTM

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Teil 4 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Turingmaschinen Mehrband-TM Kostenmaße Komplexität 2 Mehrband-TM Kostenmaße

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die

Mehr

Theoretische Informatik 1 Sommersemester 2012

Theoretische Informatik 1 Sommersemester 2012 Vorlesungsskriptum Theoretische Informatik 1 Sommersemester 2012 Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz Autoren: Florian Burgstaller, Andreas Derler, Armin Eibl,

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Vorlesungsskriptum Theoretische Informatik 1 Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 3. März 2016 Autoren der ersten Auage, 2012: Florian Burgstaller Andreas Derler

Mehr

Theoretische Informatik 1 Sommersemester 2012

Theoretische Informatik 1 Sommersemester 2012 Vorlesungsskriptum Theoretische Informatik 1 Sommersemester 2012 Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz Autoren: Florian Burgstaller, Andreas Derler, Armin Eibl,

Mehr

Registermaschine (RAM), Church-Turing-These. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen

Registermaschine (RAM), Church-Turing-These. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Registermaschine (RAM), Church-Turing-These Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 22 Registermaschinen (RAM) Programm b c(0) c(1) c(2) c(3) c(4)...

Mehr

Mächtigkeit von WHILE-Programmen

Mächtigkeit von WHILE-Programmen Mächtigkeit von WHILE-Programmen und rekursive Funktionen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 16. November 2010 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Mächtigkeit von WHILE-Programmen

Mächtigkeit von WHILE-Programmen Mächtigkeit von WHILE-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 23 Turingmaschine (TM) M = (Q, Σ, Γ, B, q 0, q, δ) Unendliches Band... 0 c

Mehr

Registermaschine (RAM), Church-Turing-These

Registermaschine (RAM), Church-Turing-These Registermaschine (RAM), Church-Turing-These Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 21. Oktober 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Laufzeit einer DTM, Klasse DTIME

Laufzeit einer DTM, Klasse DTIME Laufzeit einer DTM, Klasse DTIME Definition Laufzeit einer DTM Sei M eine DTM mit Eingabealphabet Σ, die bei jeder Eingabe hält. Sei T M (w) die Anzahl der Rechenschritte d.h. Bewegungen des Lesekopfes

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 heoretische Informatik 1 eil 2 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung U Graz SS 2009 Übersicht 1 uring Maschinen uring-berechenbarkeit 2 Kostenmaße Komplexität 3 Mehrband-M

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Einleitung und Grundlagen Maike Buchin 18.4.2017 Verantwortliche Dozentin Organisation der Übungen Übungsleiter Korrekteure Maike Buchin Maike.Buchin@rub.de Raum NA 1/70 Sprechzeiten:

Mehr

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Vollständigkeit 1 David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 20.05.2016 Übersicht Schwere Definition CIRCUIT-VALUE ist P-schwer

Mehr

Berechenbarkeit und Komplexität: Probleme, Sprachen, Maschinen

Berechenbarkeit und Komplexität: Probleme, Sprachen, Maschinen Berechenbarkeit und Komplexität: Probleme, Sprachen, Maschinen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 25. Oktober 2006 Was ist ein Problem? Informelle Umschreibung

Mehr

Allgemeines Halteproblem Hilberts 10. Problem

Allgemeines Halteproblem Hilberts 10. Problem Allgemeines Halteproblem Hilberts 10. Problem Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Dank. Theoretische Informatik II. Teil II. Registermaschinen. Vorlesung

Dank. Theoretische Informatik II. Teil II. Registermaschinen. Vorlesung Dank Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von Katrin Erk (gehalten an der Universität

Mehr

Berechenbarkeit und Komplexität Vorlesung 11

Berechenbarkeit und Komplexität Vorlesung 11 Berechenbarkeit und Komplexität Vorlesung 11 Prof. Dr. Wolfgang Thomas Lehrstuhl Informatik 7 RWTH Aachen 7. Dezember 2014 Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 7.

