Theoretische Informatik 1
|
|
|
- Johanna Brahms
- vor 9 Jahren
- Abrufe
Transkript
1 heoretische Informatik 1 eil 2 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung U Graz SS 2009
2 Übersicht 1 uring Maschinen uring-berechenbarkeit 2 Kostenmaße Komplexität 3 Mehrband-M Äquivalenz von k-dm und 1-DM 4
3 uring-berechenbarkeit Sequentielle Maschinen Schema eines sequentiellen Rechners 1 Eingabe Prozessor Ausgabe Programm Speicher Einfachste Variante: Eingabe, Ausgabe, Speicher auf einem einzigen Band. 1 afelbild aus: Reischuk, Komplexitätstheorie, Abb. 1.1
4 uring-berechenbarkeit uring Maschinen aus: Asteroth, Baier, heoretische Informatik
5 uring-berechenbarkeit uring Maschine Definition (Deterministische uring Maschine) Eine DM ist ein 7-upel = (Q, Σ, Γ, δ, q 0,, F ) Q, eine Menge von Zuständen Σ, das Eingabealphabet, / Σ Γ, das Bandalphabet, Σ Γ, Blanksymbol: Γ q 0 Q, der Anfangszustand F Q, eine Menge von Endzuständen δ : Q Γ Q Γ {L, R, N}, die Übergangsfunktion
6 uring-berechenbarkeit Konfiguration Definition (Konfiguration einer DM) Eine Konfiguration ist ein upel κ = (α, q, β) Γ Q Γ wobei q ist der aktuelle Zustand α ist das Wort links vom Kopf, β ist das Wort unter und rechts vom Kopf, und wird als α q β angeschrieben z.b: q , 100q 1 111, q
7 uring-berechenbarkeit Beispiel einfache 1-Band DMs 2 binärer Incrementierer Palindrom-Entscheider siehe JFLAP-Konstruktion. Beachte die Möglichkeit der Codierung einer endlichen Anzahl von endlichen großen Variablen in einer erweiterten Zustandsmenge der M. 3 2 Papadimitriou, Fig.2.2f. 3 Reischuk, echnik 1.2.1
8 uring-berechenbarkeit Eingabe Start: Die Eingabe steht auf dem sonst leeren Band. Der Kopf steht auf dem ersten Eingabezeichen. Definition (Startkonfiguration) Die Startkonfiguration einer DM mit Eingabe w lautet q 0 w, mit w Σ.
9 uring-berechenbarkeit Definition ( ) Die schrittweise Abarbeitung der DM wird durch die Übergangsfunktion δ (das Programm) festgelegt. Daraus leitet sich die wie folgt ab. δ(q, b) = (q, c, N) α a q b β α a q c β δ(q, b) = (q, c, R) α a q b β α a c q β δ(q, b) = (q, c, L) α a q b β α q a c β δ(q, b) = q F α a q b β ist die reflexive, transitive Hülle von, analog +, q, q Q, a, b, c Γ, α, β Γ i
10 uring-berechenbarkeit Die Berechnung eine DM erzeugt einen α 0 q 0 β 0 α 1 q 1 β 1 α 2 q 2 β 2 Die Berechnung ist endlich, gdw. α N, q N, β N : α 0 q 0 β 0 α N q N β N Eine in α N q N β N endende Berechnung heißt akzeptierend, gdw. q N F, sonst verwerfend.
