Theoretische Informatik 1

Größe: px
Ab Seite anzeigen:

Download "Theoretische Informatik 1"

Transkript

1 heoretische Informatik 1 eil 2 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung U Graz SS 2009

2 Übersicht 1 uring Maschinen uring-berechenbarkeit 2 Kostenmaße Komplexität 3 Mehrband-M Äquivalenz von k-dm und 1-DM 4

3 uring-berechenbarkeit Sequentielle Maschinen Schema eines sequentiellen Rechners 1 Eingabe Prozessor Ausgabe Programm Speicher Einfachste Variante: Eingabe, Ausgabe, Speicher auf einem einzigen Band. 1 afelbild aus: Reischuk, Komplexitätstheorie, Abb. 1.1

4 uring-berechenbarkeit uring Maschinen aus: Asteroth, Baier, heoretische Informatik

5 uring-berechenbarkeit uring Maschine Definition (Deterministische uring Maschine) Eine DM ist ein 7-upel = (Q, Σ, Γ, δ, q 0,, F ) Q, eine Menge von Zuständen Σ, das Eingabealphabet, / Σ Γ, das Bandalphabet, Σ Γ, Blanksymbol: Γ q 0 Q, der Anfangszustand F Q, eine Menge von Endzuständen δ : Q Γ Q Γ {L, R, N}, die Übergangsfunktion

6 uring-berechenbarkeit Konfiguration Definition (Konfiguration einer DM) Eine Konfiguration ist ein upel κ = (α, q, β) Γ Q Γ wobei q ist der aktuelle Zustand α ist das Wort links vom Kopf, β ist das Wort unter und rechts vom Kopf, und wird als α q β angeschrieben z.b: q , 100q 1 111, q

7 uring-berechenbarkeit Beispiel einfache 1-Band DMs 2 binärer Incrementierer Palindrom-Entscheider siehe JFLAP-Konstruktion. Beachte die Möglichkeit der Codierung einer endlichen Anzahl von endlichen großen Variablen in einer erweiterten Zustandsmenge der M. 3 2 Papadimitriou, Fig.2.2f. 3 Reischuk, echnik 1.2.1

8 uring-berechenbarkeit Eingabe Start: Die Eingabe steht auf dem sonst leeren Band. Der Kopf steht auf dem ersten Eingabezeichen. Definition (Startkonfiguration) Die Startkonfiguration einer DM mit Eingabe w lautet q 0 w, mit w Σ.

9 uring-berechenbarkeit Definition ( ) Die schrittweise Abarbeitung der DM wird durch die Übergangsfunktion δ (das Programm) festgelegt. Daraus leitet sich die wie folgt ab. δ(q, b) = (q, c, N) α a q b β α a q c β δ(q, b) = (q, c, R) α a q b β α a c q β δ(q, b) = (q, c, L) α a q b β α q a c β δ(q, b) = q F α a q b β ist die reflexive, transitive Hülle von, analog +, q, q Q, a, b, c Γ, α, β Γ i

10 uring-berechenbarkeit Die Berechnung eine DM erzeugt einen α 0 q 0 β 0 α 1 q 1 β 1 α 2 q 2 β 2 Die Berechnung ist endlich, gdw. α N, q N, β N : α 0 q 0 β 0 α N q N β N Eine in α N q N β N endende Berechnung heißt akzeptierend, gdw. q N F, sonst verwerfend.

11 uring-berechenbarkeit Ausgabe Sobald die M in einen Endzustand q F übergeht, besteht das Ergebnis v der akzeptierenden Berechnung der M in der Zeichenfolge von der aktuellen Kopfposition nach rechts bis exclusive dem ersten auftretenden. (q 0 w α q v β) (β = ɛ β = β )

12 uring-berechenbarkeit Die Funktion f (ransducer M) f : Σ (Γ \ { }) { v : (q0 w α q v β) (β = ɛ β = β ) q F f (w) = : sonst

13 uring-berechenbarkeit Die Funktion f (Entscheider M) f : Σ {JA, NEIN, } JA : q 0 w α q β q F f (w) = NEIN : q 0 w α q β q / F : sonst

14 uring-berechenbarkeit uring-berechnenbarkeit Definition (rekursive Funktionen) Eine (partielle) Funktion f : Σ Σ ist uring-berechenbar und heißt daher rekursiv, gdw. DM : f (w) = f (w) Definition (rekursiv aufzählbare Sprachen) Eine Sprache L Σ wird von einer DM akzeptiert, gdw. DM : w L f (w) = JA Definition (rekursive Sprachen) Eine Sprache L Σ wird von einer DM entschieden, gdw. DM : w L f (w) = JA w L f (w) = NEIN