Mehr

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1 Zeitkomplexität (1) Proseminar Theoretische Informatik Proseminar Theoretische Informatik: Lisa Dohrmann 1 Warum Komplexitätsbetrachtung? Ein im Prinzip entscheidbares und berechenbares Problem kann in

Mehr

2. Imperative Programmierung und Berechenbarkeit - Registermaschinen -

2. Imperative Programmierung und Berechenbarkeit - Registermaschinen - 2. Imperative Programmierung und Berechenbarkeit - Registermaschinen - 2.1 Definition 2.2 Loop-Programme 2.3 While Programme 2.4 While Programme und rekursive Funktionen Im Wesentlichen: Tafel! Maschinenmodell

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 4.1

Algorithmen und Datenstrukturen 1 Kapitel 4.1 Algorithmen und Datenstrukturen 1 Kapitel 4.1 Technische Fakultät robert@techfak.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2005/2006 Kapitel 4: Maschinenmodelle [Dieses Kapitel hält sich eng an

Mehr

Berechenbarkeit und Komplexität

Berechenbarkeit und Komplexität Teil II: Berechenbarkeit und Komplexität Algorithmen und Komplexität 22. November 2016 Berechenbarkeitstheorie RAM-Maschine 1: M 1 1 2: M 0 1 3: M 0 M 0 M 1 4: M 2 M 2 M 1 5: GOTO 3 IF M 2 > 0. M 2 : M

Mehr

Grundlagen der Programmierung (Vorlesung 24)

Grundlagen der Programmierung (Vorlesung 24) Grundlagen der Programmierung (Vorlesung 24) Ralf Möller, FH-Wedel Vorige Vorlesung Anwendung im Bereich Compilerbau Inhalt dieser Vorlesung Turing-Maschinen Berechenbarkeitstheorie, Halteproblem Lernziele

Mehr

Berechenbarkeit und Komplexität Vorlesung 10

Berechenbarkeit und Komplexität Vorlesung 10 Berechenbarkeit und Komplexität Vorlesung 10 Prof. Dr. Wolfgang Thomas Lehrstuhl Informatik 7 RWTH Aachen 27. November 2014 Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 27.

Mehr

Rekursive Funktionen Basisfunktionen

Rekursive Funktionen Basisfunktionen Rekursive Funktionen Basisfunktionen die nullstellige Funktion Z, die den konstanten Wert 0 liefert, die Funktion S : N N, bei der jeder natürlichen Zahl ihr Nachfolger zugeordnet wird, die Funktion P

Mehr

. Die obige Beschreibung der Laufzeit für ein bestimmtes k können wir also erweitern und erhalten die folgende Gleichung für den mittleren Fall:

. Die obige Beschreibung der Laufzeit für ein bestimmtes k können wir also erweitern und erhalten die folgende Gleichung für den mittleren Fall: Laufzeit von Quicksort im Mittel. Wir wollen die erwartete Effizienz von Quicksort ermitteln. Wir nehmen an, die Wahrscheinlichkeit, dass das gewählte Pivot-Element a j das k-t kleinste Element der Folge

Mehr

LOOP-Programme: Syntaktische Komponenten

LOOP-Programme: Syntaktische Komponenten LOOP-Programme: Syntaktische Komponenten LOOP-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: 0 1 2... Operationssymbole: + Trennsymbole: ; :=

Mehr

Reduktion / Hilberts 10. Problem

Reduktion / Hilberts 10. Problem Reduktion / Hilberts 10. Problem Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 9. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

3. RAM als Rechnermodell

3. RAM als Rechnermodell 3. RAM als Rechnermodell Motivation Wir möchten Berechnungsvorschriften (Algorithmen) formal beschreiben und deren Eigenschaften wie Korrektheit und Laufzeit analysieren Rechnermodell abstrahiert vom verwendeten

Mehr

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, NP 254/ 333 Polynomielle Verifizierer und NP Ḋefinition Polynomieller

Mehr

Die Reduktion Hilberts 10. Problem

Die Reduktion Hilberts 10. Problem Die Reduktion Hilberts 10. Problem Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 8. November 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF

Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF Einflussgrößen bei der Bildung von Komplexitätsklassen Das zugrunde liegende Berechnungsmodell (Turingmaschine, Registermaschine

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik 0 KIT 07.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik nationales Forschungszentrum Vorlesung in am

Mehr

Berechenbarkeit und Komplexität Vorlesung 3

Berechenbarkeit und Komplexität Vorlesung 3 Berechenbarkeit und Komplexität Vorlesung 3 Prof. Dr. Wolfgang Thomas Lehrstuhl Informatik 7 RWTH Aachen 22. November 2014 Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 22.