11 uring-berechenbarkeit Ausgabe Sobald die M in einen Endzustand q F übergeht, besteht das Ergebnis v der akzeptierenden Berechnung der M in der Zeichenfolge von der aktuellen Kopfposition nach rechts bis exclusive dem ersten auftretenden. (q 0 w α q v β) (β = ɛ β = β )
12 uring-berechenbarkeit Die Funktion f (ransducer M) f : Σ (Γ \ { }) { v : (q0 w α q v β) (β = ɛ β = β ) q F f (w) = : sonst
13 uring-berechenbarkeit Die Funktion f (Entscheider M) f : Σ {JA, NEIN, } JA : q 0 w α q β q F f (w) = NEIN : q 0 w α q β q / F : sonst
14 uring-berechenbarkeit uring-berechnenbarkeit Definition (rekursive Funktionen) Eine (partielle) Funktion f : Σ Σ ist uring-berechenbar und heißt daher rekursiv, gdw. DM : f (w) = f (w) Definition (rekursiv aufzählbare Sprachen) Eine Sprache L Σ wird von einer DM akzeptiert, gdw. DM : w L f (w) = JA Definition (rekursive Sprachen) Eine Sprache L Σ wird von einer DM entschieden, gdw. DM : w L f (w) = JA w L f (w) = NEIN
15 Kostenmaße Komplexität Kostenmaße bei Eingabe w Definition (Zeitkosten bei Eingabe w) Die Funktion t (w) : Σ N { } gibt die Länge des (endlichen) es der M bei der Eingabe w an, oder, wenn dieser unendlich ist. Definition (Platzkosten bei Eingabe w) Die Funktion s (w) : Σ N { } gibt die Anzahl der Bandquadrate an, die während der Berechnug der M bei Eingabe von w besucht werden. Satz (Platzkosten sind beschränkt durch Zeitkosten) : w Σ : s (w) t (w)
16 Komplexität einer DM Kostenmaße Komplexität Definition (Zeitkomplexität) Die Zeitkomplexität einer DM (in Abhängigkeit der Länge der Eingabe) ist definiert als (n) = max w Σ : w n t (w) Definition (Platzkomplexität) Die Platzkomplexität einer DM (in Abhängigkeit der Länge der Eingabe) ist definiert als S (n) = max w Σ : w n s (w) Satz (Platzkomplexität ist kleiner als Zeitkomplexität) : n N : S (n) (n)
17 Mehrband-M Äquivalenz von k-dm und 1-DM Mehrband-M k Köpfe, also pro Schritt k Symbole veränderbar 1 Schritt = jeder Kopf bewegt sich Köpfe bewegen sich unanbhängig voneinander! Übergangsfunktion δ wird aufgeblasen k-band DM ist also schneller als 1-Band DM
18 Mehrband-M Äquivalenz von k-dm und 1-DM Äquivalenz k-dm und 1-DM
19 Mehrband-M Äquivalenz von k-dm und 1-DM Äquivalenz k-dm und 1-DM = (Q, Σ, Γ, δ, q 0,, F ) Das Bandalphabet wird erweitert, sodaß upel von 2k Symbolen und Markern in ein Bandquadrat passen. Wir bezeichnen die Elemente dieser upel als Spuren des Bandes: Γ = Γ (Γ { }) 2k, wobei / Γ Der Zustandraum Q wird vervielfacht um eine Variable c zur Beschreibung des Arbeitsmodus, je eine Variable b i für das aktuelle Zeichen jedes der k Bänder, sowie für jeden der k simulierten Bandköpfe die Richtung der durchzuführenden Bewegung: Q = Q {0, 1, 2, 3} (Γ {?}) k {L, R, N} k q Q : q = q, c, b 1,..., b k, x 1,... x k, q Q, b i Γ {?} Startzustand: q 0 = q 0, 0,?,...,?, N,..., N Eingabe wird in upels umcodiert, dann q = q 0, 1,?,...,?, N,..., N Skizziert wurde bisher die Abbildung einer Konfiguration der k-band Maschine in eine Konfiguration der 1-Band Maschine. Nun muß gezeigt werden, daß die 1-Band Maschine die korrekt implementiert, d.h. eine Abbildung einer beliebigen Konfiguration von in die Abbildung der korrekten Nachfolgekonfiguration umwandelt.
