Willkommen zur Vorlesung Komplexitätstheorie

Größe: px
Ab Seite anzeigen:

Download "Willkommen zur Vorlesung Komplexitätstheorie"

Transkript

1 Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V5,

2 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar Komplexitätsklassen 2. Eine untere Schranke für 1-Band DTMs 3. Hierarchiesätze 4. Nichtdeterminismus: Eigenschaften nichtdeterministischer Platzkomplexitätsklassen NP- und PSPACE-Vollständigkeit 5. Die polynomielle Hierarchie 6. Randomisierte Komplexitätsklassen 2

3 Nichtdeterministische Turingmaschinen 3

4 Definition von nichtdeterministischen Turingmaschinen Eine nichtdeterministische (1-Band) Turingmaschine (1-Band)- NTM kann durch ein 6-Tupel M=(Q,,,, q 0, F) beschrieben werden. Q,,, q 0, F sind wie bei deterministischen TMs, ist nun wie folgt definiert: : Q! P(Q {R, N, L}) (q, a) =, falls q 2 F ist. 4

5 Rechnungen einer NTM Berechnungsbaum einer NTM bei Eingabe w 5

6 Wann akzeptieren NTMs? Definition: Eine NTM akzeptiert eine Eingabe x, falls es mindestens eine akzeptierende Rechnung von M gestartet mit x gibt. 6

7 Laufzeit / Speicherplatz von NTMs Laufzeit: T M (x) = { Länge einer kürzesten akz. Rechnung, 1 sonst falls M die Eingabe x akzeptiert Platz: S M (x) = { geringster Platzbedarf einer akz. Rechnung, 1 sonst falls M die Eingabe x akzeptiert 7

8 Nichtdeterministische Komplexitätsklassen NSPACE NSPACE NSPACE NSPACE 8

9 Nichtdeterministischer Speicherplatz 9

10 Deterministischer versus nichtdeterministischer Platzbedarf, der Satz von Savitch Die einfache Simulation aus EBKFS zeigt: Satz: Jede NTM M kann durch eine DTM M simuliert werden. Falls M t(n)-zeitund s(n)-platzbeschränkt ist, so ist M 2 O(t(n)) -zeit- und O(s(n). t(n))-platzbeschränkt. Da t(n) exponentiell in s(n) sein kann, liefert diese Simulation nur ein exponentiell beschränktes Blowup. Das geht viel besser!!! Satz (von Savitch): Sei s: N N sei platzkonstruierbar. Dann gilt: NSPACE(s(n)) DSPACE(s(n)²). Nur quadratisches beschränktes Blowup!! 10

11 Beweis des Satzes von Savitch I Satz (von Savitch): Sei s: N N sei platzkonstruierbar. Dann gilt: NSPACE(s(n)) DSPACE(s(n)²). Beweis: M sein c s(n) platzbeschränkte 1-Band NTM mit einer akz. Endkonfiguration K*. Wir beschreiben nun einen Algorithmus, der bei Eingabe Konfigurationen von M der Länge höchstens l, entscheidet, ob es in M eine Rechnung von K 1 nach K 2 gibt, die Länge höchstens t und Platzbedarf höchstens l hat. Das Problem kann wie folgt interpretiert werden: Betrachte den gerichteten Graphen, dessen Knoten alle (höchstens 2 O(l) viele) Konfigurationen der Länge höchstens l sind. Eine gerichtete Kante von K nach K existiert genau dann, wenn K direkte Nachfolgekonfiguration von K ist. Dann möchten wir testen, ob es in diesem Graphen einen gerichteten Weg von K 1 nach K 1 gibt. (Erreichbarkeit) (Dabei ist der Graph nicht Teil der Eingabe, seine Knoten und Kanten sind implizit gegeben.) 11

12 Beweis des Satzes von Savitch I Satz (von Savitch): Sei s: N N sei platzkonstruierbar. Dann gilt: NSPACE(s(n)) DSPACE(s(n)²). Beweis: M sein c s(n) platzbeschränkte 1-Band NTM mit einer akz. Endkonfiguration K*. Wir beschreiben nun einen Algorithmus, der bei Eingabe Konfigurationen von M der Länge höchstens l, entscheidet, ob es in M eine Rechnung von K 1 nach K 2 gibt, die Länge höchstens t und Platzbedarf höchstens l hat. 12

13 Beweis des Satzes von Savitch II Beweis: t > 1: Organisation des Bandes Die rekursiven TEST-Aufrufe benutzen für alle K 3 und jeweils beide Tests den gleichen Speicherbereich R. Rekursion: SP(1) 3 l Für t>1: SP(t ) ( 3 l + log(t)) + SP(t/2) SP(t ) ( 3 l + log(t)) (log(t)+1) 13