15 Kostenmaße Komplexität Kostenmaße bei Eingabe w Definition (Zeitkosten bei Eingabe w) Die Funktion t (w) : Σ N { } gibt die Länge des (endlichen) es der M bei der Eingabe w an, oder, wenn dieser unendlich ist. Definition (Platzkosten bei Eingabe w) Die Funktion s (w) : Σ N { } gibt die Anzahl der Bandquadrate an, die während der Berechnug der M bei Eingabe von w besucht werden. Satz (Platzkosten sind beschränkt durch Zeitkosten) : w Σ : s (w) t (w)

16 Komplexität einer DM Kostenmaße Komplexität Definition (Zeitkomplexität) Die Zeitkomplexität einer DM (in Abhängigkeit der Länge der Eingabe) ist definiert als (n) = max w Σ : w n t (w) Definition (Platzkomplexität) Die Platzkomplexität einer DM (in Abhängigkeit der Länge der Eingabe) ist definiert als S (n) = max w Σ : w n s (w) Satz (Platzkomplexität ist kleiner als Zeitkomplexität) : n N : S (n) (n)

17 Mehrband-M Äquivalenz von k-dm und 1-DM Mehrband-M k Köpfe, also pro Schritt k Symbole veränderbar 1 Schritt = jeder Kopf bewegt sich Köpfe bewegen sich unanbhängig voneinander! Übergangsfunktion δ wird aufgeblasen k-band DM ist also schneller als 1-Band DM

18 Mehrband-M Äquivalenz von k-dm und 1-DM Äquivalenz k-dm und 1-DM

19 Mehrband-M Äquivalenz von k-dm und 1-DM Äquivalenz k-dm und 1-DM = (Q, Σ, Γ, δ, q 0,, F ) Das Bandalphabet wird erweitert, sodaß upel von 2k Symbolen und Markern in ein Bandquadrat passen. Wir bezeichnen die Elemente dieser upel als Spuren des Bandes: Γ = Γ (Γ { }) 2k, wobei / Γ Der Zustandraum Q wird vervielfacht um eine Variable c zur Beschreibung des Arbeitsmodus, je eine Variable b i für das aktuelle Zeichen jedes der k Bänder, sowie für jeden der k simulierten Bandköpfe die Richtung der durchzuführenden Bewegung: Q = Q {0, 1, 2, 3} (Γ {?}) k {L, R, N} k q Q : q = q, c, b 1,..., b k, x 1,... x k, q Q, b i Γ {?} Startzustand: q 0 = q 0, 0,?,...,?, N,..., N Eingabe wird in upels umcodiert, dann q = q 0, 1,?,...,?, N,..., N Skizziert wurde bisher die Abbildung einer Konfiguration der k-band Maschine in eine Konfiguration der 1-Band Maschine. Nun muß gezeigt werden, daß die 1-Band Maschine die korrekt implementiert, d.h. eine Abbildung einer beliebigen Konfiguration von in die Abbildung der korrekten Nachfolgekonfiguration umwandelt.

20 Mehrband-M Äquivalenz von k-dm und 1-DM Äquivalenz k-dm und 1-DM 1 Schritt der k-dm wird von simuliert wenn δ folgendermaßen konstruiert wird: startet in q = q, c = 1,?,...,?, N,..., N wenn c = 1: und auf einer 2i-ten Spur des Bandes steht ein : übertrage das Symbol der (2i 1)-ten Spur in die Zustandsvariable b i. q, 1,...,?,..., N,..., N q, 1,..., b i,..., N,..., N wenn c = 1 und kein auf einer Spur: bewege Kopf nach rechts. wenn c = 1 und wir stehen auf (am rechten Ende angekommen): Codiere die ursprüngliche Übergangsfunktion δ folgendermaßen in δ : Jedes δ(q, b 1,..., b k ) = (p, b 1, x 1,..., b k, x k ) wird zu δ (< q, 1, b 1,..., b k, N,... N >, ) = (< p, 2, b 1,..., b k, x 1,..., x k >,, R) wenn c = 2 und auf der 2i-ten Spur des Bandes steht * und b i?: übertrage das Symbol der Zustandvariable b i auf die (2i 1)-te Spur und setzte auf die 2i-te Spur, Setze Zustandvariable b i auf?. Bewege Bandkopf entsprechend der Zustandsvariable x i. wenn c = 2 und i : x i N b i =?: Setze auf die (2i)-te Spur. Setze Zustandsvariable x i auf N und bewege Bandkopf entgegengesetzt zu x i. wenn c = 2 und wir stehen auf und Zustandsvariable q F : (am linken Ende angekommen): setze c = 3 wenn c = 2 und wir stehen auf und Zustandsvariable q F: setze c = 1, bewege Kopf nach rechts. wenn c = 3: Ein weiterer Banddurchlauf codiert das Band so um, daß nur das Ausgabeband übrigbleibt.