20 Mehrband-M Äquivalenz von k-dm und 1-DM Äquivalenz k-dm und 1-DM 1 Schritt der k-dm wird von simuliert wenn δ folgendermaßen konstruiert wird: startet in q = q, c = 1,?,...,?, N,..., N wenn c = 1: und auf einer 2i-ten Spur des Bandes steht ein : übertrage das Symbol der (2i 1)-ten Spur in die Zustandsvariable b i. q, 1,...,?,..., N,..., N q, 1,..., b i,..., N,..., N wenn c = 1 und kein auf einer Spur: bewege Kopf nach rechts. wenn c = 1 und wir stehen auf (am rechten Ende angekommen): Codiere die ursprüngliche Übergangsfunktion δ folgendermaßen in δ : Jedes δ(q, b 1,..., b k ) = (p, b 1, x 1,..., b k, x k ) wird zu δ (< q, 1, b 1,..., b k, N,... N >, ) = (< p, 2, b 1,..., b k, x 1,..., x k >,, R) wenn c = 2 und auf der 2i-ten Spur des Bandes steht * und b i?: übertrage das Symbol der Zustandvariable b i auf die (2i 1)-te Spur und setzte auf die 2i-te Spur, Setze Zustandvariable b i auf?. Bewege Bandkopf entsprechend der Zustandsvariable x i. wenn c = 2 und i : x i N b i =?: Setze auf die (2i)-te Spur. Setze Zustandsvariable x i auf N und bewege Bandkopf entgegengesetzt zu x i. wenn c = 2 und wir stehen auf und Zustandsvariable q F : (am linken Ende angekommen): setze c = 3 wenn c = 2 und wir stehen auf und Zustandsvariable q F: setze c = 1, bewege Kopf nach rechts. wenn c = 3: Ein weiterer Banddurchlauf codiert das Band so um, daß nur das Ausgabeband übrigbleibt.
21 Mehrband-M Äquivalenz von k-dm und 1-DM Äquivalenz k-dm und 1-DM Satz (Kosten der Simulation) Zeitkomplexität: (n) = f (n) = (n) = O((f (n)) 2 ) Platzkomplexität: S (n) = g(n) = S (n) = g(n) Die Simulation bedingt einen quadratischen Zeitverlust. Dieses Ergebnis ist bewiesenermaßen nicht verbesserbar.
22 Beispiele uring Maschinen Mehrband-M Äquivalenz von k-dm und 1-DM 2 Band Addierer: siehe JFLAP-Konstruktion Mehrdimensionale M: siehe Langtons Ant
23 Problemarten Konstruktionsprobleme (Optimierungsprobleme) Zu einer Eingabe x (der Probleminstanz) soll die optimale Lösung, soferne sie existiert, bestimmt werden. Funktionsberechnungen Eingabe x, berechne f (x). Lösung ist eindeutig. Entscheidungsprobleme Eingabe x, Ausgabe JA/NEIN bzw 1/0 Größte Bedeutung für Komplexitätstheorie haben Entscheidungsprobleme. Anstelle von Konstruktionsproblemen werden die zugehörigen Entscheidungsprobleme betrachtet. Beachte: Eingabecodierung ist eil der Problemdefinition!!
24 Sprachprobleme (=Entscheidungsprobleme) geg: Sprache L Σ und ein Wort w Σ ges: Ist w L characteristische Funktion: f L : Σ {0, 1} : f L (w) = { 1 w L 0 w L Sprache einer Entscheidungsfunktion: L = {w Σ f L (w) = 1} Eine M entscheidet L, wenn f = f L. hält immer nach endlich vielen Schritten. (L heißt rekursiv). Eine M akzeptiert L, wenn f L (w) = 1 f (w) = 1. hält zumindest dann, wenn f L (w) = 1. (L heißt rekursiv aufzählbar)
25 Sprachprobleme vs. Konstruktionsprobleme Aus mehreren Ergebnissen eines Sprachproblems kann effizient auf die Lösung des zugrundeliegenden Konstruktionsproblems geschlossen werden. geg: ungerichteter Graph G = (V, E) und k 1 ges 1: Enthält G eine Clique der Größe k? ges 2: Knotenmenge der größten Clique aus G. M 1 löst 1. Problem. Wie kann unter mithilfe von 1 das 2. Problem effizient gelöst werden? Lösungsidee: Knoten aus G entsprechend den Entscheidungen von schrittweise entfernen. Maximal soviele Aufrufe von 1 wie Knoten, also O(poly(n)).
