Der Satz von Savitch
|
|
|
- Mathias Sauer
- vor 6 Jahren
- Abrufe
Transkript
1 Der Satz von Savitch Satz (Savitch, 1970): Sei s 2 (log(n)). Danngilt NSPACE(s) DSPACE(s 2 ). Wir führen den Beweis für den Fall, dass s eine platzkonstruierbare Funktion ist: Sei M eine NTM, deren Platzbedarf durch s beschränkt ist. Sei Conf(M, w) die Menge aller Konfigurationen der Größe maximal s( w ). (Beachte: s( w ) können wir ermitteln.) Ohne Einschränkung gehen wir davon aus, dass Conf(M, w) genau eine akzeptierende Konfiguration f enthält. Einheit 33 Folie 33.1
2 Nun sollen wir herausfinden, ob von der Startkonfiguration aus die Konfiguration f erreichbar ist. Wir können diese Aufgabe als Erreichbarkeitsproblem auf dem Graph der Konfigurationen auffassen. Ein Prädikat namens Reach(, Beweis (Satz von Savitch) Reach(,, i) () 9k apple 2 i :, i) sei wie folgt definiert: Aus Konfiguration kann man in k Schritten zur Konfiguration gelangen. Reach(,, i) kann rekursiv so berechnet werden: Reach(,, i) () 9 2 Conf(M, w) :Reach(,, i 1) ^ Reach(,,i 1) Einheit 33 Folie 33.2
3 Algorithmus (zum Beweis) Der rekursive Reach-Algorithmus hat einen Haken: Wir haben in der deterministischen Simulation keine Möglichkeit, den Existenzquantor durch Raten oder Ähnliches aufzulösen. Unser Trick besteht ganz einfach darin, alle Möglichkeiten der Reihe nach durchzuprobieren: FUNCTION Reach(,, i): BOOLEAN; b := FALSE; IF i = 0 THEN b := [ = OR ` ] ELSE FORALL 2 Conf (M, w) DO IF (NOT b) AND Reach(,, i 1) THEN b := Reach(,,i 1); RETURN b END FUNCTION Einheit 33 Folie 33.3
4 Wir behaupten, dass der für Reach(,, i) benötigte Platz für geeignete Konstante c beschränkt ist durch c (i + 1) s( w ) und führen hierfür einen Induktionsbeweis durch: i = 0: Der Aufruf Reach(,, 0) hat einen Speicherbedarf in O(s( w )). Dasistleichtzuüberprüfen. i > 0: Platzbedarf Die rekursiven Aufrufe brauchen nach Induktionsvoraussetzung je maximal c i s( w ) Speicherplatz. Dazu kommt ein Platzbedarf in O(s( w )) für lokale Variablen, wie z.b.. Wirgehendavonaus, dassdie beteiligten Konstanten gleich sind (gegebenenfalls wählt man die höhere der beiden Konstanten) und erhalten c i s( w )+c s( w ) =c (i + 1) s( w ). Einheit 33 Folie 33.4
5 Beweis (Abschluss) Um für gegebene Eingabe w zu entscheiden, ob w 2 L(M) gilt, genügt es also, den Wert k s( w ) zu berechnen, wobei k so gewählt sei, dass es maximal 2 k s( w ) verschiedene erreichbare Konfigurationen gibt, und dann folgenden Aufruf zu nutzen: Reach( w, f, k s( w )) Dabei sei w die Anfangskonfiguration von M bei Eingabe w. Der Gesamtplatzbedarf liegt offensichtlich in O(s( w ) 2 ). Man beachte aber, dass hierbei Platzkonstruierbarkeit von s benutzt wurde! Einheit 33 Folie 33.5
6 NEIN: Ist Platzkonstruierbarkeit nötig? Statt die Schranke s( w ) zu kennen, genügt es uns, den tatsächlichen Platzbedarf von M bei Eingabe w zu berechnen! Wie geht das? Starte mit n = Länge der Startkonfiguration (also z.b. n = w + c für geeignete Konstante c) Nutze Reach-Funktion, um herauszufinden, ob es erreichbare Konfigurationen der Länge mindestens n + 1 gibt. Wenn ja: Erhöhe n um 1. So ermitteln wir den realen Speicherbedarf ohne Überschreitung der Platzschranke. Einheit 33 Folie 33.6
7 1) Das Grapherreichbarkeitsproblem liegt in DSPACE(log 2 (n)). (Das folgt aus dem Satz von Savitch, weil das Grapherreichbarkeitsproblem in NSPACE(log n) liegt.) 2) PSPACE kann sowohl als S S k 1 Folgerungen aus dem Satz von Savitch k 1 NSPACE(n k ) definiert werden. DSPACE(n k ) als auch als (Wegen NSPACE(n k ) DSPACE(n 2k ) sind diese beiden Vereinigungen gleich.) Einheit 33 Folie 33.7
Willkommen zur Vorlesung Komplexitätstheorie
Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V5, 21.11.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar
Satz von Hennie und Stearns