21 Mehrband-M Äquivalenz von k-dm und 1-DM Äquivalenz k-dm und 1-DM Satz (Kosten der Simulation) Zeitkomplexität: (n) = f (n) = (n) = O((f (n)) 2 ) Platzkomplexität: S (n) = g(n) = S (n) = g(n) Die Simulation bedingt einen quadratischen Zeitverlust. Dieses Ergebnis ist bewiesenermaßen nicht verbesserbar.

22 Beispiele uring Maschinen Mehrband-M Äquivalenz von k-dm und 1-DM 2 Band Addierer: siehe JFLAP-Konstruktion Mehrdimensionale M: siehe Langtons Ant

23 Problemarten Konstruktionsprobleme (Optimierungsprobleme) Zu einer Eingabe x (der Probleminstanz) soll die optimale Lösung, soferne sie existiert, bestimmt werden. Funktionsberechnungen Eingabe x, berechne f (x). Lösung ist eindeutig. Entscheidungsprobleme Eingabe x, Ausgabe JA/NEIN bzw 1/0 Größte Bedeutung für Komplexitätstheorie haben Entscheidungsprobleme. Anstelle von Konstruktionsproblemen werden die zugehörigen Entscheidungsprobleme betrachtet. Beachte: Eingabecodierung ist eil der Problemdefinition!!

24 Sprachprobleme (=Entscheidungsprobleme) geg: Sprache L Σ und ein Wort w Σ ges: Ist w L characteristische Funktion: f L : Σ {0, 1} : f L (w) = { 1 w L 0 w L Sprache einer Entscheidungsfunktion: L = {w Σ f L (w) = 1} Eine M entscheidet L, wenn f = f L. hält immer nach endlich vielen Schritten. (L heißt rekursiv). Eine M akzeptiert L, wenn f L (w) = 1 f (w) = 1. hält zumindest dann, wenn f L (w) = 1. (L heißt rekursiv aufzählbar)

25 Sprachprobleme vs. Konstruktionsprobleme Aus mehreren Ergebnissen eines Sprachproblems kann effizient auf die Lösung des zugrundeliegenden Konstruktionsproblems geschlossen werden. geg: ungerichteter Graph G = (V, E) und k 1 ges 1: Enthält G eine Clique der Größe k? ges 2: Knotenmenge der größten Clique aus G. M 1 löst 1. Problem. Wie kann unter mithilfe von 1 das 2. Problem effizient gelöst werden? Lösungsidee: Knoten aus G entsprechend den Entscheidungen von schrittweise entfernen. Maximal soviele Aufrufe von 1 wie Knoten, also O(poly(n)).

Theoretische Informatik 1

Theoretische Informatik 1 heoretische Informatik 1 uringmaschinen David Kappel Institut für Grundlagen der Informationsverarbeitung echnische Universität Graz 11.03.2016 Übersicht uring Maschinen Algorithmusbegriff konkretisiert

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Teil 4 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Turingmaschinen Mehrband-TM Kostenmaße Komplexität 2 Mehrband-TM Kostenmaße

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Teil 5 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Problemklassen 2 NTM Nichtdeterministische Algorithmen 3 Problemarten Konstruktionsprobleme

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Die Komplexitätsklasse P David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Äquivalenz von RM und TM Äquivalenz, Sätze Simulation DTM

Mehr

Rekursiv aufzählbare Sprachen

Rekursiv aufzählbare Sprachen Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben

Mehr

Turing Maschine. Thorsten Timmer. SS 2005 Proseminar Beschreibungskomplexität bei Prof. D. Wotschke. Turing Maschine SS 2005 p.