Theoretische Informatik 1
heoretische Informatik 1 uringmaschinen David Kappel Institut für Grundlagen der Informationsverarbeitung echnische Universität Graz 11.03.2016 Übersicht uring Maschinen Algorithmusbegriff konkretisiert
Theoretische Informatik 1
Theoretische Informatik 1 Teil 4 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Turingmaschinen Mehrband-TM Kostenmaße Komplexität 2 Mehrband-TM Kostenmaße
Theoretische Informatik 1
Theoretische Informatik 1 Teil 5 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Problemklassen 2 NTM Nichtdeterministische Algorithmen 3 Problemarten Konstruktionsprobleme
Theoretische Informatik 1
Theoretische Informatik 1 Die Komplexitätsklasse P David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Äquivalenz von RM und TM Äquivalenz, Sätze Simulation DTM
Rekursiv aufzählbare Sprachen
Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben
Turing Maschine. Thorsten Timmer. SS 2005 Proseminar Beschreibungskomplexität bei Prof. D. Wotschke. Turing Maschine SS 2005 p.
Thorsten Timmer SS 2005 Proseminar Beschreibungskomplexität bei Prof. D. Wotschke Turing Maschine SS 2005 p. 1/35 Inhalt Einführung Formale Definition Berechenbare Sprachen und Funktionen Berechnung ganzzahliger
Theoretische Informatik 1
Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die
11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P
11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie
Übersicht. 3 3 Kontextfreie Sprachen
Formale Systeme, Automaten, Prozesse Übersicht 3 3.1 Kontextfreie Sprachen und Grammatiken 3.2 Ableitungsbäume 3.3 Die pre -Operation 3.4 Entscheidungsprobleme für CFGs 3.5 Normalformen für CFGs 3.6 Chomsky-Normalform
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 18. Januar 2018 INSTITUT FÜR THEORETISCHE 0 18.01.2018 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität
Theoretische Informatik II
Theoretische Informatik II Einheit 4.2 Modelle für Typ-0 & Typ-1 Sprachen 1. Nichtdeterministische Turingmaschinen 2. Äquivalenz zu Typ-0 Sprachen 3. Linear beschränkte Automaten und Typ-1 Sprachen Maschinenmodelle
Typ-0-Sprachen und Turingmaschinen
Typ-0-Sprachen und Turingmaschinen Jean Vancoppenolle Universität Potsdam Einführung in formale Sprachen und Automaten Dr. Thomas Hanneforth (Präsentation aus Foliensätzen von Dr. Thomas Hanneforth und
Weitere universelle Berechnungsmodelle
Weitere universelle Berechnungsmodelle Mehrband Turingmaschine Nichtdeterministische Turingmaschine RAM-Modell Vektoradditionssysteme λ-kalkül µ-rekursive Funktionen 1 Varianten der dtm Mehrkopf dtm Kontrolle
Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung
Informatik III Christian Schindelhauer Wintersemester 2006/07 13. Vorlesung 07.12.2006 1 Überblick: Die Church- Turing-These Turing-Maschinen 1-Band Turing-Maschine Mehrband-Turing-Maschinen Nichtdeterministische
Kontextsensitive und Typ 0 Sprachen Slide 2. Die Turingmaschine
Kontextsensitive und Typ 0 Sprachen Slide 2 Die Turingmaschine DTM = Deterministische Turingmaschine NTM = Nichtdeterministische Turingmaschine TM = DTM oder NTM Intuitiv gilt: DTM = (DFA + dynamischer
Berechenbarkeit. Script, Kapitel 2
Berechenbarkeit Script, Kapitel 2 Intuitiver Berechenbarkeitsbegriff Turing-Berechenbarkeit WHILE-Berechenbarkeit Church sche These Entscheidungsprobleme Unentscheidbarkeit des Halteproblems für Turingmaschinen
Semi-Entscheidbarkeit und rekursive Aufzählbarkeit
Semi-Entscheidbarkeit und rekursive Aufzählbarkeit Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 9. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung
5.2 Endliche Automaten
114 5.2 Endliche Automaten Endliche Automaten sind Turingmaschinen, die nur endlichen Speicher besitzen. Wie wir bereits im Zusammenhang mit Turingmaschinen gesehen haben, kann endlicher Speicher durch
Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07. Nichtdeterministische Turingmaschinen und NP
Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07 Vortrag am 17.11.2006 Nichtdeterministische Turingmaschinen und NP Yves Radunz Inhaltsverzeichnis 1 Wiederholung 3 1.1 Allgemeines........................................