Satz von Hennie und Stearns Auch für Zeitklassen wäre es für viele Anwendungen praktisch, eine Form der Bandreduktion verwenden zu können. Ein naiver Zugang (mit Spuren) liefert die Beziehung DTIME(f )
Kapitel II : Zeit- und platzbeschränkte Berechnungen
Kapitel II : Zeit- und platzbeschränkte Berechnungen Prof. Dr. F. Otto (Universität Kassel) Komplexitätstheorie 41 / 286 Rechenzeit- und Speicherplatzbedarf bei Turingmaschinen Komplexitätsklassen Grundlegende
Euklidischer Algorithmus
Euklidischer Algorithmus Ermitteln des größten gemeinsamen Teilers mit Euklid: function ggt (m, n) Hierbei ist m begin 0undn 0vorausgesetzt. if m = 0 then return n else return ggt (n mod m, m) fi end Man
Theoretische Informatik 1
Theoretische Informatik 1 Teil 5 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Problemklassen 2 NTM Nichtdeterministische Algorithmen 3 Problemarten Konstruktionsprobleme
19. Nichtdeterministische Turingmaschinen und ihre Komplexität
19. Nichtdeterministische Turingmaschinen und ihre Komplexität Bei einem Turingmaschinenprogramm P aus bedingten Anweisungen wird durch die Forderung i a b B j i a b B j i a sichergestellt, dass zu jeder
Komplexität und Komplexitätsklassen
Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 21 vom 21.01.2013 Komplexität und Komplexitätsklassen Die meisten Probleme mit denen wir zu tun haben sind entscheidbar.
Willkommen zur Vorlesung Komplexitätstheorie
Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V7, 5.12.2011 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar
Ein Induktionsbeweis über Schuhgrößen
Was ist FALSCH an folgendem Beweis? Behauptung: Ein Induktionsbeweis über Schuhgrößen Alle Teilnehmer dieser Vorlesung haben gleiche Schuhgröße. Wir formalisieren diese Aussage, um einen Induktionsbeweis
Komplexitätstheorie. Markus Lohrey. Wintersemester 2009/2010. Universität Leipzig 09/STU-KT/
Komplexitätstheorie Markus Lohrey Universität Leipzig http://www.informatik.uni-leipzig.de/alg/lehre/ws08 09/STU-KT/ Wintersemester 2009/2010 Markus Lohrey (Universität Leipzig) Komplexitätstheorie WS
Theoretische Informatik 2
Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10 Zeitkomplexität von Turingmaschinen Die Laufzeit einer NTM M bei Eingabe x ist die maximale Anzahl
Formale Grundlagen der Informatik 1 Kapitel 20
Formale Grundlagen der Informatik 1 Kapitel 20 Zeit- und Platzkomplexität Frank Heitmann [email protected] 27. Juni 2016 Frank Heitmann [email protected] 1/52 Motivation
Komplexitätstheorie. Kapitel 5: Platzkomplexität
Komplexitätstheorie Kapitel 5: Platzkomplexität Einleitung Platzverbrauch: der temporäre Zwischenspeicher, der während der Berechnung verwendet wird (Datenstrukturen, Rekursionsstack, etc.) Im Fall von
Sortieren & Co. KIT Institut für Theoretische Informatik
Sortieren & Co KIT Institut für Theoretische Informatik 1 Formaler Gegeben: Elementfolge s = e 1,...,e n Gesucht: s = e 1,...,e n mit s ist Permutation von s e e 1 n für eine Totalordnung ` ' KIT Institut
Speicherplatz-Komplexität 1 / 30
Speicherplatz-Komplexität 1 / 30 Speicherplatz-Komplexität Warum sollte uns die Ressource Speicherplatz interessieren? Um die Komplexität der Berechnung von Gewinnstrategien für viele nicht-triviale 2-Personen
P, NP und NP -Vollständigkeit
P, NP und NP -Vollständigkeit Mit der Turing-Maschine haben wir einen Formalismus kennengelernt, um über das Berechenbare nachdenken und argumentieren zu können. Wie unsere bisherigen Automatenmodelle
Speicherplatz-Komplexität 1 / 78
Speicherplatz-Komplexität 1 / 78 Speicherplatz-Komplexität Warum sollte uns die Ressource Speicherplatz interessieren? Um die Komplexität der Berechnung von Gewinnstrategien für viele nicht-triviale 2-Personen
Übungen zur Vorlesung Datenstrukturen und Algorithmen SS 07 Beispiellösung Blatt 5
Kamil Swierkot Paderborn, den 01.06.2007 Aufgabe 17 Übungen zur Vorlesung Datenstrukturen und Algorithmen SS 07 Beispiellösung Blatt 5 Bei der Optimierungsvariante des SubSetSum Problems wird bei der Eingabe