Turing Maschine. Thorsten Timmer. SS 2005 Proseminar Beschreibungskomplexität bei Prof. D. Wotschke. Turing Maschine SS 2005 p. Thorsten Timmer SS 2005 Proseminar Beschreibungskomplexität bei Prof. D. Wotschke Turing Maschine SS 2005 p. 1/35 Inhalt Einführung Formale Definition Berechenbare Sprachen und Funktionen Berechnung ganzzahliger

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die

Mehr

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie

Mehr

Übersicht. 3 3 Kontextfreie Sprachen

Übersicht. 3 3 Kontextfreie Sprachen Formale Systeme, Automaten, Prozesse Übersicht 3 3.1 Kontextfreie Sprachen und Grammatiken 3.2 Ableitungsbäume 3.3 Die pre -Operation 3.4 Entscheidungsprobleme für CFGs 3.5 Normalformen für CFGs 3.6 Chomsky-Normalform

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 18. Januar 2018 INSTITUT FÜR THEORETISCHE 0 18.01.2018 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 4.2 Modelle für Typ-0 & Typ-1 Sprachen 1. Nichtdeterministische Turingmaschinen 2. Äquivalenz zu Typ-0 Sprachen 3. Linear beschränkte Automaten und Typ-1 Sprachen Maschinenmodelle

Mehr

Typ-0-Sprachen und Turingmaschinen

Typ-0-Sprachen und Turingmaschinen Typ-0-Sprachen und Turingmaschinen Jean Vancoppenolle Universität Potsdam Einführung in formale Sprachen und Automaten Dr. Thomas Hanneforth (Präsentation aus Foliensätzen von Dr. Thomas Hanneforth und

Mehr

Weitere universelle Berechnungsmodelle

Weitere universelle Berechnungsmodelle Weitere universelle Berechnungsmodelle Mehrband Turingmaschine Nichtdeterministische Turingmaschine RAM-Modell Vektoradditionssysteme λ-kalkül µ-rekursive Funktionen 1 Varianten der dtm Mehrkopf dtm Kontrolle

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 13. Vorlesung 07.12.2006 1 Überblick: Die Church- Turing-These Turing-Maschinen 1-Band Turing-Maschine Mehrband-Turing-Maschinen Nichtdeterministische

Mehr

Kontextsensitive und Typ 0 Sprachen Slide 2. Die Turingmaschine

Kontextsensitive und Typ 0 Sprachen Slide 2. Die Turingmaschine Kontextsensitive und Typ 0 Sprachen Slide 2 Die Turingmaschine DTM = Deterministische Turingmaschine NTM = Nichtdeterministische Turingmaschine TM = DTM oder NTM Intuitiv gilt: DTM = (DFA + dynamischer

Mehr

Berechenbarkeit. Script, Kapitel 2

Berechenbarkeit. Script, Kapitel 2 Berechenbarkeit Script, Kapitel 2 Intuitiver Berechenbarkeitsbegriff Turing-Berechenbarkeit WHILE-Berechenbarkeit Church sche These Entscheidungsprobleme Unentscheidbarkeit des Halteproblems für Turingmaschinen

Mehr

Semi-Entscheidbarkeit und rekursive Aufzählbarkeit

Semi-Entscheidbarkeit und rekursive Aufzählbarkeit Semi-Entscheidbarkeit und rekursive Aufzählbarkeit Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 9. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

5.2 Endliche Automaten

5.2 Endliche Automaten 114 5.2 Endliche Automaten Endliche Automaten sind Turingmaschinen, die nur endlichen Speicher besitzen. Wie wir bereits im Zusammenhang mit Turingmaschinen gesehen haben, kann endlicher Speicher durch

Mehr

Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07. Nichtdeterministische Turingmaschinen und NP

Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07. Nichtdeterministische Turingmaschinen und NP Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07 Vortrag am 17.11.2006 Nichtdeterministische Turingmaschinen und NP Yves Radunz Inhaltsverzeichnis 1 Wiederholung 3 1.1 Allgemeines........................................

Mehr

Turing Maschinen II Wiederholung

Turing Maschinen II Wiederholung Organisatorisches VL-03: Turing Maschinen II (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Nächste Vorlesung: Mittwoch, Oktober 25, 14:15 15:45 Uhr, Roter Hörsaal Webseite: http://algo.rwth-aachen.de/lehre/ws1718/buk.php

Mehr

VL-03: Turing Maschinen II. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger

VL-03: Turing Maschinen II. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger VL-03: Turing Maschinen II (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger WS 2017, RWTH BuK/WS 2017 VL-03: Turing Maschinen II 1/27 Organisatorisches Nächste Vorlesung: Mittwoch, Oktober

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 15 Ziele vgl. AFS: Berechnungsmodelle für Typ-0- und Typ-1-Sprachen (Nicht-)Abschlußeigenschaften