Turing Maschinen II Wiederholung
Organisatorisches VL-03: Turing Maschinen II (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Nächste Vorlesung: Mittwoch, Oktober 25, 14:15 15:45 Uhr, Roter Hörsaal Webseite: http://algo.rwth-aachen.de/lehre/ws1718/buk.php
VL-03: Turing Maschinen II. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger
VL-03: Turing Maschinen II (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger WS 2017, RWTH BuK/WS 2017 VL-03: Turing Maschinen II 1/27 Organisatorisches Nächste Vorlesung: Mittwoch, Oktober
1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie
1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 15 Ziele vgl. AFS: Berechnungsmodelle für Typ-0- und Typ-1-Sprachen (Nicht-)Abschlußeigenschaften
Mehrband-Turingmaschinen und die universelle Turingmaschine
Mehrband-Turingmaschinen und die universelle Turingmaschine Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 15 Turingmaschinen mit mehreren Bändern k-band
Berechenbarkeit und Komplexität: Erläuterungen zur Turingmaschine
Berechenbarkeit und Komplexität: Erläuterungen zur Turingmaschine Prof. Dr. Berthold Vöcking Lehrstuhl Informatik Algorithmen und Komplexität 24. Oktober 26 Programmierung der TM am Beispiel Beispiel:
ALP I Turing-Maschine
ALP I Turing-Maschine Teil I WS 2012/2013 Äquivalenz vieler Berechnungsmodelle Alonzo Church λ-kalkül Kombinatorische Logik Alan Turing Turing-Maschine Mathematische Präzisierung Effektiv Berechenbare
2.6 Verdeutlichung verwendeter Begriffe
2.6 Verdeutlichung verwendeter Begriffe endlich/finit: die Mengen der Zustände und der Ein- bzw. Ausgabezeichen sind endlich synchron: die Ausgabezeichen erscheinen synchron mit dem Einlauf der Eingabezeichen
Theoretische Informatik 1
Theoretische Informatik 1 Registermaschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Registermaschinen Algorithmusbegriff konkretisiert formale Beschreibung
Turingmaschinen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen
Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: und effiziente Algorithmen Wintersemester 2011/12 Schematische Darstellung einer Turing-Maschine: Kopf kann sich nach links und
Informatik III - WS07/08
Informatik III - WS07/08 Kapitel 5 1 Informatik III - WS07/08 Prof. Dr. Dorothea Wagner [email protected] Kapitel 5 : Grammatiken und die Chomsky-Hierarchie Informatik III - WS07/08 Kapitel 5 2 Definition
Rucksackproblem und Verifizierbarkeit
Rucksackproblem und Verifizierbarkeit Gegeben: n Gegenstände mit Gewichten G={g 1,g 2,,g n } und Werten W={w 1,w 2,,w n } sowie zulässiges Gesamtgewicht g. Gesucht: Teilmenge S {1,,n} mit i i S unter der
Theoretische Informatik 1
Theoretische Informatik 1 Teil 2 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Codierung, Gödelisierung Paare, Tupel, Listen Überabzählbarkeit 2 Ist universell?