14 Beweis des Satzes von Savitch III Bemerkung: Also folgt: K* O(s( x )²) 14

15 Eine wichtige Folgerung Korollar: PSPACE = NPSPACE 15

16 Komplementklassen und Abschlusseigenschaften Einige einfache Beziehungen von Komplementklassen: Ist NSPACE(s(n)) abgeschlossen gegenüber Komplement -bildung? DSPACE Co-DSPACE NSPACE Co-NSPACE Co-NSPACE NSPACE 16

17 Ist NSPACE(s(n)) abgeschlossen gegenüber Komplementbildung? JA!! Satz (Immerman, Szelepcsenyi, 1988): Sei s(n) platzkonstruierbar. Dann gilt: NSPACE(s(n)) = Co-NSPACE(s(n)). Ein wichtiges Korollar: Aus EBKFS ist CS, die Menge der kontextsensitiven Sprachen, bekannt. Eventuell haben sie dort in Übungsaufgaben gezeigt: Satz: CS = NSPACE(n) Damit ergibt sich: Korollar: CS =Co-CS, d.h.: die kontextsensitiven Sprachen sind gegen Komplementbildung abgeschlossen. 17

18 Beweis des Satzes von Immerman und Szelepcsenyi - I Satz (Immerman, Szelepcsenyi): Sei s(n) platzkonstruierbar. Dann gilt: NSPACE(s(n)) = Co-NSPACE(s(n)). Wir zeigen NSPACE(s(n)) Co-NSPACE(s(n)). Die andere Richtung funktioniert analog. Sei L NSPACE(s(n)), M eine O(s(n))-platzbeschr.1-Band NTM für L, x Input der Länge n. Wegen s(n) platzkonstruierbar : o.b.d.a. gilt: Jede Rechnung von M gestartet mit x hat Länge höchstens 2 c s(n) und besteht aus Konfigurationen der Länge höchstens c s(n), für geeignetes c>0. Gesucht: Eine O(s(n))-platzbeschränkte NTM, die x genau dann akzeptiert, wenn alle Rechnungen von M gestartet mit x verwerfend sind. Erste Idee: Probiere alle Rechnungen aus benötigt auf DTM Platz O(s(n)²). Wie können wir das Verfahren mithilfe von Nichtdeterminismus platzeffizienter machen?? 18

19 Beweis des Satzes von Immerman und Szelepcsenyi - II Wir zeigen: NSPACE(s(n)) Co-NSPACE(s(n)). Sei L NSPACE(s(n)), M eine 1-Band NTM für L, x Input, x =n. Jede Rechnung von M gestartet mit x hat Länge höchstens 2 c s(n) und besteht aus Konfigurationen der Länge höchstens c s(n), für geeignetes c>0. Gesucht: Eine O(s(n))-platzbeschränkte NTM, die x genau dann akzeptiert, wenn alle Rechnungen von M gestartet mit x verwerfend sind. Angenommen, wir kennen die Zahl N der (indirekten) Nachfolgekonfigurationen von q 0 x. Haupt-Algorithmus (Eingabe: x, N): - Zähler:=0 - For i:=1 to l(m) do K 1, K 2,, K l(m) ist lex. Aufz. der Konf. Der Länge höchstens m. - Rate eine Rechnung R startend in q 0 x der Länge höchstens 2 c s(n). - If R ist akzeptierend Then verwerfe, stoppe. - Else If R endet in Konfiguration K i Then erhöhe Zähler um 1. - If Zähler = N, Then akzeptiere. 19

20 Beweis des Satzes von Immerman und Szelepcsenyi - III Haupt-Algorithmus (Eingabe: x, N): - Zähler:=0 - For i:=1 to l(m) do - Rate eine Rechnung R startend in q 0 x der Länge höchstens 2 c s(n). - If R ist akzeptierend Then verwerfe, stoppe. - Else If R endet in Konfiguration K i Then erhöhe Zähler um 1. - If Zähler = N, Then akzeptiere. Korrektheit: Algorithmus akzeptiert x Es wurden für alle N Nachfolgekonfigurationen von q 0 x Rechnungen gefunden und keine war akzeptierend x ist nicht in L. Platzbedarf: Auf dem Band stehen maximal 3 Konfigurationen (q 0 x, K, aktuelle Konfiguration der simulierten Rechnung), sowie N ( 2 c s(n) ), und 2 c s(n). Platzbedarf O(s(n)). Wir müssen N berechnen! 20

21 Vielen Dank für Ihre Aufmerksamkeit Heinz Nixdorf Institut Universität Paderborn Algorithmen und Komplexität Fürstenallee Paderborn Tel.: / Fax.: / fmadh@hni.upb.de 21

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V7, 5.12.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V8, 12.12.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