Mehr

Äquivalenzen. F3 03/04 p.1/??

Äquivalenzen. F3 03/04 p.1/?? Äquivalenzen Eine Menge M ist genau dann aufzählbar, wenn sie von einem Automaten der folgenden Art erkannt werden kann: 1. Einer deterministischen Turing-Maschine (DTM). 2. Einer nichtdeterministischen

Mehr

Anhang zum Lehrbuch über Datenstrukturen und Algorithmen

Anhang zum Lehrbuch über Datenstrukturen und Algorithmen Anhang zum Lehrbuch über Datenstrukturen und Algorithmen Hans Ulrich Simon 10. April 018 Zusammenfassung Der Stoff der Vorlesung Datenstrukturen im Sommersemester 018 deckt sich zum großen Teil mit den

Mehr

Algorithmen als systematische Vorgehensweisen zur Lösung eines formal definierten Problems

Algorithmen als systematische Vorgehensweisen zur Lösung eines formal definierten Problems 4. Algorithmen Motivation Algorithmen als systematische Vorgehensweisen zur Lösung eines formal definierten Problems Der Begriff Algorithmus geht auf den Gelehrten Muhammad al-chwarizmi zurück, der um

Mehr

Algorithmen als systematische Vorgehensweisen zur Lösung eines formal definierten Problems

Algorithmen als systematische Vorgehensweisen zur Lösung eines formal definierten Problems 4. Algorithmen Motivation Algorithmen als systematische Vorgehensweisen zur Lösung eines formal definierten Problems Der Begriff Algorithmus geht auf den Gelehrten Muhammad al-chwarizmi zurück, der um

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2011 Lösungsblatt 9 25. Juli 2011 Einführung in die Theoretische Informatik

Mehr

Syntax von LOOP-Programmen

Syntax von LOOP-Programmen LOOP-Berechenbarkeit Syntax von LOOP-Programmen Definition LOOP-Programme bestehen aus: Variablen: x 0, x 1, x 2, x 3,... Konstanten: 0, 1, 2, 3,... Trennsymbolen:; und := Operationen: + und Befehlen:

Mehr

VL-05: Unentscheidbarkeit I. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

VL-05: Unentscheidbarkeit I. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger VL-05: Unentscheidbarkeit I (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger WS 2017, RWTH BuK/WS 2017 VL-05: Unentscheidbarkeit I 1/37 Organisatorisches Nächste Vorlesung: Donnerstag, November

Mehr

Berechenbarkeit und Komplexität: Mächtigkeit von Programmiersprachen: WHILE- und LOOP-Programme

Berechenbarkeit und Komplexität: Mächtigkeit von Programmiersprachen: WHILE- und LOOP-Programme Berechenbarkeit und Komplexität: Mächtigkeit von Programmiersprachen: WHILE- und LOOP-Programme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 29. November 2007 Turing-mächtige

Mehr

Mächtigkeit von WHILE-Programmen

Mächtigkeit von WHILE-Programmen Mächtigkeit von WHILE-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 26. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Search - Beweis der Korrektheit David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2013 Algemeine Anmerkungen zur Übung 9 Aufgabenblätter, 3 Abgabetermine

Mehr

Berechenbarkeit. Script, Kapitel 2

Berechenbarkeit. Script, Kapitel 2 Berechenbarkeit Script, Kapitel 2 Intuitiver Berechenbarkeitsbegriff Turing-Berechenbarkeit WHILE-Berechenbarkeit Church sche These Entscheidungsprobleme Unentscheidbarkeit des Halteproblems für Turingmaschinen

Mehr

Theorie der Informatik. Theorie der Informatik P und NP Polynomielle Reduktionen NP-Härte und NP-Vollständigkeit