Mehr

Mehrband-Turingmaschinen und die universelle Turingmaschine

Mehrband-Turingmaschinen und die universelle Turingmaschine Mehrband-Turingmaschinen und die universelle Turingmaschine Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 15 Turingmaschinen mit mehreren Bändern k-band

Mehr

Berechenbarkeit und Komplexität: Erläuterungen zur Turingmaschine

Berechenbarkeit und Komplexität: Erläuterungen zur Turingmaschine Berechenbarkeit und Komplexität: Erläuterungen zur Turingmaschine Prof. Dr. Berthold Vöcking Lehrstuhl Informatik Algorithmen und Komplexität 24. Oktober 26 Programmierung der TM am Beispiel Beispiel:

Mehr

ALP I Turing-Maschine

ALP I Turing-Maschine ALP I Turing-Maschine Teil I WS 2012/2013 Äquivalenz vieler Berechnungsmodelle Alonzo Church λ-kalkül Kombinatorische Logik Alan Turing Turing-Maschine Mathematische Präzisierung Effektiv Berechenbare

Mehr

2.6 Verdeutlichung verwendeter Begriffe

2.6 Verdeutlichung verwendeter Begriffe 2.6 Verdeutlichung verwendeter Begriffe endlich/finit: die Mengen der Zustände und der Ein- bzw. Ausgabezeichen sind endlich synchron: die Ausgabezeichen erscheinen synchron mit dem Einlauf der Eingabezeichen

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Registermaschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Registermaschinen Algorithmusbegriff konkretisiert formale Beschreibung

Mehr

Turingmaschinen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen

Turingmaschinen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: und effiziente Algorithmen Wintersemester 2011/12 Schematische Darstellung einer Turing-Maschine: Kopf kann sich nach links und

Mehr

Informatik III - WS07/08

Informatik III - WS07/08 Informatik III - WS07/08 Kapitel 5 1 Informatik III - WS07/08 Prof. Dr. Dorothea Wagner [email protected] Kapitel 5 : Grammatiken und die Chomsky-Hierarchie Informatik III - WS07/08 Kapitel 5 2 Definition

Mehr

Rucksackproblem und Verifizierbarkeit

Rucksackproblem und Verifizierbarkeit Rucksackproblem und Verifizierbarkeit Gegeben: n Gegenstände mit Gewichten G={g 1,g 2,,g n } und Werten W={w 1,w 2,,w n } sowie zulässiges Gesamtgewicht g. Gesucht: Teilmenge S {1,,n} mit i i S unter der

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Teil 2 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Codierung, Gödelisierung Paare, Tupel, Listen Überabzählbarkeit 2 Ist universell?

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 20. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 20.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Deterministische Turing-Maschinen

Deterministische Turing-Maschinen Deterministische Turing-Maschinen Um 900 präsentierte David Hilbert auf einem internationalen Mathematikerkongress eine Sammlung offener Fragen, deren Beantwortung er von zentraler Bedeutung für die weitere

Mehr

4.2 Varianten der Turingmaschine. 4 Turingmaschinen

4.2 Varianten der Turingmaschine. 4 Turingmaschinen 4 Turingmaschinen Alles was intuitiv berechenbar ist, d.h. alles, was von einem Menschen berechnet werden kann, das kann auch von einer Turingmaschine berechnet werden. Ebenso ist alles, was eine andere

Mehr

Einfache Turing Maschine. Formale Spezifikation einer einfachen Turing Maschine. M = (Σ,Γ,#,Q,s,F, ) Σ

Einfache Turing Maschine. Formale Spezifikation einer einfachen Turing Maschine. M = (Σ,Γ,#,Q,s,F, ) Σ Einfache Turing Maschine Band Formale Spezifikation einer einfachen Turing Maschine Lese-/ Schreibkopf Endliche Kontrolle Rechenschrittregeln: (endlich viele) Startkonfiguration: x Σ * auf Band L/S-Kopf

Mehr

1.5 Turing-Berechenbarkeit

1.5 Turing-Berechenbarkeit A.M. Turing (1937): Maschinenmodell zur exakten Beschreibung des Begriffs effektiv berechenbar Stift Mensch a c b b Rechenblatt a b b c Lese-/Schreibkopf endliche Kontrolle Turingmaschine Eine Turingmaschine

Mehr

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 7. Dezember 2006 Rekursiv vs. rekursiv