19. Nichtdeterministische Turingmaschinen und ihre Komplexität

19. Nichtdeterministische Turingmaschinen und ihre Komplexität 19. Nichtdeterministische Turingmaschinen und ihre Komplexität Bei einem Turingmaschinenprogramm P aus bedingten Anweisungen wird durch die Forderung i a b B j i a b B j i a sichergestellt, dass zu jeder

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Platzkomplexität David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 22.04.2016 Platzkomplexität Platzkomplexitätsklassen Zeit vs. Platzbedarf

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V11, 16.1.2012 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2011 14. NICHTDETERMINISTISCHE TURINGMASCHINEN UND DEREN KOMPLEXITÄT Theoretische Informatik (SoSe 2011) 14. Nichtdeterministische

Mehr

Bemerkungen: Ist der Wert von S(n) (und damit auch τ) unbekannt, so führt man das Verfahren nacheinander mit den Werten

Bemerkungen: Ist der Wert von S(n) (und damit auch τ) unbekannt, so führt man das Verfahren nacheinander mit den Werten Bemerkungen: Ist der Wert von S(n) (und damit auch τ) unbekannt, so führt man das Verfahren nacheinander mit den Werten log n, 2 log n,... als Platzschranke aus. Dabei überprüft man für jeden dieser Werte,

Mehr

Laufzeit einer DTM, Klasse DTIME

Laufzeit einer DTM, Klasse DTIME Laufzeit einer DTM, Klasse DTIME Definition Laufzeit einer DTM Sei M eine DTM mit Eingabealphabet Σ, die bei jeder Eingabe hält. Sei T M (w) die Anzahl der Rechenschritte d.h. Bewegungen des Lesekopfes

Mehr

Theoretische Informatik 2

Theoretische Informatik 2 Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10 Zeitkomplexität von Turingmaschinen Die Laufzeit einer NTM M bei Eingabe x ist die maximale Anzahl

Mehr

Der Satz von Savitch

Der Satz von Savitch Der Satz von Savitch Satz (Savitch, 1970): Sei s 2 (log(n)). Danngilt NSPACE(s) DSPACE(s 2 ). Wir führen den Beweis für den Fall, dass s eine platzkonstruierbare Funktion ist: Sei M eine NTM, deren Platzbedarf

Mehr

Vorlesungsskript. Komplexitätstheorie. Wintersemester 2004/2005

Vorlesungsskript. Komplexitätstheorie. Wintersemester 2004/2005 Vorlesungsskript Komplexitätstheorie Wintersemester 2004/2005 Prof. Dr. Johannes Köbler Humboldt-Universität zu Berlin Lehrstuhl Komplexität und Kryptografie 21. Februar 2005 Inhaltsverzeichnis 1 Einführung

Mehr

13. Nichtdeterministische Turingmaschinen und ihre Komplexität

13. Nichtdeterministische Turingmaschinen und ihre Komplexität 13. Nichtdeterministische Turingmaschinen und ihre Komplexität DETERMINISMUS VS. NICHTDETERMINISMUS DETERMINISMUS: Bei einer k-band-turingmaschine M wurde durch die colorblue Überführungsfunktion δ : Z

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V10, 9.1.2012 1 Organisation Prüfungen: mündlich, 20min 1. Periode: 13.-14.2. 2012 2. Periode: 26.-27.3. 2012 2 Themen

Mehr

Komplexitätstheorie WiSe 2008/09 in Trier. Henning Fernau Universität Trier

Komplexitätstheorie WiSe 2008/09 in Trier. Henning Fernau Universität Trier Komplexitätstheorie WiSe 2008/09 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Komplexitätstheorie Gesamtübersicht Organisatorisches / Einführung Motivation / Erinnerung / Fragestellungen

Mehr

Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF

Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF Einflussgrößen bei der Bildung von Komplexitätsklassen Das zugrunde liegende Berechnungsmodell (Turingmaschine, Registermaschine

Mehr

Theoretische Informatik. nichtdeterministische Turingmaschinen NDTM. Turingmaschinen. Rainer Schrader. 29. April 2009

Theoretische Informatik. nichtdeterministische Turingmaschinen NDTM. Turingmaschinen. Rainer Schrader. 29. April 2009 Theoretische Informatik Rainer Schrader nichtdeterministische Turingmaschinen Zentrum für Angewandte Informatik Köln 29. April 2009 1 / 33 2 / 33 Turingmaschinen das Konzept des Nichtdeterminismus nahm

Mehr

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Einführung in Berechenbarkeit, Komplexität und Formale Sprachen V7, 3.11.09 Willkommen zur Vorlesung Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Friedhelm Meyer auf der Heide 1 Rückblick

Mehr

Polynomielle Verifizierer und NP

Polynomielle Verifizierer und NP Polynomielle Verifizierer und NP Definition Polynomieller Verifizierer Sei L Σ eine Sprache. Eine DTM V heißt Verifizierer für L, falls V für alle Eingaben w Σ hält und folgendes gilt: w L c Σ : V akzeptiert