Theorie der Informatik. Theorie der Informatik P und NP Polynomielle Reduktionen NP-Härte und NP-Vollständigkeit Theorie der Informatik 13. Mai 2015 20. P, NP und polynomielle Reduktionen Theorie der Informatik 20. P, NP und polynomielle Reduktionen 20.1 P und NP Malte Helmert Gabriele Röger 20.2 Polynomielle Reduktionen

Mehr

Berechenbarkeit. Script, Kapitel 2

Berechenbarkeit. Script, Kapitel 2 Berechenbarkeit Script, Kapitel 2 Intuitiver Berechenbarkeitsbegriff Turing-Berechenbarkeit WHILE-Berechenbarkeit Church sche These Entscheidungsprobleme Unentscheidbarkeit des Halteproblems für Turingmaschinen

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 1-13. Sitzung Dennis Felsing dennis.felsing@student.kit.edu http://www.stud.uni-karlsruhe.de/~ubcqr/2010w/tut gbi/ 2011-01-31 Turingmaschinen 1 Turingmaschinen Wiederholung

Mehr

1 Random Access Maschine

1 Random Access Maschine 1 RANDOM ACCESS MASCHINE 1 1 Random Access Maschine Neue Hardware: Random Access Maschine = RAM. Der Name hat nichts mit Zufall zu tun, sondern mit wahlfreiem Zugriff. Die RAM besteht aus einem Eingabeband,

Mehr

Polynomielle Verifizierer und NP

Polynomielle Verifizierer und NP Polynomielle Verifizierer und NP Definition Polynomieller Verifizierer Sei L Σ eine Sprache. Eine DTM V heißt Verifizierer für L, falls V für alle Eingaben w Σ hält und folgendes gilt: w L c Σ : V akzeptiert

Mehr

Theoretische Informatik SS 03 Übung 3

Theoretische Informatik SS 03 Übung 3 Theoretische Informatik SS 03 Übung 3 Aufgabe 1 a) Sind die folgenden Funktionen f : partiell oder total: f(x, y) = x + y f(x, y) = x y f(x, y) = x y f(x, y) = x DIV y? Hierbei ist x DIV y = x y der ganzzahlige

Mehr

Turing-Maschinen: Ein abstrakes Maschinenmodell

Turing-Maschinen: Ein abstrakes Maschinenmodell Wann ist eine Funktion (über den natürlichen Zahlen) berechenbar? Intuitiv: Wenn es einen Algorithmus gibt, der sie berechnet! Was heißt, eine Elementaroperation ist maschinell ausführbar? Was verstehen

Mehr

Typen von Programmiersprachen

Typen von Programmiersprachen Typen von Programmiersprachen Berechenbarkeitstheorie: Formalisierung des intuitiven Berechenbarkeitsbegriffs man kann vier Typen von Programmiersprachen zum Berechnen von Zahlenfunktionen unterscheiden:

Mehr

Isomorphismus. Definition Gruppen-Isomorphismus. Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt

Isomorphismus. Definition Gruppen-Isomorphismus. Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt Isomorphismus Definition Gruppen-Isomorphismus Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt 1 f ist bijektiv f (u + v) = f (u) f (v) für alle u, v G, die

Mehr

Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr.

Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr. Übersicht Datenstrukturen und Vorlesung 1: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/ datenstrukturen-und-algorithmen/ Diese Präsentation verwendet

Mehr

3.3 Laufzeit von Programmen

3.3 Laufzeit von Programmen 3.3 Laufzeit von Programmen Die Laufzeit eines Programmes T(n) messen wir als die Zahl der Befehle, die für die Eingabe n abgearbeitet werden Betrachten wir unser Programm zur Berechnung von Zweierpotenzen,

Mehr

1.5 Turing-Berechenbarkeit

1.5 Turing-Berechenbarkeit A.M. Turing (1937): Maschinenmodell zur exakten Beschreibung des Begriffs effektiv berechenbar Stift Mensch a c b b Rechenblatt a b b c Lese-/Schreibkopf endliche Kontrolle Turingmaschine Eine Turingmaschine

Mehr

Wir suchen Antworten auf die folgenden Fragen: Was ist Berechenbarkeit? Wie kann man das intuitiv Berechenbare formal fassen?