Mehr

Unentscheidbarkeit von Problemen mittels Turingmaschinen

Unentscheidbarkeit von Problemen mittels Turingmaschinen Unentscheidbarkeit von Problemen mittels Turingmaschinen Daniel Roßberg 0356177 Roland Schatz 0355521 2. Juni 2004 Zusammenfassung In dieser Arbeit befassen wir uns mit der Unentscheidbarkeit von Problemen

Mehr

1.5 Turing-Berechenbarkeit

1.5 Turing-Berechenbarkeit A.M. Turing (1937): Maschinenmodell zur exakten Beschreibung des Begriffs effektiv berechenbar Stift Mensch a c b b Rechenblatt a b b c Lese-/Schreibkopf endliche Kontrolle Turingmaschine Eine Turingmaschine

Mehr

Laufzeit einer DTM, Klasse DTIME

Laufzeit einer DTM, Klasse DTIME Laufzeit einer DTM, Klasse DTIME Definition Laufzeit einer DTM Sei M eine DTM mit Eingabealphabet Σ, die bei jeder Eingabe hält. Sei T M (w) die Anzahl der Rechenschritte d.h. Bewegungen des Lesekopfes

Mehr

Das Halteproblem für Turingmaschinen

Das Halteproblem für Turingmaschinen Das Halteproblem für Turingmaschinen Das Halteproblem für Turingmaschinen ist definiert als die Sprache H := { T w : T ist eine TM, die bei Eingabe w {0, 1} hält }. Behauptung: H {0, 1} ist nicht entscheidbar.

Mehr

2.4 Kontextsensitive und Typ 0-Sprachen

2.4 Kontextsensitive und Typ 0-Sprachen Definition 2.43 Eine Typ 1 Grammatik ist in Kuroda Normalform, falls alle Regeln eine der folgenden 4 Formen haben: Dabei: A, B, C, D V und a Σ. Satz 2.44 A a, A B, A BC, AB CD. Für jede Typ 1 Grammatik

Mehr

Turing-Maschine. Berechenbarkeit und Komplexität Turing-Maschinen. Turing-Maschine. Beispiel

Turing-Maschine. Berechenbarkeit und Komplexität Turing-Maschinen. Turing-Maschine. Beispiel Berechenbarkeit und Komplexität Turing-Maschinen Wolfgang Schreiner [email protected] Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.jku.at

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik 0 KIT 17.05.2010 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik nationales Forschungszentrum Vorlesung in am

Mehr

Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen

Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 15 + 16 vom 17.12.2012 und 20.12.2012 Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen

Mehr

2 Turingmaschinen 6. Eine nd. k-band-turingmaschine M zur Erkennung einer m-stelligen Sprache L (Σ ) m ist ein 8-Tupel

2 Turingmaschinen 6. Eine nd. k-band-turingmaschine M zur Erkennung einer m-stelligen Sprache L (Σ ) m ist ein 8-Tupel 2. Turingmaschinen Als Formulierung von Algorithmen benutzen wir hier Turingmaschinen. Von den vielen Varianten dieses Konzeptes (s. Vorlesung Einführung in die Theoretische Informatik ) greifen wir das

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen Malte Helmert Gabriele Röger Universität Basel 7. April 2014 Kontextsensitive und allgemeine Grammatiken Wiederholung: (kontextsensitive)

Mehr

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht Formale Systeme, Automaten, Prozesse Übersicht 2 2. Reguläre Ausdrücke 2.3 Nichtdeterministische endliche Automaten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.6 Minimale DFAs und der

Mehr

Präsenzübung Berechenbarkeit und Komplexität

Präsenzübung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 2013/14 Prof. Dr. Berthold Vöcking 28.01.2014 Kamal Al-Bawani Benjamin Ries Präsenzübung Berechenbarkeit und Komplexität Musterlösung Name:...................................

Mehr

Formale Sprachen und endliche Automaten

Formale Sprachen und endliche Automaten Formale Sprachen und endliche Automaten Formale Sprachen Definition: 1 (Alphabet) Ein Alphabet Σ ist eine endliche, nichtleere Menge von Zeichen oder Symbolen. Ein Wort über dem Alphabet Σ ist eine endliche

Mehr

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 26. November 2007 Semi-Entscheidbarkeit

Mehr

Theoretische Informatik 2

Theoretische Informatik 2 Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10 Die Chomsky-Hierarchie Definition Sei G = (V, Σ, P, S) eine Grammatik. 1 G heißt vom Typ 3 oder

Mehr

11.1 Kontextsensitive und allgemeine Grammatiken

11.1 Kontextsensitive und allgemeine Grammatiken Theorie der Informatik 7. April 2014 11. Kontextsensitive und Typ-0-Sprachen Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen 11.1 Kontextsensitive und allgemeine Grammatiken Malte Helmert

Mehr

Einführung in Berechenbarkeit, Komplexität und formale Sprachen

Einführung in Berechenbarkeit, Komplexität und formale Sprachen Johannes Blömer Skript zur Vorlesung Einführung in Berechenbarkeit, Komplexität und formale Sprachen Universität Paderborn Wintersemester 2011/12 Inhaltsverzeichnis 1 Einleitung 2 1.1 Ziele der Vorlesung...................................