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Informatik III. Arne Vater Wintersemester 2006/ Vorlesung

Informatik III. Arne Vater Wintersemester 2006/ Vorlesung Informatik III Arne Vater Wintersemester 2006/07 25. Vorlesung 01.02.2007 1 Approximation Viele wichtige Probleme sind NP-vollständig (also nicht effizient lösbar unter der Annahme P NP) Diese sind zu

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 27. Vorlesung 08.02.2007 1 Komplexitätstheorie - Platzklassen Platzkomplexität Definition Simulation mehrerer Bänder Savitchs Theorem PSPACE

Mehr

Reduktionen. Formalisierung von Sprache A ist nicht schwerer als Sprache B.

Reduktionen. Formalisierung von Sprache A ist nicht schwerer als Sprache B. Reduktionen Formalisierung von Sprache A ist nicht schwerer als Sprache B. Idee: Algorithmus/DTM für B kann genutzt werden, um A zu entscheiden/akzeptieren. WS 2018/19 Reduktionen 1 Zwei einfache Sprachen

Mehr

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Hochschuldozent Dr. Christian Schindelhauer Paderborn, den 21. 2. 2006 Lösungen zur 1. Klausur in Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Name :................................

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V13, 30.1.2012 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 20.12.2005 18. Vorlesung 1 Komplexitätstheorie - Zeitklassen Komplexitätsmaße Wiederholung: O,o,ω,Θ,Ω Laufzeitanalyse

Mehr

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, NP 254/ 333 Polynomielle Verifizierer und NP Ḋefinition Polynomieller

Mehr

Kapitel II : Zeit- und platzbeschränkte Berechnungen

Kapitel II : Zeit- und platzbeschränkte Berechnungen Kapitel II : Zeit- und platzbeschränkte Berechnungen Prof. Dr. F. Otto (Universität Kassel) Komplexitätstheorie 41 / 286 Rechenzeit- und Speicherplatzbedarf bei Turingmaschinen Komplexitätsklassen Grundlegende

Mehr

Formale Grundlagen der Informatik 1 Kapitel 20

Formale Grundlagen der Informatik 1 Kapitel 20 Formale Grundlagen der Informatik 1 Kapitel 20 Zeit- und Platzkomplexität Frank Heitmann heitmann@informatik.uni-hamburg.de 27. Juni 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/52 Motivation

Mehr

Dank. Theoretische Informatik II. Komplexitätstheorie. Teil VI. Komplexitätstheorie. Vorlesung

Dank. Theoretische Informatik II. Komplexitätstheorie. Teil VI. Komplexitätstheorie. Vorlesung Dank Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von Katrin Erk (gehalten an der Universität

Mehr

Nichtdeterministische Platzklassen

Nichtdeterministische Platzklassen Sommerakademie 2010 Rot an der Rot AG 1: Wieviel Platz brauchen Algorithmen wirklich? Nichtdeterministische Platzklassen Ulf Kulau August 23, 2010 1 Contents 1 Einführung 3 2 Nichtdeterminismus allgemein

Mehr

Komplexitätstheorie WiSe 2009/10 in Trier. Henning Fernau Universität Trier

Komplexitätstheorie WiSe 2009/10 in Trier. Henning Fernau Universität Trier Komplexitätstheorie WiSe 2009/10 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Komplexitätstheorie Gesamtübersicht Organisatorisches / Einführung Motivation / Erinnerung / Fragestellungen

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Teil 5 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Problemklassen 2 NTM Nichtdeterministische Algorithmen 3 Problemarten Konstruktionsprobleme

Mehr

Komplexitätstheorie Kap. 4: Grundlegende Ergebnisse...

Komplexitätstheorie Kap. 4: Grundlegende Ergebnisse... Gliederung der Vorlesung 1. Analyse von Algorithmen 1.1 Motivation 1.2 Laufzeit von Algorithmen 1.3 Asymptotische Notationen 2. Entwurf von Algorithmen 2.1 Divide & Conquer 2.2 Dynamisches Programmieren

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 18. Vorlesung 22.12.2006 1 Komplexitätstheorie - Zeitklassen Komplexitätsmaße Wiederholung: O,o,ω,Θ,Ω Laufzeitanalyse Die Komplexitätsklassen

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Komplexitätstheorie (VI) 20.07.2016 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 DTIME und NTIME / DSPACE und NSPACE DTIME(T(n)) ist die Klasse

Mehr

Satz von Hennie und Stearns

Satz von Hennie und Stearns Satz von Hennie und Stearns Auch für Zeitklassen wäre es für viele Anwendungen praktisch, eine Form der Bandreduktion verwenden zu können. Ein naiver Zugang (mit Spuren) liefert die Beziehung DTIME(f )