Wir suchen Antworten auf die folgenden Fragen: Was ist Berechenbarkeit? Wie kann man das intuitiv Berechenbare formal fassen? Einige Fragen Ziel: Wir suchen Antworten auf die folgenden Fragen: Wie kann man das intuitiv Berechenbare formal fassen? Was ist ein Algorithmus? Welche Indizien hat man dafür, dass ein formaler Algorithmenbegriff

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Platzkomplexität David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 22.04.2016 Platzkomplexität Platzkomplexitätsklassen Zeit vs. Platzbedarf

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2011/12 Die Registermaschine (random access machine, RAM) 0 I 0 1 I 1 2 I 2 m I m Programm

Mehr

Informatik II. Turingmaschinen. Turingmaschinen. Turingmaschinen. Rainer Schrader. 14. Dezember 2005

Informatik II. Turingmaschinen. Turingmaschinen. Turingmaschinen. Rainer Schrader. 14. Dezember 2005 Informatik II Rainer Schrader Zentrum für Angewandte Informatik Köln 14. Dezember 2005 1 / 76 2 / 76 Gliederung Aufbau und Eigenschaften Maße für Zeit- und Platzbedarf Simulation RAM/Turingmaschine nichtdeterministische

Mehr

1.5 Turing-Berechenbarkeit

1.5 Turing-Berechenbarkeit A.M. Turing (1937): Maschinenmodell zur exakten Beschreibung des Begriffs effektiv berechenbar Stift Mensch a c b b Rechenblatt a b b c Lese-/Schreibkopf endliche Kontrolle Turingmaschine Eine Turingmaschine

Mehr

Das zehnte Hilbertsche Problem. Seminar Arbeit von Jurij Bernhardt ( )

Das zehnte Hilbertsche Problem. Seminar Arbeit von Jurij Bernhardt ( ) Das zehnte Hilbertsche Problem Seminar Arbeit von Jurij Bernhardt (4004655) (11) In dem 10 en Hilbertschen Problem geht es um Existenz eines Algorithmus oder einer Methode zur Bestimmung ganzzahliger Lösungen

Mehr

Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft

Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 5. Februar 2010 Berthold Vöcking, Informatik

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 16.11.2010 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Logik und Beweisbarkeit

Logik und Beweisbarkeit Logik und Beweisbarkeit VL 08 Martin Mundhenk Univ. Jena, Institut für Informatik 11. Januar 2019 Teil 3: Berechenbarkeitstheorie 1. Aussagenlogik 2. Arithmetik 3. Berechenbarkeitstheorie VL08: URM-berechenbare

Mehr

Random Access Machine (RAM) Berechenbarkeit und Komplexität Random Access Machines

Random Access Machine (RAM) Berechenbarkeit und Komplexität Random Access Machines Random Access Machine (RAM) Berechenbarkeit und Komplexität Random Access Machines Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at Research Institute for Symbolic Computation (RISC) Johannes Kepler University,

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 20. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 20.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 10.06.2016 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP

Mehr

Diskrete Mathematik II

Diskrete Mathematik II Diskrete Mathematik II Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Sommersemester 2011 DiMa II - Vorlesung 01-04.04.2011 1 / 252 Organisatorisches Vorlesung: Mo 12-14 in HZO 70, Di 09-10

Mehr

LOOP-Programme: Syntaktische Komponenten

LOOP-Programme: Syntaktische Komponenten LOOP-Programme: Syntaktische Komponenten LOOP-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: 0 1 2... Operationssymbole: + Trennsymbole: ; :=

Mehr

Angewandte Mathematik am Rechner 1

Angewandte Mathematik am Rechner 1 Angewandte Mathematik am Rechner 1 SOMMERSEMESTER 2017 Kapitel 3 [Bildquellen: Wikipedia User David Madore, Inductiveload ] Grundlagen 2: Funktionen, Berechenbarkeit und emergente Komplexität Michael Wand

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Berechenbarkeit und Komplexität: Simulationen zwischen TM und RAM und die Church-Turing-These

Berechenbarkeit und Komplexität: Simulationen zwischen TM und RAM und die Church-Turing-These Berechenbarkeit und Komplexität: Simulationen zwischen TM und RAM und die Church-Turing-These Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 28. Oktober 2006 Simulation RAM