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 20. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 20.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der
Die Komplexitätsklassen P und NP
Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und
Deterministische Turing-Maschinen
Deterministische Turing-Maschinen Um 900 präsentierte David Hilbert auf einem internationalen Mathematikerkongress eine Sammlung offener Fragen, deren Beantwortung er von zentraler Bedeutung für die weitere
4.2 Varianten der Turingmaschine. 4 Turingmaschinen
4 Turingmaschinen Alles was intuitiv berechenbar ist, d.h. alles, was von einem Menschen berechnet werden kann, das kann auch von einer Turingmaschine berechnet werden. Ebenso ist alles, was eine andere
Einfache Turing Maschine. Formale Spezifikation einer einfachen Turing Maschine. M = (Σ,Γ,#,Q,s,F, ) Σ
Einfache Turing Maschine Band Formale Spezifikation einer einfachen Turing Maschine Lese-/ Schreibkopf Endliche Kontrolle Rechenschrittregeln: (endlich viele) Startkonfiguration: x Σ * auf Band L/S-Kopf
1.5 Turing-Berechenbarkeit
A.M. Turing (1937): Maschinenmodell zur exakten Beschreibung des Begriffs effektiv berechenbar Stift Mensch a c b b Rechenblatt a b b c Lese-/Schreibkopf endliche Kontrolle Turingmaschine Eine Turingmaschine
Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion
Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 7. Dezember 2006 Rekursiv vs. rekursiv
Unentscheidbarkeit von Problemen mittels Turingmaschinen
Unentscheidbarkeit von Problemen mittels Turingmaschinen Daniel Roßberg 0356177 Roland Schatz 0355521 2. Juni 2004 Zusammenfassung In dieser Arbeit befassen wir uns mit der Unentscheidbarkeit von Problemen
1.5 Turing-Berechenbarkeit
A.M. Turing (1937): Maschinenmodell zur exakten Beschreibung des Begriffs effektiv berechenbar Stift Mensch a c b b Rechenblatt a b b c Lese-/Schreibkopf endliche Kontrolle Turingmaschine Eine Turingmaschine
Laufzeit einer DTM, Klasse DTIME
Laufzeit einer DTM, Klasse DTIME Definition Laufzeit einer DTM Sei M eine DTM mit Eingabealphabet Σ, die bei jeder Eingabe hält. Sei T M (w) die Anzahl der Rechenschritte d.h. Bewegungen des Lesekopfes
Das Halteproblem für Turingmaschinen
Das Halteproblem für Turingmaschinen Das Halteproblem für Turingmaschinen ist definiert als die Sprache H := { T w : T ist eine TM, die bei Eingabe w {0, 1} hält }. Behauptung: H {0, 1} ist nicht entscheidbar.
2.4 Kontextsensitive und Typ 0-Sprachen
Definition 2.43 Eine Typ 1 Grammatik ist in Kuroda Normalform, falls alle Regeln eine der folgenden 4 Formen haben: Dabei: A, B, C, D V und a Σ. Satz 2.44 A a, A B, A BC, AB CD. Für jede Typ 1 Grammatik
Turing-Maschine. Berechenbarkeit und Komplexität Turing-Maschinen. Turing-Maschine. Beispiel
Berechenbarkeit und Komplexität Turing-Maschinen Wolfgang Schreiner [email protected] Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.jku.at
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik 0 KIT 17.05.2010 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik nationales Forschungszentrum Vorlesung in am
Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen
Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 15 + 16 vom 17.12.2012 und 20.12.2012 Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen
2 Turingmaschinen 6. Eine nd. k-band-turingmaschine M zur Erkennung einer m-stelligen Sprache L (Σ ) m ist ein 8-Tupel
2. Turingmaschinen Als Formulierung von Algorithmen benutzen wir hier Turingmaschinen. Von den vielen Varianten dieses Konzeptes (s. Vorlesung Einführung in die Theoretische Informatik ) greifen wir das
Theorie der Informatik
Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen Malte Helmert Gabriele Röger Universität Basel 7. April 2014 Kontextsensitive und allgemeine Grammatiken Wiederholung: (kontextsensitive)
2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht
Formale Systeme, Automaten, Prozesse Übersicht 2 2. Reguläre Ausdrücke 2.3 Nichtdeterministische endliche Automaten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.6 Minimale DFAs und der
Präsenzübung Berechenbarkeit und Komplexität
Lehrstuhl für Informatik 1 WS 2013/14 Prof. Dr. Berthold Vöcking 28.01.2014 Kamal Al-Bawani Benjamin Ries Präsenzübung Berechenbarkeit und Komplexität Musterlösung Name:...................................