Mehr

Proseminar Theoretische Informatik. Die Klasse NP. von Marlina Spanel

Proseminar Theoretische Informatik. Die Klasse NP. von Marlina Spanel Proseminar Theoretische Informatik Die Klasse NP von Marlina Spanel 29.11.2011 1 Gliederung Gliederung Problem des Handlungsreisenden Die Klasse NP Einleitung und Wiederholung Sprachen Nichtdeterministische

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 13. Vorlesung 07.12.2006 1 Überblick: Die Church- Turing-These Turing-Maschinen 1-Band Turing-Maschine Mehrband-Turing-Maschinen Nichtdeterministische

Mehr

Johannes Blömer. Skript zur Vorlesung. Komplexitätstheorie. Universität Paderborn

Johannes Blömer. Skript zur Vorlesung. Komplexitätstheorie. Universität Paderborn Johannes Blömer Skript zur Vorlesung Komplexitätstheorie Universität Paderborn Sommersemester 2010 Inhaltsverzeichnis 1 Einleitung 2 2 Turingmaschinen, Zeit- und Platzkomplexität 5 2.1 Turingmaschinen.........................

Mehr

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie

Mehr

Theorie der Informatik. Theorie der Informatik P und NP Polynomielle Reduktionen NP-Härte und NP-Vollständigkeit

Theorie der Informatik. Theorie der Informatik P und NP Polynomielle Reduktionen NP-Härte und NP-Vollständigkeit Theorie der Informatik 13. Mai 2015 20. P, NP und polynomielle Reduktionen Theorie der Informatik 20. P, NP und polynomielle Reduktionen 20.1 P und NP Malte Helmert Gabriele Röger 20.2 Polynomielle Reduktionen

Mehr

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1 Zeitkomplexität (1) Proseminar Theoretische Informatik Proseminar Theoretische Informatik: Lisa Dohrmann 1 Warum Komplexitätsbetrachtung? Ein im Prinzip entscheidbares und berechenbares Problem kann in

Mehr

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Einführung in Berechenbarkeit, Komplexität und Formale Sprachen V8, 5.11.09 Willkommen zur Vorlesung Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Friedhelm Meyer auf der Heide 1 Rückblick

Mehr

Einführung in die Komplexitätstheorie

Einführung in die Komplexitätstheorie Vorlesungsskript Einführung in die Komplexitätstheorie Wintersemester 2016/17 Prof. Dr. Johannes Köbler Humboldt-Universität zu Berlin Lehrstuhl Komplexität und Kryptografie 3. November 2016 Inhaltsverzeichnis

Mehr

Komplexitätstheorie. Kapitel 4: Platzkomplexität

Komplexitätstheorie. Kapitel 4: Platzkomplexität Komplexitätstheorie Kapitel 4: Platzkomplexität Einleitung Platzverbrauch: der temporäre Zwischenspeicher, der während der Berechnung verwendet wird (Datenstrukturen, Rekursionsstack, etc.) Im Fall von

Mehr

Komplexitätstheorie. Kapitel 5: Platzkomplexität

Komplexitätstheorie. Kapitel 5: Platzkomplexität Komplexitätstheorie Kapitel 5: Platzkomplexität Einleitung Platzverbrauch: der temporäre Zwischenspeicher, der während der Berechnung verwendet wird (Datenstrukturen, Rekursionsstack, etc.) Im Fall von

Mehr

Rucksackproblem und Verifizierbarkeit

Rucksackproblem und Verifizierbarkeit Rucksackproblem und Verifizierbarkeit Gegeben: n Gegenstände mit Gewichten G={g 1,g 2,,g n } und Werten W={w 1,w 2,,w n } sowie zulässiges Gesamtgewicht g. Gesucht: Teilmenge S {1,,n} mit i i S unter der

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Komplexitätstheorie (I) 22.07.2015 und 23.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie 3. Endliche

Mehr

Semi-Entscheidbarkeit und rekursive Aufzählbarkeit

Semi-Entscheidbarkeit und rekursive Aufzählbarkeit Semi-Entscheidbarkeit und rekursive Aufzählbarkeit Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 9. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Speicherplatz-Komplexität 1 / 30

Speicherplatz-Komplexität 1 / 30 Speicherplatz-Komplexität 1 / 30 Speicherplatz-Komplexität Warum sollte uns die Ressource Speicherplatz interessieren? Um die Komplexität der Berechnung von Gewinnstrategien für viele nicht-triviale 2-Personen

Mehr

Lösungen zur Vorlesung Berechenbarkeit und Komplexität

Lösungen zur Vorlesung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin

Mehr

Komplexitätstheorie. Kapitel 5: Platzkomplexität

Komplexitätstheorie. Kapitel 5: Platzkomplexität Komplexitätstheorie Kapitel 5: Platzkomplexität Einleitung Platzverbrauch: der temporäre Zwischenspeicher, der während der Berechnung verwendet wird (Datenstrukturen, Rekursionsstack, etc.) Im Fall von