Mehr

Algorithmen und Programmierung

Algorithmen und Programmierung Algorithmen und Programmierung Kapitel 5 Formale Algorithmenmodelle A&P (WS 14/15): 05 Formale Algorithmenmodelle 1 Überblick Motivation Formale Algorithmenmodelle Registermaschine Abstrakte Maschinen

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik Was ist ein Algorithmus? Ein Algorithmus ist eine eindeutige Handlungsvorschrift, [bestehend] aus endlich vielen, wohldefinierten

Mehr

Die Klasse NP und die polynomielle Reduktion

Die Klasse NP und die polynomielle Reduktion Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Dezember 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

2. Grundlagen. Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten.

2. Grundlagen. Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten. 2. Grundlagen Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten. Laufzeitverhalten beschreiben durch O-Notation. 1 Beispiel Minimum-Suche Eingabe bei Minimum

Mehr

Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen. Wintersemester 2012/13

Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen. Wintersemester 2012/13 Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: und effiziente Algorithmen Wintersemester 2012/13 Prof. Barbara König Übungsleitung: Henning Kerstan & Sebastian Küpper Barbara

Mehr

Das Rucksackproblem: schwache NP-Härte und Approximation

Das Rucksackproblem: schwache NP-Härte und Approximation Das Rucksackproblem: schwache NP-Härte und Approximation Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1. Februar 2010 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

5. Algorithmen. K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16

5. Algorithmen. K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 5. Algorithmen K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 21. Okt. 2015 1. Berechne 2 n. Zu lösende Probleme 2. Berechne die Fakultät einer nat. Zahl: n! = 1 * 2 *... n 3. Entscheide,

Mehr

Primitiv rekursive und µ-rekursive Funktionen

Primitiv rekursive und µ-rekursive Funktionen Primitiv rekursive und µ-rekursive Funktionen Loop-, While- und Goto-Programme sind vereinfachte imperative Programme und stehen für imperative Programmiersprachen, bei denen Programme als Folgen von Befehlen

Mehr

Berechenbarkeit. Stefan Zimmer Informatik I Automatisierungstechnik in der Produktion. Grenzen unserer... Programme...

Berechenbarkeit. Stefan Zimmer Informatik I Automatisierungstechnik in der Produktion. Grenzen unserer... Programme... Berechenbarkeit Informatik I Automatisierungstechnik in der Produktion 22.12.2004 Page 1 of 14 1. Grenzen unserer Programmierkunst Die Menge der Programme, die wir bisher schreiben können, wird durch drei

Mehr

Grundlagen der Theoretischen Informatik: Übung 10

Grundlagen der Theoretischen Informatik: Übung 10 Grundlagen der Theoretischen Informatik: Übung 10 Joachim Selke Fachgebiet Theoretische Informatik Universität Hannover 20. Januar 2005 Turing-Maschinen als Rechenmaschinen gegeben sei eine Funktion f

Mehr

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie.

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie. Einführung (1/3) 3 Wir verfolgen nun das Ziel, Komplexitätsklassen mit Hilfe von charakteristischen Problemen zu beschreiben und zu strukturieren Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit

Mehr

GTI. Hannes Diener. 18. Juni. ENC B-0123,

GTI. Hannes Diener. 18. Juni. ENC B-0123, GTI Hannes Diener ENC B-0123, diener@math.uni-siegen.de 18. Juni 1 / 32 Als Literatur zu diesem Thema empfiehlt sich das Buch Theoretische Informatik kurzgefasst von Uwe Schöning (mittlerweile in der 5.

Mehr

1936 von Alan Turing zum theoretischen Studium der Berechenbarkeit eingeführt Besteht aus

1936 von Alan Turing zum theoretischen Studium der Berechenbarkeit eingeführt Besteht aus //5 Abstrakte Maschinenmodelle: Turingmaschine (TM) 96 von Alan Turing zum theoretischen Studium der Berechenbarkeit eingeführt Besteht aus einem festen Teil ( "Hardware ) einem variablen Teil ( "Software

Mehr