Formale Sprachen und endliche Automaten
Formale Sprachen und endliche Automaten Formale Sprachen Definition: 1 (Alphabet) Ein Alphabet Σ ist eine endliche, nichtleere Menge von Zeichen oder Symbolen. Ein Wort über dem Alphabet Σ ist eine endliche
Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion
Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 26. November 2007 Semi-Entscheidbarkeit
Theoretische Informatik 2
Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10 Die Chomsky-Hierarchie Definition Sei G = (V, Σ, P, S) eine Grammatik. 1 G heißt vom Typ 3 oder
11.1 Kontextsensitive und allgemeine Grammatiken
Theorie der Informatik 7. April 2014 11. Kontextsensitive und Typ-0-Sprachen Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen 11.1 Kontextsensitive und allgemeine Grammatiken Malte Helmert
Einführung in Berechenbarkeit, Komplexität und formale Sprachen
Johannes Blömer Skript zur Vorlesung Einführung in Berechenbarkeit, Komplexität und formale Sprachen Universität Paderborn Wintersemester 2011/12 Inhaltsverzeichnis 1 Einleitung 2 1.1 Ziele der Vorlesung...................................
Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung
Informatik III Christian Schindelhauer Wintersemester 2006/07 18. Vorlesung 22.12.2006 1 Komplexitätstheorie - Zeitklassen Komplexitätsmaße Wiederholung: O,o,ω,Θ,Ω Laufzeitanalyse Die Komplexitätsklassen
Theoretische Informatik I
heoretische Informatik I Einheit 2 Endliche Automaten & Reguläre Sprachen. Deterministische endliche Automaten 2. Nichtdeterministische Automaten 3. Reguläre Ausdrücke 4. Grammatiken 5. Eigenschaften regulärer
Theorie der Informatik. Theorie der Informatik P und NP Polynomielle Reduktionen NP-Härte und NP-Vollständigkeit
Theorie der Informatik 13. Mai 2015 20. P, NP und polynomielle Reduktionen Theorie der Informatik 20. P, NP und polynomielle Reduktionen 20.1 P und NP Malte Helmert Gabriele Röger 20.2 Polynomielle Reduktionen
Halteproblem/Kodierung von Turing-Maschinen
Halteproblem/Kodierung von Turing-Maschinen Unser Ziel ist es nun zu zeigen, dass das sogenannte Halteproblem unentscheidbar ist. Halteproblem (informell) Eingabe: Turing-Maschine M mit Eingabe w. Frage:
Turing-Maschinen: Ein abstrakes Maschinenmodell
Wann ist eine Funktion (über den natürlichen Zahlen) berechenbar? Intuitiv: Wenn es einen Algorithmus gibt, der sie berechnet! Was heißt, eine Elementaroperation ist maschinell ausführbar? Was verstehen
FORMALE SYSTEME. 8. Vorlesung: Minimale Automaten. TU Dresden, 6. November Markus Krötzsch Lehrstuhl Wissensbasierte Systeme
FORMALE SYSTEME 8. Vorlesung: Minimale Automaten Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 6. November 2017 Rückblick Markus Krötzsch, 6. November 2017 Formale Systeme Folie 2 von 26
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (II) 2.07.2015 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Übersicht 1. Motivation 2. Terminologie
Übungsblatt 1. Lorenz Leutgeb. 30. März 2015
Übungsblatt Lorenz Leutgeb 30. März 205 Aufgabe. Annahmen ohne Einschränkungen: P Σ und P Γ. Per Definitionem der Reduktion: P P 2 f : Σ Γ wobei f total und berechenbar, genau so, dass: w Σ : w P f(w)
FORMALE SYSTEME. Wiederholung. Beispiel: NFA. Wiederholung: NFA. 4. Vorlesung: Nichtdeterministische Endliche Automaten. TU Dresden, 19.
