Der Satz von Savitch

Größe: px
Ab Seite anzeigen:

Download "Der Satz von Savitch"

Transkript

1 Der Satz von Savitch Satz (Savitch, 1970): Sei s 2 (log(n)). Danngilt NSPACE(s) DSPACE(s 2 ). Wir führen den Beweis für den Fall, dass s eine platzkonstruierbare Funktion ist: Sei M eine NTM, deren Platzbedarf durch s beschränkt ist. Sei Conf(M, w) die Menge aller Konfigurationen der Größe maximal s( w ). (Beachte: s( w ) können wir ermitteln.) Ohne Einschränkung gehen wir davon aus, dass Conf(M, w) genau eine akzeptierende Konfiguration f enthält. Einheit 33 Folie 33.1

2 Nun sollen wir herausfinden, ob von der Startkonfiguration aus die Konfiguration f erreichbar ist. Wir können diese Aufgabe als Erreichbarkeitsproblem auf dem Graph der Konfigurationen auffassen. Ein Prädikat namens Reach(, Beweis (Satz von Savitch) Reach(,, i) () 9k apple 2 i :, i) sei wie folgt definiert: Aus Konfiguration kann man in k Schritten zur Konfiguration gelangen. Reach(,, i) kann rekursiv so berechnet werden: Reach(,, i) () 9 2 Conf(M, w) :Reach(,, i 1) ^ Reach(,,i 1) Einheit 33 Folie 33.2

3 Algorithmus (zum Beweis) Der rekursive Reach-Algorithmus hat einen Haken: Wir haben in der deterministischen Simulation keine Möglichkeit, den Existenzquantor durch Raten oder Ähnliches aufzulösen. Unser Trick besteht ganz einfach darin, alle Möglichkeiten der Reihe nach durchzuprobieren: FUNCTION Reach(,, i): BOOLEAN; b := FALSE; IF i = 0 THEN b := [ = OR ` ] ELSE FORALL 2 Conf (M, w) DO IF (NOT b) AND Reach(,, i 1) THEN b := Reach(,,i 1); RETURN b END FUNCTION Einheit 33 Folie 33.3

4 Wir behaupten, dass der für Reach(,, i) benötigte Platz für geeignete Konstante c beschränkt ist durch c (i + 1) s( w ) und führen hierfür einen Induktionsbeweis durch: i = 0: Der Aufruf Reach(,, 0) hat einen Speicherbedarf in O(s( w )). Dasistleichtzuüberprüfen. i > 0: Platzbedarf Die rekursiven Aufrufe brauchen nach Induktionsvoraussetzung je maximal c i s( w ) Speicherplatz. Dazu kommt ein Platzbedarf in O(s( w )) für lokale Variablen, wie z.b.. Wirgehendavonaus, dassdie beteiligten Konstanten gleich sind (gegebenenfalls wählt man die höhere der beiden Konstanten) und erhalten c i s( w )+c s( w ) =c (i + 1) s( w ). Einheit 33 Folie 33.4

5 Beweis (Abschluss) Um für gegebene Eingabe w zu entscheiden, ob w 2 L(M) gilt, genügt es also, den Wert k s( w ) zu berechnen, wobei k so gewählt sei, dass es maximal 2 k s( w ) verschiedene erreichbare Konfigurationen gibt, und dann folgenden Aufruf zu nutzen: Reach( w, f, k s( w )) Dabei sei w die Anfangskonfiguration von M bei Eingabe w. Der Gesamtplatzbedarf liegt offensichtlich in O(s( w ) 2 ). Man beachte aber, dass hierbei Platzkonstruierbarkeit von s benutzt wurde! Einheit 33 Folie 33.5

6 NEIN: Ist Platzkonstruierbarkeit nötig? Statt die Schranke s( w ) zu kennen, genügt es uns, den tatsächlichen Platzbedarf von M bei Eingabe w zu berechnen! Wie geht das? Starte mit n = Länge der Startkonfiguration (also z.b. n = w + c für geeignete Konstante c) Nutze Reach-Funktion, um herauszufinden, ob es erreichbare Konfigurationen der Länge mindestens n + 1 gibt. Wenn ja: Erhöhe n um 1. So ermitteln wir den realen Speicherbedarf ohne Überschreitung der Platzschranke. Einheit 33 Folie 33.6