Mehr

Einige Grundlagen der Komplexitätstheorie

Einige Grundlagen der Komplexitätstheorie Deterministische Polynomialzeit Einige Grundlagen der Komplexitätstheorie Ziel: NP-Vollständigkeit als ressourcenbeschränktes Analagon zur RE-Vollständigkeit. Komplexitätstheorie untersucht den Ressourcenbedarf

Mehr

Komplexitätstheorie. Vorlesungsskript. Wintersemester 2010/11

Komplexitätstheorie. Vorlesungsskript. Wintersemester 2010/11 Vorlesungsskript Komplexitätstheorie Wintersemester 2010/11 Prof. Dr. Johannes Köbler Humboldt-Universität zu Berlin Lehrstuhl Komplexität und Kryptografie 3. Dezember 2010 Inhaltsverzeichnis Inhaltsverzeichnis

Mehr

Rekursive Aufzählbarkeit Die Reduktion

Rekursive Aufzählbarkeit Die Reduktion Rekursive Aufzählbarkeit Die Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Wir haben eine Beziehung zwischen entscheidbar und rekursiv aufzählbar hergeleitet.

Wir haben eine Beziehung zwischen entscheidbar und rekursiv aufzählbar hergeleitet. Rückschau 12.11.04 Wir haben eine Beziehung zwischen entscheidbar und rekursiv aufzählbar hergeleitet. Wir haben das Prinzip der Diagonalisierung eingeführt und mit DIAG eine erste nicht rek. aufz. Sprache

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Einführung in die Komplexitätstheorie

Einführung in die Komplexitätstheorie Vorlesungsskript Einführung in die Komplexitätstheorie Wintersemester 2016/17 Prof. Dr. Johannes Köbler Humboldt-Universität zu Berlin Lehrstuhl Komplexität und Kryptografie 16. Februar 2017 Inhaltsverzeichnis

Mehr

Platzklassen - Erinnerung. 3-Band Maschinen. Konfigurationen. Savitch Theorem. Konfigurationsgraph. Für kleine Platzklassen:

Platzklassen - Erinnerung. 3-Band Maschinen. Konfigurationen. Savitch Theorem. Konfigurationsgraph. Für kleine Platzklassen: Platzklassen - Erinnerung DSPACE(f(n)) NSPACE(f(n)) L = LOG = DSPACE(logn) NL = NLOG = NSPACE(logn) PSPACE = DSPACE(n^k), k > 1 NPSPACE = NSPACE(n^k), k > 1 SPACE Complexity 3-Band Maschinen Konfigurationen

Mehr

Platzklassen - Erinnerung. 3-Band Maschinen. Konfigurationen. Savitch Theorem. Konfigurationsgraph. SPACE Complexity. Für kleine Platzklassen:

Platzklassen - Erinnerung. 3-Band Maschinen. Konfigurationen. Savitch Theorem. Konfigurationsgraph. SPACE Complexity. Für kleine Platzklassen: Platzklassen - Erinnerung SPACE Complexity DSPACE(f(n)) NSPACE(f(n)) L = LOG = DSPACE(logn) NL = NLOG = NSPACE(logn) PSPACE = DSPACE(n^k), k > 1 NPSPACE = NSPACE(n^k), k > 1 complexity 2003 - space & games

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (V) 16.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Diskrete Mathematik II

Diskrete Mathematik II Diskrete Mathematik II Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Sommersemester 2011 DiMa II - Vorlesung 01-04.04.2011 1 / 252 Organisatorisches Vorlesung: Mo 12-14 in HZO 70, Di 09-10

Mehr

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie.

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie. Einführung (1/3) 3 Wir verfolgen nun das Ziel, Komplexitätsklassen mit Hilfe von charakteristischen Problemen zu beschreiben und zu strukturieren Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit

Mehr

Beispiel: NTM. M = ({q 0,q 1,q 2 }, {0, 1}, {0, 1, #},δ, q 0, #, {q 2 }) q 2

Beispiel: NTM. M = ({q 0,q 1,q 2 }, {0, 1}, {0, 1, #},δ, q 0, #, {q 2 }) q 2 Beispiel: NTM M = ({q 0,q 1,q 2 }, {0, 1}, {0, 1, #},δ, q 0, #, {q 2 }) 0,1,R 0,0,R q0 1,0,R q1 #,#,R q2 0,0,L Zustand 0 1 # q 0 {(1, R, q 0 )} {(0, R, q 1 )} q 1 {(0, R, q 1 ),(0, L, q 0 )} {(1, R, q