Wiederholung FORMALE SYSTEME 4. Vorlesung: Nichtdeterministische Endliche Automaten Markus Krötzsch Professur für Wissensbasierte Systeme Grammatiken können Sprachen beschreiben und sie grob in Typen unterteilen
a b b a Vom DFA zur TM Formale Grundlagen der Informatik 1 Kapitel 9 Turing-Maschinen Der Lese-/Schreibkopf Bedeutung der TM
Vom DFA zur TM Formale der Informatik 1 Kapitel 9 Frank Heitmann [email protected] a b b a z 0 a z 1 a z 2 b 2. Mai 2016 Wir wollen auf dem Band nach rechts und links gehen können und
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 16.11.2010 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
Berechenbarkeit/Entscheidbarkeit
Berechenbarkeit/Entscheidbarkeit Frage: Ist eine algorithmische Problemstellung lösbar? was ist eine algorithmische Problemstellung? formale Sprachen benötigen einen Berechenbarkeitsbegriff Maschinenmodelle
H MPKP. Beispiel für eine Rechnung. Reduktion H MPKP. Überführungsregeln
H MPKP Konfiguration einer TM als String schreiben: Bandinschrift zwischen den Blank-Zeichen Links von der Kopfposition Zustand einfügen. Beispiel für eine Rechnung ##q ab##xq b##xyq 2 ##xyzq 3 ##xyq 4
Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier
Automaten und Formale Sprachen SoSe 2007 in Trier Henning Fernau Universität Trier [email protected] 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche
2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2017/2018
2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2017/2018 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie
Theoretische Informatik und Logik Übungsblatt 1 (2016S) Lösung
Theoretische Informatik und Logik Übungsblatt (26S) en Aufgabe. Sei L = {w#w r w {, } }. Geben Sie eine deterministische Turingmaschine M an, welche die Sprache L akzeptiert. Wählen Sie mindestens einen
Ogden s Lemma: Der Beweis (1/5)
Ogden s Lemma: Der Beweis (1/5) Wir betrachten zuerst die Rahmenbedingungen : Laut dem auf der vorhergehenden Folie zitierten Satz gibt es zur kontextfreien Sprache L eine Grammatik G = (Σ, V, S, P) in
Rekursive Aufzählbarkeit Die Reduktion
Rekursive Aufzählbarkeit Die Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit
Berechenbarkeit. Script, Kapitel 2
Berechenbarkeit Script, Kapitel 2 Intuitiver Berechenbarkeitsbegriff Turing-Berechenbarkeit WHILE-Berechenbarkeit Church sche These Entscheidungsprobleme Unentscheidbarkeit des Halteproblems für Turingmaschinen
Einführung in die Theoretische Informatik
Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2011/12 Die Registermaschine (random access machine, RAM) 0 I 0 1 I 1 2 I 2 m I m Programm
Automaten und formale Sprachen Klausurvorbereitung
Automaten und formale Sprachen Klausurvorbereitung Rami Swailem Mathematik Naturwissenschaften und Informatik FH-Gießen-Friedberg Inhaltsverzeichnis 1 Definitionen 2 2 Altklausur Jäger 2006 8 1 1 Definitionen
Automaten und Formale Sprachen SoSe 2013 in Trier
Automaten und Formale Sprachen SoSe 2013 in Trier Henning Fernau Universität Trier [email protected] 2. Juni 2013 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche
2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2014/2015
2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2014/2015 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie
Diskrete Mathematik II
Diskrete Mathematik II Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Sommersemester 2011 DiMa II - Vorlesung 01-04.04.2011 1 / 252 Organisatorisches Vorlesung: Mo 12-14 in HZO 70, Di 09-10
WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven
WS06/07 Referentin: Katharina Blinova Formale Sprachen Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven 1. Allgemeines 2. Formale Sprachen 3. Formale Grammatiken 4. Chomsky-Hierarchie 5.
Klassische Informationstheorie: Berechenbarkeit und Komplexität
Klassische Informationstheorie: Berechenbarkeit und Komplexität Christian Slupina 1. Institut für Theoretische Physik Datum: 12.Juli 2011 Inhalt Gedankenexperiment: Die Turingmaschine Standard-Turingmaschinen