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 18. Vorlesung 22.12.2006 1 Komplexitätstheorie - Zeitklassen Komplexitätsmaße Wiederholung: O,o,ω,Θ,Ω Laufzeitanalyse Die Komplexitätsklassen

Mehr

Theoretische Informatik I

Theoretische Informatik I heoretische Informatik I Einheit 2 Endliche Automaten & Reguläre Sprachen. Deterministische endliche Automaten 2. Nichtdeterministische Automaten 3. Reguläre Ausdrücke 4. Grammatiken 5. Eigenschaften regulärer

Mehr

Theorie der Informatik. Theorie der Informatik P und NP Polynomielle Reduktionen NP-Härte und NP-Vollständigkeit

Theorie der Informatik. Theorie der Informatik P und NP Polynomielle Reduktionen NP-Härte und NP-Vollständigkeit Theorie der Informatik 13. Mai 2015 20. P, NP und polynomielle Reduktionen Theorie der Informatik 20. P, NP und polynomielle Reduktionen 20.1 P und NP Malte Helmert Gabriele Röger 20.2 Polynomielle Reduktionen

Mehr

Halteproblem/Kodierung von Turing-Maschinen

Halteproblem/Kodierung von Turing-Maschinen Halteproblem/Kodierung von Turing-Maschinen Unser Ziel ist es nun zu zeigen, dass das sogenannte Halteproblem unentscheidbar ist. Halteproblem (informell) Eingabe: Turing-Maschine M mit Eingabe w. Frage:

Mehr

Turing-Maschinen: Ein abstrakes Maschinenmodell

Turing-Maschinen: Ein abstrakes Maschinenmodell Wann ist eine Funktion (über den natürlichen Zahlen) berechenbar? Intuitiv: Wenn es einen Algorithmus gibt, der sie berechnet! Was heißt, eine Elementaroperation ist maschinell ausführbar? Was verstehen

Mehr

FORMALE SYSTEME. 8. Vorlesung: Minimale Automaten. TU Dresden, 6. November Markus Krötzsch Lehrstuhl Wissensbasierte Systeme

FORMALE SYSTEME. 8. Vorlesung: Minimale Automaten. TU Dresden, 6. November Markus Krötzsch Lehrstuhl Wissensbasierte Systeme FORMALE SYSTEME 8. Vorlesung: Minimale Automaten Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 6. November 2017 Rückblick Markus Krötzsch, 6. November 2017 Formale Systeme Folie 2 von 26

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (II) 2.07.2015 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Übungsblatt 1. Lorenz Leutgeb. 30. März 2015

Übungsblatt 1. Lorenz Leutgeb. 30. März 2015 Übungsblatt Lorenz Leutgeb 30. März 205 Aufgabe. Annahmen ohne Einschränkungen: P Σ und P Γ. Per Definitionem der Reduktion: P P 2 f : Σ Γ wobei f total und berechenbar, genau so, dass: w Σ : w P f(w)

Mehr

FORMALE SYSTEME. Wiederholung. Beispiel: NFA. Wiederholung: NFA. 4. Vorlesung: Nichtdeterministische Endliche Automaten. TU Dresden, 19.

FORMALE SYSTEME. Wiederholung. Beispiel: NFA. Wiederholung: NFA. 4. Vorlesung: Nichtdeterministische Endliche Automaten. TU Dresden, 19. Wiederholung FORMALE SYSTEME 4. Vorlesung: Nichtdeterministische Endliche Automaten Markus Krötzsch Professur für Wissensbasierte Systeme Grammatiken können Sprachen beschreiben und sie grob in Typen unterteilen

Mehr

a b b a Vom DFA zur TM Formale Grundlagen der Informatik 1 Kapitel 9 Turing-Maschinen Der Lese-/Schreibkopf Bedeutung der TM

a b b a Vom DFA zur TM Formale Grundlagen der Informatik 1 Kapitel 9 Turing-Maschinen Der Lese-/Schreibkopf Bedeutung der TM Vom DFA zur TM Formale der Informatik 1 Kapitel 9 Frank Heitmann [email protected] a b b a z 0 a z 1 a z 2 b 2. Mai 2016 Wir wollen auf dem Band nach rechts und links gehen können und