Mehr

P, NP und NP -Vollständigkeit

P, NP und NP -Vollständigkeit P, NP und NP -Vollständigkeit Mit der Turing-Maschine haben wir einen Formalismus kennengelernt, um über das Berechenbare nachdenken und argumentieren zu können. Wie unsere bisherigen Automatenmodelle

Mehr

Speicherplatz-Komplexität 1 / 78

Speicherplatz-Komplexität 1 / 78 Speicherplatz-Komplexität 1 / 78 Speicherplatz-Komplexität Warum sollte uns die Ressource Speicherplatz interessieren? Um die Komplexität der Berechnung von Gewinnstrategien für viele nicht-triviale 2-Personen

Mehr

Definition 98 Eine Turingmaschine heißt linear beschränkt (kurz: LBA), falls für alle q Q gilt:

Definition 98 Eine Turingmaschine heißt linear beschränkt (kurz: LBA), falls für alle q Q gilt: 5.2 Linear beschränkte Automaten Definition 98 Eine Turingmaschine heißt linear beschränkt (kurz: LBA), falls für alle q Q gilt: (q, c, d) δ(q, ) = c =. Ein Leerzeichen wird also nie durch ein anderes

Mehr

Präsenzübung Berechenbarkeit und Komplexität

Präsenzübung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 2013/14 Prof. Dr. Berthold Vöcking 28.01.2014 Kamal Al-Bawani Benjamin Ries Präsenzübung Berechenbarkeit und Komplexität Musterlösung Name:...................................

Mehr

Einführung in Algorithmen und Komplexität

Einführung in Algorithmen und Komplexität Einführung in Algorithmen und Komplexität SS2004 w u v High Performance = Innovative Computer Systems + Efficient Algorithms Friedhelm Meyer auf der Heide 1 Was haben wir bisher gemacht? - Rechenmodell:

Mehr

3 Probabilistische Komplexitätsklassen

3 Probabilistische Komplexitätsklassen 3 Probabilistische Komplexitätsklassen 3.1 Probabilistische Turingmaschinen 3.1 Wir gehen davon aus, dass die Konzepte deterministischer und nichtdeterministischer Turingmaschinen im wesentlichen bekannt

Mehr

1 Wichtige Definitionen, Sätze und Lemmas aus Kapitel 1

1 Wichtige Definitionen, Sätze und Lemmas aus Kapitel 1 1 Wichtige Definitionen, Sätze und Lemmas aus Kapitel 1 Alphabet, Wort, Konkatenation, Sprache, Leere Sprache, Definition 1.1 Seien Σ 1 und Σ 2 zwei Alphabete. Eine Substitution von Σ 1 nach Σ 2 ist eine

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 5.4 Hierarchie von Komplexitätsklassen 1. Komplementäre Klassen 2. Polynomieller Platz 3. Logarithmischer Platz 4. Hierarchiesätze Es gibt weitere wichtige Komplexitätsklassen

Mehr

Theoretische Informatik. Probabilistische Turingmaschinen PTM PTM. Rainer Schrader. 10. Juni 2009

Theoretische Informatik. Probabilistische Turingmaschinen PTM PTM. Rainer Schrader. 10. Juni 2009 Theoretische Informatik Rainer Schrader Probabilistische Turingmaschinen Institut für Informatik 10. Juni 009 1 / 30 / 30 Gliederung probabilistische Turingmaschinen Beziehungen zwischen und NDTM es stellt

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Teil VI. Komplexitätstheorie.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Teil VI. Komplexitätstheorie. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 20. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 20.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016)

Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016) Technische Universität Berlin, Berlin, 28.07.2016 Name:... Matr.-Nr.:... Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016) Einlesezeit: Bearbeitungszeit: Max.

Mehr

Teil III. Komplexitätstheorie

Teil III. Komplexitätstheorie Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein

Mehr

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008 Problemseminar Komplexitätstheorie und Kryptographie Martin Huschenbett Student am Institut für Informatik an der Universität Leipzig 30. Oktober 2008 1 / 33 Gliederung 1 Randomisierte Algorithmen und

Mehr

Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen. Wintersemester 2012/13

Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen. Wintersemester 2012/13 Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: und effiziente Algorithmen Wintersemester 2012/13 Prof. Barbara König Übungsleitung: Henning Kerstan & Sebastian Küpper Barbara

Mehr

Berechenbarkeitstheorie 14. Vorlesung

Berechenbarkeitstheorie 14. Vorlesung 1 Berechenbarkeitstheorie Dr. Institut für Mathematische Logik und Grundlagenforschung WWU Münster WS 15/16 Alle Folien unter Creative Commons Attribution-NonCommercial 3.0 Unported Lizenz. Erinnerung

Mehr

Herzlich willkommen!!!