3. Übungsblatt zu Algorithmen I im SoSe 2017
Karlsruher Institut für Technologie Prof. Dr. Jörn Müller-Quade Institut für Theoretische Informatik Björn Kaidel, Sebastian Schlag, Sascha Witt 3. Übungsblatt zu Algorithmen I im SoSe 2017 http://crypto.iti.kit.edu/index.php?id=799
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Übung 1 Stephan Friedrichs Technische Universität Braunschweig, IBR 31. Oktober 2013 Programm für Heute 1 Organisatorisches 2 Übung Probleme und Instanzen Algorithmen (Pseudocode,
Algorithmen und Datenstrukturen 2. Stefan Florian Palkovits, BSc Juni 2016
Algorithmen und Datenstrukturen 2 Übung 1 Stefan Florian Palkovits, BSc 0926364 [email protected] 12. Juni 2016 Aufgabe 1: Es existiert eine Reduktion von Problem A auf Problem B in O(n 3 +
Die Komplexitätsklassen P und NP
Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und
Algorithmen mit konstantem Platzbedarf: Die Klasse REG
Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Wintersemester 2012/13 26. Vorlesung Greedy- und Approximationsalgorithmen Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Operations Research Optimierung für Wirtschaftsabläufe:
Komplexitätstheorie. Kapitel 5: Platzkomplexität
Komplexitätstheorie Kapitel 5: Platzkomplexität Einleitung Platzverbrauch: der temporäre Zwischenspeicher, der während der Berechnung verwendet wird (Datenstrukturen, Rekursionsstack, etc.) Im Fall von
Komplexitätstheorie. Arfst Nickelsen Universität zu Lübeck Institut für Theoretische Informatik Wintersemester 2006/07. Stand 8.
Komplexitätstheorie Arfst Nickelsen Universität zu Lübeck Institut für Theoretische Informatik Wintersemester 2006/07 Stand 8. Februar 2007 Inhaltsverzeichnis 1 Probleme, Ressourcen, Klassen 4 1.1 Probleme,
Speicherplatz-Komplexität 1 / 64
Speicherplatz-Komplexität 1 / 64 Sublogarithmischer Speicher (1/3) Für Eingaben der Länge n wird logarithmischer Speicher O(log 2 n) benötigt, um sich an eine Eingabeposition zu erinnern. Und wenn nur
Lösungen zur Vorlesung Berechenbarkeit und Komplexität
Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin
Der Satz von Rice. Dann ist C(S) eine unentscheidbare Menge.
Der Satz von Rice Satz: Sei R die Klasse der (Turing-) berechenbaren Funktionen, S eine nichttriviale Teilmenge von R und C(S) ={w Mw berechnet eine Funktion aus S}. Dann ist C(S) eine unentscheidbare
Aufgaben aus den Übungsgruppen 8(Lösungsvorschläge)
Universität des Saarlandes Theoretische Informatik (WS 2015) Fakultät 6.2 Informatik Team der Tutoren Aufgaben aus den Übungsgruppen 8(Lösungsvorschläge) 1 Berechenbarkeitstheorie Aufgabe 8.1 (Wahr oder
Reelle Komplexität - Grundlagen II
Reelle Komplexität - Grundlagen II Julian Bitterlich Themenübersicht: Beziehungen zwischen den Komplexitätsklassen Savitchs Theorem conp und Charakterisierungen von NP und conp Reduktion, Vollständigkeit,
Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 18/19
Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 18/19 Ausgabe 8. Januar 2019 Abgabe 22. Januar 2019, 11:00 Uhr (im
NP-vollständige Probleme
Effiziente Algorithmen Lösen NP-vollständiger Probleme 256 NP-vollständige Probleme Keine polynomiellen Algorithmen, falls P NP. Viele wichtige Probleme sind NP-vollständig. Irgendwie müssen sie gelöst
Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I
Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Wintersemester 2012/13 25. Vorlesung Dynamisches Programmieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Klausurvorbereitung Tipp: Schreiben Sie sich alle Fragen
Einfache Zusammenhänge
Einfache Zusammenhänge Eine TM, die t(n) Zeit (d.h. Schritte) zur Verfügung hat, kann nicht mehr als t(n) Bandzellen besuchen. Umgekehrt gilt dies nicht! Platz kann wiederverwendet werden, Zeit nicht!