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 16.11.2010 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Berechenbarkeit/Entscheidbarkeit

Berechenbarkeit/Entscheidbarkeit Berechenbarkeit/Entscheidbarkeit Frage: Ist eine algorithmische Problemstellung lösbar? was ist eine algorithmische Problemstellung? formale Sprachen benötigen einen Berechenbarkeitsbegriff Maschinenmodelle

Mehr

H MPKP. Beispiel für eine Rechnung. Reduktion H MPKP. Überführungsregeln

H MPKP. Beispiel für eine Rechnung. Reduktion H MPKP. Überführungsregeln H MPKP Konfiguration einer TM als String schreiben: Bandinschrift zwischen den Blank-Zeichen Links von der Kopfposition Zustand einfügen. Beispiel für eine Rechnung ##q ab##xq b##xyq 2 ##xyzq 3 ##xyq 4

Mehr

Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier

Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier Automaten und Formale Sprachen SoSe 2007 in Trier Henning Fernau Universität Trier [email protected] 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche

Mehr

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2017/2018

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2017/2018 2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2017/2018 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie

Mehr

Theoretische Informatik und Logik Übungsblatt 1 (2016S) Lösung

Theoretische Informatik und Logik Übungsblatt 1 (2016S) Lösung Theoretische Informatik und Logik Übungsblatt (26S) en Aufgabe. Sei L = {w#w r w {, } }. Geben Sie eine deterministische Turingmaschine M an, welche die Sprache L akzeptiert. Wählen Sie mindestens einen

Mehr

Ogden s Lemma: Der Beweis (1/5)

Ogden s Lemma: Der Beweis (1/5) Ogden s Lemma: Der Beweis (1/5) Wir betrachten zuerst die Rahmenbedingungen : Laut dem auf der vorhergehenden Folie zitierten Satz gibt es zur kontextfreien Sprache L eine Grammatik G = (Σ, V, S, P) in

Mehr

Rekursive Aufzählbarkeit Die Reduktion

Rekursive Aufzählbarkeit Die Reduktion Rekursive Aufzählbarkeit Die Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Berechenbarkeit. Script, Kapitel 2

Berechenbarkeit. Script, Kapitel 2 Berechenbarkeit Script, Kapitel 2 Intuitiver Berechenbarkeitsbegriff Turing-Berechenbarkeit WHILE-Berechenbarkeit Church sche These Entscheidungsprobleme Unentscheidbarkeit des Halteproblems für Turingmaschinen

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2011/12 Die Registermaschine (random access machine, RAM) 0 I 0 1 I 1 2 I 2 m I m Programm

Mehr

Automaten und formale Sprachen Klausurvorbereitung

Automaten und formale Sprachen Klausurvorbereitung Automaten und formale Sprachen Klausurvorbereitung Rami Swailem Mathematik Naturwissenschaften und Informatik FH-Gießen-Friedberg Inhaltsverzeichnis 1 Definitionen 2 2 Altklausur Jäger 2006 8 1 1 Definitionen

Mehr

Automaten und Formale Sprachen SoSe 2013 in Trier

Automaten und Formale Sprachen SoSe 2013 in Trier Automaten und Formale Sprachen SoSe 2013 in Trier Henning Fernau Universität Trier [email protected] 2. Juni 2013 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche

Mehr

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2014/2015

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2014/2015 2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2014/2015 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie

Mehr

Diskrete Mathematik II

Diskrete Mathematik II Diskrete Mathematik II Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Sommersemester 2011 DiMa II - Vorlesung 01-04.04.2011 1 / 252 Organisatorisches Vorlesung: Mo 12-14 in HZO 70, Di 09-10

Mehr

WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven

WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven WS06/07 Referentin: Katharina Blinova Formale Sprachen Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven 1. Allgemeines 2. Formale Sprachen 3. Formale Grammatiken 4. Chomsky-Hierarchie 5.

Mehr

Klassische Informationstheorie: Berechenbarkeit und Komplexität

Klassische Informationstheorie: Berechenbarkeit und Komplexität Klassische Informationstheorie: Berechenbarkeit und Komplexität Christian Slupina 1. Institut für Theoretische Physik Datum: 12.Juli 2011 Inhalt Gedankenexperiment: Die Turingmaschine Standard-Turingmaschinen

Mehr