Herzlich willkommen!!! Komplexitätstheorie Sommersemester 2013 Prof. Dr. Georg Schnitger AG Theoretische Informatik Johann Wolfgang Goethe-Universität Frankfurt am Main Herzlich willkommen!!! Einführung 1 / 30 Kapitel 1: Einführung

Mehr

Informatik III. Arne Vater Wintersemester 2006/ Vorlesung

Informatik III. Arne Vater Wintersemester 2006/ Vorlesung Informatik III Arne Vater Wintersemester 2006/07 11. Vorlesung 30.11.2006 1 Beziehungen zwischen den Sprachen Jede reguläre Sprache ist eine kontextfreie Sprache. Jede kontextfreie Sprache ist eine entscheidbare

Mehr

Vorlesung VL-13. P versus NP. Wdh.: LOOP versus WHILE. Korrektur: Primitiv rekursive Funktionen (2) Wdh.: Kostenmodelle der RAM

Vorlesung VL-13. P versus NP. Wdh.: LOOP versus WHILE. Korrektur: Primitiv rekursive Funktionen (2) Wdh.: Kostenmodelle der RAM Organisatorisches VL-13: P versus NP (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Nächste Vorlesung: Mittwoch, Dezember 13, 14:15 15:45 Uhr, Roter Hörsaal Webseite: http://algo.rwth-aachen.de/lehre/ws1718/buk.php

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informatik I Einheit 4.3 Eigenschaften von L 0 /L 1 -Sprachen 1. Abschlußeigenschaften 2. Prüfen von Eigenschaften 3. Grenzen der Sprachklassen Sprachklassen Semi-entscheidbare Sprache Sprache,

Mehr

Was ist überhaupt berechenbar? Was ist mit vernünftigem Aufwand berechenbar?

Was ist überhaupt berechenbar? Was ist mit vernünftigem Aufwand berechenbar? Effiziente Berechenbarkeit bisher: Frage nach der prinzipiellen Lösbarkeit von algorithmischen Fragestellungen Was ist überhaupt berechenbar? Rekursionstheorie jetzt: Frage nach der effizienten Lösbarkeit

Mehr

Klassische Informationstheorie: Berechenbarkeit und Komplexität

Klassische Informationstheorie: Berechenbarkeit und Komplexität Klassische Informationstheorie: Berechenbarkeit und Komplexität Christian Slupina 1. Institut für Theoretische Physik Datum: 12.Juli 2011 Inhalt Gedankenexperiment: Die Turingmaschine Standard-Turingmaschinen

Mehr

Berechenbarkeits- und Komplexitätstheorie

Berechenbarkeits- und Komplexitätstheorie Berechenbarkeits- und Komplexitätstheorie Lerneinheit 5: Die Klasse NP Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Wintersemester 2015/2016 26.9.2015 Einleitung Thema dieser Lerneinheit

Mehr

Theoretische Informatik - Zusammenfassung!

Theoretische Informatik - Zusammenfassung! Theoretische Informatik - Zusammenfassung Foliensatz 1 Notationen und formale Werkzeuge Für die Beschreibung der Komplexität eines Programms ist die Landau-Notation wichtig. Formal beschreibbare Probleme

Mehr

Speicherplatz-Komplexität 1 / 64

Speicherplatz-Komplexität 1 / 64 Speicherplatz-Komplexität 1 / 64 Sublogarithmischer Speicher (1/3) Für Eingaben der Länge n wird logarithmischer Speicher O(log 2 n) benötigt, um sich an eine Eingabeposition zu erinnern. Und wenn nur

Mehr

Weitere universelle Berechnungsmodelle

Weitere universelle Berechnungsmodelle Weitere universelle Berechnungsmodelle Mehrband Turingmaschine Nichtdeterministische Turingmaschine RAM-Modell Vektoradditionssysteme λ-kalkül µ-rekursive Funktionen 1 Varianten der dtm Mehrkopf dtm Kontrolle

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 5.2 Das P N P Problem 1. Nichtdeterministische Lösbarkeit 2. Sind N P-Probleme handhabbar? 3. N P-Vollständigkeit Bei vielen schweren Problemen ist Erfolg leicht zu testen

Mehr

Informatik III - WS07/08

Informatik III - WS07/08 Informatik III - WS07/08 Kapitel 5 1 Informatik III - WS07/08 Prof. Dr. Dorothea Wagner dwagner@ira.uka.de Kapitel 5 : Grammatiken und die Chomsky-Hierarchie Informatik III - WS07/08 Kapitel 5 2 Definition

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V12, 23.1.2012 1 Organisatorisches CHE-Studierendenbefragung ist bis zum 31.1. verlängert. Falls sie angefragt wurden:

Mehr

Die Klasse NP und die polynomielle Reduktion

Die Klasse NP und die polynomielle Reduktion Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Dezember 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr