Theoretische Informatik 1
|
|
|
- Paulina Kneller
- vor 9 Jahren
- Abrufe
Transkript
1 Theoretische Informatik 1 Teil 5 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007
2 Übersicht 1 Problemklassen 2 NTM Nichtdeterministische Algorithmen 3
3 Problemarten Konstruktionsprobleme Zu einer Eingabe x (der Probleminstanz) soll die optimale Lösung, soferne sie existiert, bestimmt werden. Funktionsberechnungen Eingabe x, berechne f (x). Lösung ist eindeutig. Entscheidungsprobleme Eingabe x, Ausgabe JA/NEIN bzw 1/0 Größte Bedeutung für Komplexitätstheorie haben Entscheidungsprobleme. Anstelle von Konstruktionsproblemen werden die zugehörigen Entscheidungsprobleme betrachtet. Beachte: Eingabecodierung ist Teil der Problemdefinition!!
4 Sprachprobleme (=Entscheidungsprobleme) geg: Sprache L Σ und ein Wort w Σ ges: Ist w L characteristische Funktion: f L : Σ {0, 1} : f L (w) = { 1 w L 0 w L Sprache einer Entscheidungsfunktion: L = {w Σ f L (w) = 1}
5 Sprachprobleme vs. Konstruktionsprobleme Aus mehreren Ergebnissen eines Sprachproblems kann effizient auf die Lösung des zugrundeliegenden Konstruktionsproblems geschlossen werden. geg: ungerichteter Graph G = (V, E) (und k 1) ges 1: Enthält G eine Clique der Größe k? ges 2: Knotenmenge der größten Clique aus G. geg: TM T löst 1. Problem. Wie kann unter mithilfe von T das 2. Problem effizient gelöst werden? Lösungsidee: Kanten aus G entsprechend den Entscheidungen von T schrittweise entfernen.
6 NTM Nichtdeterministische Algorithmen Erweiterung des Rechnermodells: Definition (Nichtdeterministische k-band-tm) Eine k-band-ntm ist ein Tuplel T = (Q, Σ, Γ, δ, q 0,, F ) dessen Komponenten wie für eine k-band-dtm definiert sind, mit Ausnahme von δ : Q Γ 2 Q Γ {L,R,N}. δ(q, b) gibt also nicht eindeutig einen nächsten Schritt an, sondern repräsentiert die Menge der nunmehr möglichen nächsten Schritte, aus der durch Intuition (Orakel, Zeuge) ein Element ausgewählt wird. Konfigurationsrelation T wird erweitert. Konfigurationenfolge wird zu Berechnungsbaum.
7 NTM Nichtdeterministische Algorithmen Berechnungsbaum NTM Die Zeitkomplexität T T beziehen sich jetzt auf die maximale Tiefe des Berechnungsbaumes.
8 NTM Nichtdeterministische Algorithmen Bedeutung des Die algorithmische Leistung der NTM besteht darin, am Ende des Weges zu akzeptieren oder zu verwerfen. Berechnungsstärke bleibt unverändert Zeitkomplexität sinkt wesentlich (exponentiell?) Platzkomplexität sinkt unwesentlich NTM werden normalerweise nicht für Konstruktionsprobleme oder Funktionsberechnungen verwendet, sondern ausschließlich für Entscheidungsprobleme (Sprachprobleme). Vorteil: Wichtig ist nur, ob es einen Weg zu einer akzeptierenden Konfiguration gibt, Es muß also der Berechnungsbaum durchsucht werden.
9 NTM Nichtdeterministische Algorithmen in Algorithmen Guess & Check Rate eine Lösung des zugrunde liegenden Konstruktionsproblems und überprüfe, ob diese Lösung die Bedingungen des Entscheidungsproblems erfüllt. Beispiel TSP (Rundreise mit Gewicht K ): Rate nichtdeterministisch eine Kantenfolge e 1,..., e n Prüfe für jede Kante e i, ob e i G, sonst Antworte NEIN Summiere w(e i ) für alle Kanten der Folge Prüfe ob Summe K, sonst Antworte NEIN Antworte JA
10 Die Komplexitätstheorie betrachtet nur Probleme, die in endlicher Zeit berechnet werden können. Aus der Struktur der Kategorisierung der Probleme in eine Vielzahl von verschiedenen, teilweise überlappenden Mengen, erhofft man sich Erkenntnisse über die prinzipielle Natur der Komplexität, um daraus wiederum effizientere Algorithmen zu gewinnen oder Beweise über prinzipielle Schranken der Effizienz. Die Kategorisierung von Problemen erfolgt durch sog. Komplexitätsklassen, das sind Mengen von Problemen (Sprachen), die jeweils gemeinsame Komplexitätseigenschaften (Zeitbedarf, Platzbedarf) haben.
11 Deterministische Komlexitätsklassen Eingabelänge n, Zeitschranke t und Platzschranke s : N N Funktionenklassen: f : Σ Σ f FDTIME(t) DTM T : f T = f und T T (n) = O(t(n)) f FDSPACE(t) DTM T : f T = f und S T (n) = O(s(n)) Sprachklassen: A Σ A DTIME(t) DTM T : f T = f A und T T (n) = O(t(n)) A DSPACE(s) DTM T : f T = f A und T T (n) = O(s(n))
12 Häufig gebrauchte Komplexitätsklassen: L = DSPACE(log n) PSPACE = DSPACE(n k ) P = k N E = c N k N DTIME(n k ) DTIME(2 cn ) EXP = DTIME(2 nk ) FP = k N k N FDTIME(n k ) FL = FDSPACE(log n)
13 offline-turingmaschinen Zur Analyse von S T (logn): separates Eingabeband, nur lesen separates Ausgabeband, nur sequentiell schreiben Es wird nur der auf den Arbeitsbändern verbrauchte Platz berücksichtig.
14 Nichtdeterministische Komlexitätsklassen Eingabelänge n, Zeitschranke t und Platzschranke s : N N Sprachklassen: A Σ A NTIME(t) NTM T : f T = f A und T T (n) = O(t(n)) A NSPACE(s) NTM T : f T = f A und T T (n) = O(s(n))
15 Häufig gebrauchte Komplexitätsklassen: NL = NSPACE(log n) NPSPACE = NSPACE(n k ) NP = k N NE = c N k N NTIME(n k ) NTIME(2 cn ) NEXP = NTIME(2 nk ) k N
16 der grundlegendsten Klassen DTM ist Spezialfall der NTM P NP, E NE, EXP NEXP L NL, PSPACE NPSPACE Erweiterung der Ressourcen: P E EXP NP NE NEXP L PSPACE Platzkomplxität Zeitkomplexität P PSPACE, NP NPSPACE
17 REG sind die regulären Sprachen (EA). REG DSPACE(1) REG DTIME(n) CFL sind die Sprachen der kontextfreien Grammatiken. CFL P
Theoretische Informatik 1
Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die
Komplexität und Komplexitätsklassen
Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 21 vom 21.01.2013 Komplexität und Komplexitätsklassen Die meisten Probleme mit denen wir zu tun haben sind entscheidbar.
Theoretische Informatik 1
heoretische Informatik 1 eil 2 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung U Graz SS 2009 Übersicht 1 uring Maschinen uring-berechenbarkeit 2 Kostenmaße Komplexität 3 Mehrband-M
Theoretische Informatik 2
Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10 Zeitkomplexität von Turingmaschinen Die Laufzeit einer NTM M bei Eingabe x ist die maximale Anzahl
Theoretische Informatik 1
Theoretische Informatik 1 Die Komplexitätsklasse P David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Äquivalenz von RM und TM Äquivalenz, Sätze Simulation DTM
Willkommen zur Vorlesung Komplexitätstheorie
Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V5, 21.11.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar
19. Nichtdeterministische Turingmaschinen und ihre Komplexität
19. Nichtdeterministische Turingmaschinen und ihre Komplexität Bei einem Turingmaschinenprogramm P aus bedingten Anweisungen wird durch die Forderung i a b B j i a b B j i a sichergestellt, dass zu jeder
Herzlich willkommen!!!
Komplexitätstheorie Sommersemester 2013 Prof. Dr. Georg Schnitger AG Theoretische Informatik Johann Wolfgang Goethe-Universität Frankfurt am Main Herzlich willkommen!!! Einführung 1 / 30 Kapitel 1: Einführung
Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I
Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:
Die Komplexitätsklassen P und NP
Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und
Rucksackproblem und Verifizierbarkeit
Rucksackproblem und Verifizierbarkeit Gegeben: n Gegenstände mit Gewichten G={g 1,g 2,,g n } und Werten W={w 1,w 2,,w n } sowie zulässiges Gesamtgewicht g. Gesucht: Teilmenge S {1,,n} mit i i S unter der
Laufzeit einer DTM, Klasse DTIME
Laufzeit einer DTM, Klasse DTIME Definition Laufzeit einer DTM Sei M eine DTM mit Eingabealphabet Σ, die bei jeder Eingabe hält. Sei T M (w) die Anzahl der Rechenschritte d.h. Bewegungen des Lesekopfes
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 20. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 20.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der
Lösungen zur Ergänzung 12
Theoretische Informati II SS 018 Carlos Camino Lösungen zur Ergänzung 1 Hinweise: In der Literatur sind zwei verschiedene Definitionen der natürlichen Zahlen gängig: N = {0, 1,,...} und N = {1,, 3,...}.