7 1) Das Grapherreichbarkeitsproblem liegt in DSPACE(log 2 (n)). (Das folgt aus dem Satz von Savitch, weil das Grapherreichbarkeitsproblem in NSPACE(log n) liegt.) 2) PSPACE kann sowohl als S S k 1 Folgerungen aus dem Satz von Savitch k 1 NSPACE(n k ) definiert werden. DSPACE(n k ) als auch als (Wegen NSPACE(n k ) DSPACE(n 2k ) sind diese beiden Vereinigungen gleich.) Einheit 33 Folie 33.7

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V5, 21.11.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Satz von Hennie und Stearns

Satz von Hennie und Stearns Satz von Hennie und Stearns Auch für Zeitklassen wäre es für viele Anwendungen praktisch, eine Form der Bandreduktion verwenden zu können. Ein naiver Zugang (mit Spuren) liefert die Beziehung DTIME(f )

Mehr

Kapitel II : Zeit- und platzbeschränkte Berechnungen

Kapitel II : Zeit- und platzbeschränkte Berechnungen Kapitel II : Zeit- und platzbeschränkte Berechnungen Prof. Dr. F. Otto (Universität Kassel) Komplexitätstheorie 41 / 286 Rechenzeit- und Speicherplatzbedarf bei Turingmaschinen Komplexitätsklassen Grundlegende

Mehr

Euklidischer Algorithmus

Euklidischer Algorithmus Euklidischer Algorithmus Ermitteln des größten gemeinsamen Teilers mit Euklid: function ggt (m, n) Hierbei ist m begin 0undn 0vorausgesetzt. if m = 0 then return n else return ggt (n mod m, m) fi end Man

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Teil 5 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Problemklassen 2 NTM Nichtdeterministische Algorithmen 3 Problemarten Konstruktionsprobleme

Mehr

19. Nichtdeterministische Turingmaschinen und ihre Komplexität

19. Nichtdeterministische Turingmaschinen und ihre Komplexität 19. Nichtdeterministische Turingmaschinen und ihre Komplexität Bei einem Turingmaschinenprogramm P aus bedingten Anweisungen wird durch die Forderung i a b B j i a b B j i a sichergestellt, dass zu jeder

Mehr

Komplexität und Komplexitätsklassen

Komplexität und Komplexitätsklassen Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 21 vom 21.01.2013 Komplexität und Komplexitätsklassen Die meisten Probleme mit denen wir zu tun haben sind entscheidbar.

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V7, 5.12.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Ein Induktionsbeweis über Schuhgrößen

Ein Induktionsbeweis über Schuhgrößen Was ist FALSCH an folgendem Beweis? Behauptung: Ein Induktionsbeweis über Schuhgrößen Alle Teilnehmer dieser Vorlesung haben gleiche Schuhgröße. Wir formalisieren diese Aussage, um einen Induktionsbeweis

Mehr

Komplexitätstheorie. Markus Lohrey. Wintersemester 2009/2010. Universität Leipzig 09/STU-KT/

Komplexitätstheorie. Markus Lohrey. Wintersemester 2009/2010. Universität Leipzig  09/STU-KT/ Komplexitätstheorie Markus Lohrey Universität Leipzig http://www.informatik.uni-leipzig.de/alg/lehre/ws08 09/STU-KT/ Wintersemester 2009/2010 Markus Lohrey (Universität Leipzig) Komplexitätstheorie WS

Mehr

Theoretische Informatik 2

Theoretische Informatik 2 Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10 Zeitkomplexität von Turingmaschinen Die Laufzeit einer NTM M bei Eingabe x ist die maximale Anzahl

Mehr

Formale Grundlagen der Informatik 1 Kapitel 20

Formale Grundlagen der Informatik 1 Kapitel 20 Formale Grundlagen der Informatik 1 Kapitel 20 Zeit- und Platzkomplexität Frank Heitmann [email protected] 27. Juni 2016 Frank Heitmann [email protected] 1/52 Motivation

Mehr

Komplexitätstheorie. Kapitel 5: Platzkomplexität

Komplexitätstheorie. Kapitel 5: Platzkomplexität Komplexitätstheorie Kapitel 5: Platzkomplexität Einleitung Platzverbrauch: der temporäre Zwischenspeicher, der während der Berechnung verwendet wird (Datenstrukturen, Rekursionsstack, etc.) Im Fall von

Mehr

Sortieren & Co. KIT Institut für Theoretische Informatik

Sortieren & Co. KIT Institut für Theoretische Informatik Sortieren & Co KIT Institut für Theoretische Informatik 1 Formaler Gegeben: Elementfolge s = e 1,...,e n Gesucht: s = e 1,...,e n mit s ist Permutation von s e e 1 n für eine Totalordnung ` ' KIT Institut

Mehr

Speicherplatz-Komplexität 1 / 30

Speicherplatz-Komplexität 1 / 30 Speicherplatz-Komplexität 1 / 30 Speicherplatz-Komplexität Warum sollte uns die Ressource Speicherplatz interessieren? Um die Komplexität der Berechnung von Gewinnstrategien für viele nicht-triviale 2-Personen

Mehr

P, NP und NP -Vollständigkeit

P, NP und NP -Vollständigkeit P, NP und NP -Vollständigkeit Mit der Turing-Maschine haben wir einen Formalismus kennengelernt, um über das Berechenbare nachdenken und argumentieren zu können. Wie unsere bisherigen Automatenmodelle

Mehr

Speicherplatz-Komplexität 1 / 78

Speicherplatz-Komplexität 1 / 78 Speicherplatz-Komplexität 1 / 78 Speicherplatz-Komplexität Warum sollte uns die Ressource Speicherplatz interessieren? Um die Komplexität der Berechnung von Gewinnstrategien für viele nicht-triviale 2-Personen

Mehr

Übungen zur Vorlesung Datenstrukturen und Algorithmen SS 07 Beispiellösung Blatt 5

Übungen zur Vorlesung Datenstrukturen und Algorithmen SS 07 Beispiellösung Blatt 5 Kamil Swierkot Paderborn, den 01.06.2007 Aufgabe 17 Übungen zur Vorlesung Datenstrukturen und Algorithmen SS 07 Beispiellösung Blatt 5 Bei der Optimierungsvariante des SubSetSum Problems wird bei der Eingabe

Mehr

3. Übungsblatt zu Algorithmen I im SoSe 2017

3. Übungsblatt zu Algorithmen I im SoSe 2017 Karlsruher Institut für Technologie Prof. Dr. Jörn Müller-Quade Institut für Theoretische Informatik Björn Kaidel, Sebastian Schlag, Sascha Witt 3. Übungsblatt zu Algorithmen I im SoSe 2017 http://crypto.iti.kit.edu/index.php?id=799

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Übung 1 Stephan Friedrichs Technische Universität Braunschweig, IBR 31. Oktober 2013 Programm für Heute 1 Organisatorisches 2 Übung Probleme und Instanzen Algorithmen (Pseudocode,

Mehr

Algorithmen und Datenstrukturen 2. Stefan Florian Palkovits, BSc Juni 2016

Algorithmen und Datenstrukturen 2. Stefan Florian Palkovits, BSc Juni 2016 Algorithmen und Datenstrukturen 2 Übung 1 Stefan Florian Palkovits, BSc 0926364 [email protected] 12. Juni 2016 Aufgabe 1: Es existiert eine Reduktion von Problem A auf Problem B in O(n 3 +

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Algorithmen mit konstantem Platzbedarf: Die Klasse REG

Algorithmen mit konstantem Platzbedarf: Die Klasse REG Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 26. Vorlesung Greedy- und Approximationsalgorithmen Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Operations Research Optimierung für Wirtschaftsabläufe:

Mehr

Komplexitätstheorie. Kapitel 5: Platzkomplexität

Komplexitätstheorie. Kapitel 5: Platzkomplexität Komplexitätstheorie Kapitel 5: Platzkomplexität Einleitung Platzverbrauch: der temporäre Zwischenspeicher, der während der Berechnung verwendet wird (Datenstrukturen, Rekursionsstack, etc.) Im Fall von

Mehr

Komplexitätstheorie. Arfst Nickelsen Universität zu Lübeck Institut für Theoretische Informatik Wintersemester 2006/07. Stand 8.

Komplexitätstheorie. Arfst Nickelsen Universität zu Lübeck Institut für Theoretische Informatik Wintersemester 2006/07. Stand 8. Komplexitätstheorie Arfst Nickelsen Universität zu Lübeck Institut für Theoretische Informatik Wintersemester 2006/07 Stand 8. Februar 2007 Inhaltsverzeichnis 1 Probleme, Ressourcen, Klassen 4 1.1 Probleme,

Mehr

Speicherplatz-Komplexität 1 / 64

Speicherplatz-Komplexität 1 / 64 Speicherplatz-Komplexität 1 / 64 Sublogarithmischer Speicher (1/3) Für Eingaben der Länge n wird logarithmischer Speicher O(log 2 n) benötigt, um sich an eine Eingabeposition zu erinnern. Und wenn nur

Mehr

Lösungen zur Vorlesung Berechenbarkeit und Komplexität

Lösungen zur Vorlesung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin

Mehr

Der Satz von Rice. Dann ist C(S) eine unentscheidbare Menge.

Der Satz von Rice. Dann ist C(S) eine unentscheidbare Menge. Der Satz von Rice Satz: Sei R die Klasse der (Turing-) berechenbaren Funktionen, S eine nichttriviale Teilmenge von R und C(S) ={w Mw berechnet eine Funktion aus S}. Dann ist C(S) eine unentscheidbare

Mehr

Aufgaben aus den Übungsgruppen 8(Lösungsvorschläge)

Aufgaben aus den Übungsgruppen 8(Lösungsvorschläge) Universität des Saarlandes Theoretische Informatik (WS 2015) Fakultät 6.2 Informatik Team der Tutoren Aufgaben aus den Übungsgruppen 8(Lösungsvorschläge) 1 Berechenbarkeitstheorie Aufgabe 8.1 (Wahr oder

Mehr

Reelle Komplexität - Grundlagen II

Reelle Komplexität - Grundlagen II Reelle Komplexität - Grundlagen II Julian Bitterlich Themenübersicht: Beziehungen zwischen den Komplexitätsklassen Savitchs Theorem conp und Charakterisierungen von NP und conp Reduktion, Vollständigkeit,

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 18/19

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 18/19 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 18/19 Ausgabe 8. Januar 2019 Abgabe 22. Januar 2019, 11:00 Uhr (im

Mehr

NP-vollständige Probleme

NP-vollständige Probleme Effiziente Algorithmen Lösen NP-vollständiger Probleme 256 NP-vollständige Probleme Keine polynomiellen Algorithmen, falls P NP. Viele wichtige Probleme sind NP-vollständig. Irgendwie müssen sie gelöst

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 25. Vorlesung Dynamisches Programmieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Klausurvorbereitung Tipp: Schreiben Sie sich alle Fragen

Mehr

Einfache Zusammenhänge

Einfache Zusammenhänge Einfache Zusammenhänge Eine TM, die t(n) Zeit (d.h. Schritte) zur Verfügung hat, kann nicht mehr als t(n) Bandzellen besuchen. Umgekehrt gilt dies nicht! Platz kann wiederverwendet werden, Zeit nicht!

Mehr

Lösungen von Übungsblatt 12

Lösungen von Übungsblatt 12 Lösungen von Übungsblatt 12 Algorithmen (WS 2018, Ulrike von Luxburg) Lösungen zu Aufgabe 1 Eine (kanonische) Möglichkeit, die Branch-Schritte auszuführen ergibt sich wie folgt: Das ursprüngliche Problem

Mehr

Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF

Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF Einflussgrößen bei der Bildung von Komplexitätsklassen Das zugrunde liegende Berechnungsmodell (Turingmaschine, Registermaschine

Mehr

Referatsausarbeitung

Referatsausarbeitung Referatsausarbeitung Thema: Das zweite LBA-Problem Vorlesung: Sequentielle und parallele Komplexitätstheorie Übung Dozent Datum Referenten Dr. Renate Winter 08.01.1998 Marcus Hörning Michael Muth Ronny

Mehr

Informatik III - WS07/08

Informatik III - WS07/08 Informatik III - WS07/08 Kapitel 5 1 Informatik III - WS07/08 Prof. Dr. Dorothea Wagner [email protected] Kapitel 5 : Grammatiken und die Chomsky-Hierarchie Informatik III - WS07/08 Kapitel 5 2 Definition

Mehr

Abschlusseigenschaften

Abschlusseigenschaften Abschlusseigenschaften Die Klasse der regulären Sprachen hat eine große Zahl nützlicher Eigenschaften, insbesondere die folgenden Abschlusseigenschaften: Satz: Die Klasse der regulären Sprachen ist abgeschlossen

Mehr

10. Übungsblatt zu Algorithmen I im SS 2010

10. Übungsblatt zu Algorithmen I im SS 2010 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders G.V. Batz, C. Schulz, J. Speck 0. Übungsblatt zu Algorithmen I im SS 00 http//algo.iti.kit.edu/algorithmeni.php

Mehr

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 3

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 3 UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 3 Algorithmen mit Gedächtnis Besonderheit Beispiele Typische Algorithmen Realisierungsvarianten Institut für Pervasive Computing Johannes

Mehr

2.4 Starke Zusammenhangskomponenten in Digraphen

2.4 Starke Zusammenhangskomponenten in Digraphen Starke Zusammenhangskomponenten Einleitung 2.4 Starke Zusammenhangskomponenten in Digraphen Definition 2.4.1 Zwei Knoten v und w in einem Digraphen G heißen äquivalent, wenn v w und w v gilt. Notation:

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 7. Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2018/2019 1 / 43 Überblick Überblick Ein randomisierter Algorithmus

Mehr

2. Teil: Diskrete Strukturen

2. Teil: Diskrete Strukturen 2. Teil: Diskrete Strukturen Kenntnis der Zahlenbereiche N, Z, Q, R, C setzen wir voraus. Axiomatische Einführung von N über Peano-Axiome. Z aus N leicht abzuleiten. Wie wird Q definiert? R ist der erste

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 7. Random Walks Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 43 Überblick Überblick Ein randomisierter

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /

Mehr

2.4 Kontextsensitive und Typ 0-Sprachen

2.4 Kontextsensitive und Typ 0-Sprachen Definition 2.43 Eine Typ 1 Grammatik ist in Kuroda Normalform, falls alle Regeln eine der folgenden 4 Formen haben: Dabei: A, B, C, D V und a Σ. Satz 2.44 A a, A B, A BC, AB CD. Für jede Typ 1 Grammatik

Mehr

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Andreas Moser Dietmar Ebner Christian Schauer Markus Bauer 9. Dezember 2003 1 Einführung Der in der Vorlesung gezeigte Algorithmus für das Steiner

Mehr

LOOP-Programme: Syntaktische Komponenten

LOOP-Programme: Syntaktische Komponenten LOOP-Programme: Syntaktische Komponenten LOOP-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: 0 1 2... Operationssymbole: + Trennsymbole: ; :=

Mehr

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008 Problemseminar Komplexitätstheorie und Kryptographie Martin Huschenbett Student am Institut für Informatik an der Universität Leipzig 30. Oktober 2008 1 / 33 Gliederung 1 Randomisierte Algorithmen und

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informatik I Einheit 4.3 Eigenschaften von L 0 /L 1 -Sprachen 1. Abschlußeigenschaften 2. Prüfen von Eigenschaften 3. Grenzen der Sprachklassen Sprachklassen Semi-entscheidbare Sprache Sprache,

Mehr

Kurs 1612 Konzepte imperativer Programmierung Musterlösung zur Nachklausur am

Kurs 1612 Konzepte imperativer Programmierung Musterlösung zur Nachklausur am 1 Aufgabe 1 a) Da Effizienzbetrachtungen bei der Lösung der Aufgabe keine Rolle spielen, wählen wir einen einfachen, aber ineffizienten Algorithmus mit zwei ineinander verschachtelten for-schleifen. Dadiefor-Schleifen

Mehr

Präfix-Summe. Das Schweizer Offiziersmesser der Parallelen Algorithmen. Parallele Rechenmodelle Präfix-Summe Brents Lemma Anwendungen

Präfix-Summe. Das Schweizer Offiziersmesser der Parallelen Algorithmen. Parallele Rechenmodelle Präfix-Summe Brents Lemma Anwendungen Präfix-Summe Das Schweizer Offiziersmesser der Parallelen Algorithmen Parallele Rechenmodelle Präfix-Summe Brents Lemma Anwendungen Parallele Rechenmodelle Beispiel: Summieren von Zahlen Verlauf des Rechenprozesses:

Mehr

Algorithmen I - Tutorium 28 Nr. 2

Algorithmen I - Tutorium 28 Nr. 2 Algorithmen I - Tutorium 28 Nr. 2 11.05.2017: Spaß mit Invarianten (die Zweite), Rekurrenzen / Mastertheorem und Merging Marc Leinweber [email protected] INSTITUT FÜR THEORETISCHE INFORMATIK

Mehr

Einführung in die Theoretische Informatik Tutorium IX

Einführung in die Theoretische Informatik Tutorium IX Einführung in die Theoretische Informatik Tutorium IX Michael R. Jung 16. & 17. 12. 2014 EThI - Tutorium IX 1 1 Entscheidbarkeit, Semi-Entscheidbarkeit und Unentscheidbarkeit 2 EThI - Tutorium IX 2 Definitionen

Mehr

Mehrband-Turingmaschinen

Mehrband-Turingmaschinen Mehrband-Turingmaschinen Definition wie bei 1-Band-TM, nur mehrere Bänder. Dann natürlich pro Band ein Schreib-/Lesekopf. Übergangsfunktion von Z k nach Z k {L, R, N} k. Satz: Zu jeder Mehrband-Turingmaschine

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Suchen und Amortisierte Analyse Heute: Suchen / Schreibtischtest Amortisierte Analyse Nächste

Mehr

Johannes Blömer. Skript zur Vorlesung. Komplexitätstheorie. Universität Paderborn

Johannes Blömer. Skript zur Vorlesung. Komplexitätstheorie. Universität Paderborn Johannes Blömer Skript zur Vorlesung Komplexitätstheorie Universität Paderborn Sommersemester 2010 Inhaltsverzeichnis 1 Einleitung 2 2 Turingmaschinen, Zeit- und Platzkomplexität 5 2.1 Turingmaschinen.........................

Mehr

2.2 Einfache Datenstrukturen

2.2 Einfache Datenstrukturen 2.2 Einfache Datenstrukturen Konstante und Variable Die Begriffe "Konstante" und "Variable" haben zunächst auch in der Informatik dieselbe grundsätzliche Bedeutung wie in der übrigen Mathematik. Variablen

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 10. Motivation. Motivation. Bisher haben wir mit TMs. Probleme gelöst/entschieden/berechnet.

Motivation. Formale Grundlagen der Informatik 1 Kapitel 10. Motivation. Motivation. Bisher haben wir mit TMs. Probleme gelöst/entschieden/berechnet. bei TMs bei Computern Formale Grundlagen der Informatik 1 Kapitel 10 Frank Heitmann [email protected] Bisher haben wir mit TMs Probleme gelöst/entschieden/berechnet. Dabei war entscheidbar

Mehr

Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)

Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Technische Universität München Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften

Mehr

Herzlich willkommen!!!

Herzlich willkommen!!! Komplexitätstheorie Sommersemester 2013 Prof. Dr. Georg Schnitger AG Theoretische Informatik Johann Wolfgang Goethe-Universität Frankfurt am Main Herzlich willkommen!!! Einführung 1 / 30 Kapitel 1: Einführung

Mehr

GOTO simuliert Turingmaschinen

GOTO simuliert Turingmaschinen GOTO simuliert Turingmaschinen Wir wissen bisher: LOOP ( GOTO = WHILE TM Jetzt zeigen wir, dass auch WHILE = TM gilt: Die Turingmaschine M =(Z,,,,z 1,, E) berechne f. Wir simulieren M mit einem GOTO-Programm

Mehr

Algorithmen und Datenstrukturen Tutorium Übungsaufgaben

Algorithmen und Datenstrukturen Tutorium Übungsaufgaben Algorithmen und Datenstrukturen Tutorium Übungsaufgaben AlgoDat - Übungsaufgaben 1 1 Landau-Notation Aufgabe Lösung 2 Rekurrenzen Aufgabe 3 Algorithmenentwurf und -analyse Aufgabe AlgoDat - Übungsaufgaben

Mehr

Randomisierte Algorithmen 2. Erste Beispiele

Randomisierte Algorithmen 2. Erste Beispiele Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest

Mehr

Parallelisierbarkeit. - Was soll parallelisierbar überhaupt bedeuten? 2 / 38

Parallelisierbarkeit. - Was soll parallelisierbar überhaupt bedeuten? 2 / 38 Parallelität 1 / 38 Parallelisierbarkeit - Welche Probleme in P sind parallelisierbar? Gibt es vom Standpunkt der Parallelisierbarkeit schwierigste Probleme in P? Gibt es dazu einen Reduktionsbegriff?

Mehr

Beweis des Satzes von Euler

Beweis des Satzes von Euler (Z/nZ) hat '(n) Elemente g 1, g 2,...,g '(n). Nach Teil c) des Satzes aus Einheit 26 definiert x 7! ax eine Bijektion auf Z/nZ und daher auch auf (Z/nZ). Also gilt: Beweis des Satzes von Euler (Z/nZ) =

Mehr