Lösungen von Übungsblatt 12
Lösungen von Übungsblatt 12 Algorithmen (WS 2018, Ulrike von Luxburg) Lösungen zu Aufgabe 1 Eine (kanonische) Möglichkeit, die Branch-Schritte auszuführen ergibt sich wie folgt: Das ursprüngliche Problem
Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF
Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF Einflussgrößen bei der Bildung von Komplexitätsklassen Das zugrunde liegende Berechnungsmodell (Turingmaschine, Registermaschine
Referatsausarbeitung
Referatsausarbeitung Thema: Das zweite LBA-Problem Vorlesung: Sequentielle und parallele Komplexitätstheorie Übung Dozent Datum Referenten Dr. Renate Winter 08.01.1998 Marcus Hörning Michael Muth Ronny
Informatik III - WS07/08
Informatik III - WS07/08 Kapitel 5 1 Informatik III - WS07/08 Prof. Dr. Dorothea Wagner [email protected] Kapitel 5 : Grammatiken und die Chomsky-Hierarchie Informatik III - WS07/08 Kapitel 5 2 Definition
Abschlusseigenschaften
Abschlusseigenschaften Die Klasse der regulären Sprachen hat eine große Zahl nützlicher Eigenschaften, insbesondere die folgenden Abschlusseigenschaften: Satz: Die Klasse der regulären Sprachen ist abgeschlossen
10. Übungsblatt zu Algorithmen I im SS 2010
Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders G.V. Batz, C. Schulz, J. Speck 0. Übungsblatt zu Algorithmen I im SS 00 http//algo.iti.kit.edu/algorithmeni.php
UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 3
UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 3 Algorithmen mit Gedächtnis Besonderheit Beispiele Typische Algorithmen Realisierungsvarianten Institut für Pervasive Computing Johannes
2.4 Starke Zusammenhangskomponenten in Digraphen
Starke Zusammenhangskomponenten Einleitung 2.4 Starke Zusammenhangskomponenten in Digraphen Definition 2.4.1 Zwei Knoten v und w in einem Digraphen G heißen äquivalent, wenn v w und w v gilt. Notation:
Randomisierte Algorithmen
Randomisierte Algorithmen Randomisierte Algorithmen 7. Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2018/2019 1 / 43 Überblick Überblick Ein randomisierter Algorithmus
2. Teil: Diskrete Strukturen
2. Teil: Diskrete Strukturen Kenntnis der Zahlenbereiche N, Z, Q, R, C setzen wir voraus. Axiomatische Einführung von N über Peano-Axiome. Z aus N leicht abzuleiten. Wie wird Q definiert? R ist der erste
Randomisierte Algorithmen
Randomisierte Algorithmen Randomisierte Algorithmen 7. Random Walks Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 43 Überblick Überblick Ein randomisierter
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /
2.4 Kontextsensitive und Typ 0-Sprachen
Definition 2.43 Eine Typ 1 Grammatik ist in Kuroda Normalform, falls alle Regeln eine der folgenden 4 Formen haben: Dabei: A, B, C, D V und a Σ. Satz 2.44 A a, A B, A BC, AB CD. Für jede Typ 1 Grammatik
Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem
Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Andreas Moser Dietmar Ebner Christian Schauer Markus Bauer 9. Dezember 2003 1 Einführung Der in der Vorlesung gezeigte Algorithmus für das Steiner
LOOP-Programme: Syntaktische Komponenten
LOOP-Programme: Syntaktische Komponenten LOOP-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: 0 1 2... Operationssymbole: + Trennsymbole: ; :=
Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008
Problemseminar Komplexitätstheorie und Kryptographie Martin Huschenbett Student am Institut für Informatik an der Universität Leipzig 30. Oktober 2008 1 / 33 Gliederung 1 Randomisierte Algorithmen und
Theoretische Informatik I
Theoretische Informatik I Einheit 4.3 Eigenschaften von L 0 /L 1 -Sprachen 1. Abschlußeigenschaften 2. Prüfen von Eigenschaften 3. Grenzen der Sprachklassen Sprachklassen Semi-entscheidbare Sprache Sprache,
Kurs 1612 Konzepte imperativer Programmierung Musterlösung zur Nachklausur am
1 Aufgabe 1 a) Da Effizienzbetrachtungen bei der Lösung der Aufgabe keine Rolle spielen, wählen wir einen einfachen, aber ineffizienten Algorithmus mit zwei ineinander verschachtelten for-schleifen. Dadiefor-Schleifen
Präfix-Summe. Das Schweizer Offiziersmesser der Parallelen Algorithmen. Parallele Rechenmodelle Präfix-Summe Brents Lemma Anwendungen
Präfix-Summe Das Schweizer Offiziersmesser der Parallelen Algorithmen Parallele Rechenmodelle Präfix-Summe Brents Lemma Anwendungen Parallele Rechenmodelle Beispiel: Summieren von Zahlen Verlauf des Rechenprozesses:
Algorithmen I - Tutorium 28 Nr. 2
Algorithmen I - Tutorium 28 Nr. 2 11.05.2017: Spaß mit Invarianten (die Zweite), Rekurrenzen / Mastertheorem und Merging Marc Leinweber [email protected] INSTITUT FÜR THEORETISCHE INFORMATIK
Einführung in die Theoretische Informatik Tutorium IX
Einführung in die Theoretische Informatik Tutorium IX Michael R. Jung 16. & 17. 12. 2014 EThI - Tutorium IX 1 1 Entscheidbarkeit, Semi-Entscheidbarkeit und Unentscheidbarkeit 2 EThI - Tutorium IX 2 Definitionen
Mehrband-Turingmaschinen
Mehrband-Turingmaschinen Definition wie bei 1-Band-TM, nur mehrere Bänder. Dann natürlich pro Band ein Schreib-/Lesekopf. Übergangsfunktion von Z k nach Z k {L, R, N} k. Satz: Zu jeder Mehrband-Turingmaschine
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Suchen und Amortisierte Analyse Heute: Suchen / Schreibtischtest Amortisierte Analyse Nächste
Johannes Blömer. Skript zur Vorlesung. Komplexitätstheorie. Universität Paderborn
Johannes Blömer Skript zur Vorlesung Komplexitätstheorie Universität Paderborn Sommersemester 2010 Inhaltsverzeichnis 1 Einleitung 2 2 Turingmaschinen, Zeit- und Platzkomplexität 5 2.1 Turingmaschinen.........................
2.2 Einfache Datenstrukturen
2.2 Einfache Datenstrukturen Konstante und Variable Die Begriffe "Konstante" und "Variable" haben zunächst auch in der Informatik dieselbe grundsätzliche Bedeutung wie in der übrigen Mathematik. Variablen
Motivation. Formale Grundlagen der Informatik 1 Kapitel 10. Motivation. Motivation. Bisher haben wir mit TMs. Probleme gelöst/entschieden/berechnet.
bei TMs bei Computern Formale Grundlagen der Informatik 1 Kapitel 10 Frank Heitmann [email protected] Bisher haben wir mit TMs Probleme gelöst/entschieden/berechnet. Dabei war entscheidbar
Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)
Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Technische Universität München Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften
Herzlich willkommen!!!
Komplexitätstheorie Sommersemester 2013 Prof. Dr. Georg Schnitger AG Theoretische Informatik Johann Wolfgang Goethe-Universität Frankfurt am Main Herzlich willkommen!!! Einführung 1 / 30 Kapitel 1: Einführung
GOTO simuliert Turingmaschinen
GOTO simuliert Turingmaschinen Wir wissen bisher: LOOP ( GOTO = WHILE TM Jetzt zeigen wir, dass auch WHILE = TM gilt: Die Turingmaschine M =(Z,,,,z 1,, E) berechne f. Wir simulieren M mit einem GOTO-Programm
Algorithmen und Datenstrukturen Tutorium Übungsaufgaben
Algorithmen und Datenstrukturen Tutorium Übungsaufgaben AlgoDat - Übungsaufgaben 1 1 Landau-Notation Aufgabe Lösung 2 Rekurrenzen Aufgabe 3 Algorithmenentwurf und -analyse Aufgabe AlgoDat - Übungsaufgaben
Randomisierte Algorithmen 2. Erste Beispiele
Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest
Parallelisierbarkeit. - Was soll parallelisierbar überhaupt bedeuten? 2 / 38
Parallelität 1 / 38 Parallelisierbarkeit - Welche Probleme in P sind parallelisierbar? Gibt es vom Standpunkt der Parallelisierbarkeit schwierigste Probleme in P? Gibt es dazu einen Reduktionsbegriff?
Beweis des Satzes von Euler
(Z/nZ) hat '(n) Elemente g 1, g 2,...,g '(n). Nach Teil c) des Satzes aus Einheit 26 definiert x 7! ax eine Bijektion auf Z/nZ und daher auch auf (Z/nZ). Also gilt: Beweis des Satzes von Euler (Z/nZ) =