Polynomielle Verifizierer und NP
Polynomielle Verifizierer und NP Definition Polynomieller Verifizierer Sei L Σ eine Sprache. Eine DTM V heißt Verifizierer für L, falls V für alle Eingaben w Σ hält und folgendes gilt: w L c Σ : V akzeptiert
Speicherplatz-Komplexität 1 / 30
Speicherplatz-Komplexität 1 / 30 Speicherplatz-Komplexität Warum sollte uns die Ressource Speicherplatz interessieren? Um die Komplexität der Berechnung von Gewinnstrategien für viele nicht-triviale 2-Personen
Satz von Hennie und Stearns
Satz von Hennie und Stearns Auch für Zeitklassen wäre es für viele Anwendungen praktisch, eine Form der Bandreduktion verwenden zu können. Ein naiver Zugang (mit Spuren) liefert die Beziehung DTIME(f )
abgeschlossen unter,,,, R,
Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen
Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung
Informatik III Christian Schindelhauer Wintersemester 2006/07 18. Vorlesung 22.12.2006 1 Komplexitätstheorie - Zeitklassen Komplexitätsmaße Wiederholung: O,o,ω,Θ,Ω Laufzeitanalyse Die Komplexitätsklassen
Proseminar Theoretische Informatik. Die Klasse NP. von Marlina Spanel
Proseminar Theoretische Informatik Die Klasse NP von Marlina Spanel 29.11.2011 1 Gliederung Gliederung Problem des Handlungsreisenden Die Klasse NP Einleitung und Wiederholung Sprachen Nichtdeterministische
Chaos?! Überblick. Beispiele für Rekurrenzen. fn := 3fn-1 + 4fn Beweisen. Abwickeln. Raten Summen. Formelsammlung. Suche nach einer Systematik
Überblick fn := 3fn-1 + 4fn-2 + 1 Beispiele für Rekurrenzen Beweisen Raten Summen Abwickeln Formelsammlung Chaos?! Suche nach einer Systematik F3 03/04 p.294/395 Allgemeines Verfahren Bestimmung einer
Formale Grundlagen der Informatik 1 Kapitel 20
Formale Grundlagen der Informatik 1 Kapitel 20 Zeit- und Platzkomplexität Frank Heitmann [email protected] 27. Juni 2016 Frank Heitmann [email protected] 1/52 Motivation
Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF
Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF Einflussgrößen bei der Bildung von Komplexitätsklassen Das zugrunde liegende Berechnungsmodell (Turingmaschine, Registermaschine
1 Zeit- und Platzklassen. 2 Schaltkreise. Reduktionen Many-One- Reduktionen Turing- Reduktionen und Orakel. Zusammenfassung
Einführung für das Seminar Komplexität und Kryptologie Übersicht 1 2 23 und 30 April 2008 und 3 und und Turingmaschinen als erechnungsmodell Ressourcenverbrauch von Turingmaschinen Erweiterte Church sche
Klassische Informationstheorie: Berechenbarkeit und Komplexität
Klassische Informationstheorie: Berechenbarkeit und Komplexität Christian Slupina 1. Institut für Theoretische Physik Datum: 12.Juli 2011 Inhalt Gedankenexperiment: Die Turingmaschine Standard-Turingmaschinen
Einführung in die Komplexitätstheorie
Vorlesungsskript Einführung in die Komplexitätstheorie Wintersemester 2016/17 Prof. Dr. Johannes Köbler Humboldt-Universität zu Berlin Lehrstuhl Komplexität und Kryptografie 3. November 2016 Inhaltsverzeichnis
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 16.11.2010 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP
12 Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, NP 254/ 333 Polynomielle Verifizierer und NP Ḋefinition Polynomieller
Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1
Zeitkomplexität (1) Proseminar Theoretische Informatik Proseminar Theoretische Informatik: Lisa Dohrmann 1 Warum Komplexitätsbetrachtung? Ein im Prinzip entscheidbares und berechenbares Problem kann in
Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie
Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 20.12.2005 18. Vorlesung 1 Komplexitätstheorie - Zeitklassen Komplexitätsmaße Wiederholung: O,o,ω,Θ,Ω Laufzeitanalyse
Willkommen zur Vorlesung Komplexitätstheorie
Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V7, 5.12.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar
Einfache Zusammenhänge
Einfache Zusammenhänge Eine TM, die t(n) Zeit (d.h. Schritte) zur Verfügung hat, kann nicht mehr als t(n) Bandzellen besuchen. Umgekehrt gilt dies nicht! Platz kann wiederverwendet werden, Zeit nicht!
Theorie der Informatik. Theorie der Informatik P und NP Polynomielle Reduktionen NP-Härte und NP-Vollständigkeit
Theorie der Informatik 13. Mai 2015 20. P, NP und polynomielle Reduktionen Theorie der Informatik 20. P, NP und polynomielle Reduktionen 20.1 P und NP Malte Helmert Gabriele Röger 20.2 Polynomielle Reduktionen
Einige Grundlagen der Komplexitätstheorie
Deterministische Polynomialzeit Einige Grundlagen der Komplexitätstheorie Ziel: NP-Vollständigkeit als ressourcenbeschränktes Analagon zur RE-Vollständigkeit. Komplexitätstheorie untersucht den Ressourcenbedarf
P, NP und NP -Vollständigkeit
P, NP und NP -Vollständigkeit Mit der Turing-Maschine haben wir einen Formalismus kennengelernt, um über das Berechenbare nachdenken und argumentieren zu können. Wie unsere bisherigen Automatenmodelle
Nichtdeterministische Platzklassen
Sommerakademie 2010 Rot an der Rot AG 1: Wieviel Platz brauchen Algorithmen wirklich? Nichtdeterministische Platzklassen Ulf Kulau August 23, 2010 1 Contents 1 Einführung 3 2 Nichtdeterminismus allgemein
Der Satz von Savitch
Der Satz von Savitch Satz (Savitch, 1970): Sei s 2 (log(n)). Danngilt NSPACE(s) DSPACE(s 2 ). Wir führen den Beweis für den Fall, dass s eine platzkonstruierbare Funktion ist: Sei M eine NTM, deren Platzbedarf
Theoretische Informatik 1
Theoretische Informatik 1 Teil 4 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Turingmaschinen Mehrband-TM Kostenmaße Komplexität 2 Mehrband-TM Kostenmaße
Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Teil VI. Komplexitätstheorie.
Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen
Komplexitätstheorie. Arfst Nickelsen Universität zu Lübeck Institut für Theoretische Informatik Wintersemester 2006/07. Stand 8.
Komplexitätstheorie Arfst Nickelsen Universität zu Lübeck Institut für Theoretische Informatik Wintersemester 2006/07 Stand 8. Februar 2007 Inhaltsverzeichnis 1 Probleme, Ressourcen, Klassen 4 1.1 Probleme,
Lösungen zur Vorlesung Berechenbarkeit und Komplexität
Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin
Kapitel II : Zeit- und platzbeschränkte Berechnungen
Kapitel II : Zeit- und platzbeschränkte Berechnungen Prof. Dr. F. Otto (Universität Kassel) Komplexitätstheorie 41 / 286 Rechenzeit- und Speicherplatzbedarf bei Turingmaschinen Komplexitätsklassen Grundlegende
Reelle Komplexität - Grundlagen II
Reelle Komplexität - Grundlagen II Julian Bitterlich Themenübersicht: Beziehungen zwischen den Komplexitätsklassen Savitchs Theorem conp und Charakterisierungen von NP und conp Reduktion, Vollständigkeit,
Speicherplatz-Komplexität 1 / 78
Speicherplatz-Komplexität 1 / 78 Speicherplatz-Komplexität Warum sollte uns die Ressource Speicherplatz interessieren? Um die Komplexität der Berechnung von Gewinnstrategien für viele nicht-triviale 2-Personen
Johannes Blömer. Skript zur Vorlesung. Komplexitätstheorie. Universität Paderborn
Johannes Blömer Skript zur Vorlesung Komplexitätstheorie Universität Paderborn Sommersemester 2010 Inhaltsverzeichnis 1 Einleitung 2 2 Turingmaschinen, Zeit- und Platzkomplexität 5 2.1 Turingmaschinen.........................
Komplexita tstheorie eine erste Ubersicht. KTV bedeutet: Details erfahren Sie in der Komplexitätstheorie-Vorlesung.
Komplexita tstheorie eine erste Ubersicht KTV bedeutet: Details erfahren Sie in der Komplexitätstheorie-Vorlesung. Probleme Problem = Menge von unendlich vielen konkreten Einzelfragen (Instanzen) F n,
FORMALE SYSTEME. 26. Vorlesung: Zusammenfassung und Ausblick. TU Dresden, 29. Januar Markus Krötzsch Professur für Wissensbasierte Systeme
FORMALE SYSTEME 26. Vorlesung: Zusammenfassung und Ausblick Markus Krötzsch Professur für Wissensbasierte Systeme TU Dresden, 29. Januar 2018 Zusammenfassung Randall Munroe, http://xkcd.com/399/, CC-BY-NC
11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P
11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie
Theoretische Informatik 1
Theoretische Inforatik 1 Teil 6 Bernhard Nessler Institut für Grundlagen der Inforationsverabeitung TU Graz SS 2008 Übersicht 1 Reduktionen 2 Definition P- NP- 3 Sprachbeziehungen Klassenbeziehungen Turingreduktion
Klausur SoSe Juli 2013
Universität Osnabrück / FB6 / Theoretische Informatik Prof. Dr. M. Chimani Informatik D: Einführung in die Theoretische Informatik Klausur SoSe 2013 11. Juli 2013 (Prüfungsnr. 1007049) Gruppe: Batman,
Einführung in Algorithmen und Komplexität
Einführung in Algorithmen und Komplexität SS2004 w u v High Performance = Innovative Computer Systems + Efficient Algorithms Friedhelm Meyer auf der Heide 1 Was haben wir bisher gemacht? - Rechenmodell:
Theoretische Informatik II
Theoretische Informatik II Einheit 4.2 Modelle für Typ-0 & Typ-1 Sprachen 1. Nichtdeterministische Turingmaschinen 2. Äquivalenz zu Typ-0 Sprachen 3. Linear beschränkte Automaten und Typ-1 Sprachen Maschinenmodelle
Theorie der Informatik
Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen Malte Helmert Gabriele Röger Universität Basel 7. April 2014 Kontextsensitive und allgemeine Grammatiken Wiederholung: (kontextsensitive)
3. Zeit- und Platzkomplexität
3. Zeit- und Platzkomplexität Die wichtigsten Kostenfaktoren einer Maschinenrechnung sind deren Länge (Rechenzeit) und deren Speicherbedarf. Wir führen hier diese Kostenfunktionen für Turingmaschinen ein
Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft
Härte von Hamilton-Kreis und TSP Überblick über die Komplexitätslandschaft Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 5. Februar 2010 Berthold Vöcking, Informatik
Theoretische Informatik. Berechenbarkeit
Theoretische Informatik Berechenbarkeit 1 Turing Maschine Endlicher Automat mit unendlichem Speicher Ein Modell eines realen Computers Was ein Computer berechnen kann, kann auch eine TM berechnen. Was
Carlos Camino Einführung in die Theoretische Informatik SS 2015
Themenüberblick Dies ist eine Art Checkliste für die Klausurvorbereitung. Zu jedem Thema im Skript sind hier ein paar Leitfragen aufgelistet. Besonders nützlich sind die Tabellen und Abbildungen auf den
Teil III. Komplexitätstheorie
Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein
4.2 Varianten der Turingmaschine. 4 Turingmaschinen
4 Turingmaschinen Alles was intuitiv berechenbar ist, d.h. alles, was von einem Menschen berechnet werden kann, das kann auch von einer Turingmaschine berechnet werden. Ebenso ist alles, was eine andere
Theoretische Informatik - Zusammenfassung!
Theoretische Informatik - Zusammenfassung Foliensatz 1 Notationen und formale Werkzeuge Für die Beschreibung der Komplexität eines Programms ist die Landau-Notation wichtig. Formal beschreibbare Probleme
Speicherplatz-Komplexität 1 / 64
Speicherplatz-Komplexität 1 / 64 Sublogarithmischer Speicher (1/3) Für Eingaben der Länge n wird logarithmischer Speicher O(log 2 n) benötigt, um sich an eine Eingabeposition zu erinnern. Und wenn nur
Einführung in die Komplexitätstheorie
Vorlesungsskript Einführung in die Komplexitätstheorie Wintersemester 2016/17 Prof. Dr. Johannes Köbler Humboldt-Universität zu Berlin Lehrstuhl Komplexität und Kryptografie 16. Februar 2017 Inhaltsverzeichnis
Musterlösung Informatik-III-Klausur
Musterlösung Informatik-III-Klausur Aufgabe 1 (1+4+3+4 Punkte) (a) 01010 wird nicht akzeptiert: s q 0 q 1 q 2 f q 2 10101 wird akzeptiert: s q 2 q 2 f q 2 f (b) ε: {s, q 0, q 1, q 2 }, {f} 0: {s, q 0,
