Theoretische Informatik 2
|
|
|
- Kurt Beck
- vor 9 Jahren
- Abrufe
Transkript
1 Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10
2 Zeitkomplexität von Turingmaschinen Die Laufzeit einer NTM M bei Eingabe x ist die maximale Anzahl an Rechenschritten, die M(x) ausführt. Definition Die Laufzeit einer NTM M bei Eingabe x ist definiert als time M (x) = max{t 0 K : K x t K}, wobei max N = ist. Sei t : N N eine monoton wachsende Funktion. Dann ist M t(n)-zeitbeschränkt, falls für alle Eingaben x gilt: time M (x) t( x ). Die Zeitschranke t(n) beschränkt also die Laufzeit bei allen Eingaben der Länge n (worst-case Komplexität).
3 Zeitkomplexitätsklassen Wir fassen alle Sprachen und Funktionen, die in einer vorgegebenen Zeitschranke t(n) entscheidbar bzw. berechenbar sind, in folgenden Komplexitätsklassen zusammen. Definition Die in deterministischer Zeit t(n) entscheidbaren Sprachen bilden die Sprachklasse DTIME(t(n)) = {L(M) M ist eine t(n)-zeitbeschränkte DTM}. Die in nichtdeterministischer Zeit t(n) entscheidbaren Sprachen bilden die Sprachklasse NTIME(t(n)) = {L(M) M ist eine t(n)-zeitbeschränkte NTM}. Die in deterministischer Zeit t(n) berechenbaren Funktionen bilden die Funktionenklasse { } es gibt eine t(n)-zeitbeschränkte FTIME(t(n)) = f. DTM M, die f berechnet
4 Die wichtigsten Zeitkomplexitätsklassen Die wichtigsten deterministischen Zeitkomplexitätsklassen sind LINTIME = DTIME(cn + c) c 1 P = DTIME(n c + c) c 1 E = DTIME(2 cn+c ) c 1 EXP = DTIME(2 nc +c ) c 1 Linearzeit Polynomialzeit Lineare Exponentialzeit Exponentialzeit Die nichtdeterministischen Klassen NLINTIME, NP, NE, NEXP und die Funktionenklassen FP, FE, FEXP sind analog definiert. Für eine Klasse F von Funktionen sei DTIME(F) = t F DTIME(t(n)) (die Klassen NTIME(F) und FTIME(F) seien analog definiert).
5 Asymptotische Laufzeit und Landau-Notation Definition Seien f und g Funktionen von N nach R +. Wir schreiben f (n) = O(g(n)), falls es Zahlen n 0 und c gibt mit n n 0 : f (n) c g(n). Bedeutung: f wächst nicht wesentlich schneller als g. Formal bezeichnet der Term O(g(n)) die Klasse aller Funktionen f, die obige Bedingung erfüllen. Die Gleichung f (n) = O(g(n)) drückt also in Wahrheit eine Element-Beziehung f O(g(n)) aus. O-Terme können auch auf der linken Seite vorkommen. In diesem Fall wird eine Inklusionsbeziehung ausgedrückt. So steht n 2 + O(n) = O(n 2 ) für die Aussage {n 2 + f f O(n)} O(n 2 ).
6 Asymptotische Laufzeit und Landau-Notation Beispiel 7 log(n) + n 3 = O(n 3 ) ist richtig. 7 log(n)n 3 = O(n 3 ) ist falsch. 2 n+o(1) = O(2 n ) ist richtig. 2 O(n) = O(2 n ) ist falsch (siehe Übungen). Mit der O-Notation lassen sich die wichtigsten deterministischen Zeitkomplexitätsklassen wie folgt charakterisieren: LINTIME = DTIME(O(n)) P = DTIME(n O(1) ) E = DTIME(2 O(n) ) EXP = DTIME(2 no(1) ) Linearzeit Polynomialzeit Lineare Exponentialzeit Exponentialzeit
7 Platzkomplexität von Turingmaschinen Als nächstes definieren wir den Platzverbrauch von NTMs. Intuitiv ist dies die Anzahl aller während einer Rechnung benutzten Bandfelder. Wollen wir auch sublinearen Platz sinnvoll definieren, so dürfen wir hierbei das Eingabeband offensichtlich nicht berücksichtigen. Um sicherzustellen, dass eine NTM M das Eingabeband nicht als Speicher benutzt, verlangen wir, dass M die Felder auf dem Eingabeband nicht verändert und sich nicht mehr als ein Feld von der Eingabe entfernt. Definition Eine NTM M heißt offline-ntm (oder NTM mit Eingabeband), falls für jede von M bei Eingabe x erreichbare Konfiguration K = (q, u 1, a 1, v 1,..., u k, a k, v k ) gilt, dass u 1 a 1 v 1 ein Teilwort von x ist.
8 Platzkomplexität von Turingmaschinen Definition Der Platzverbrauch einer offline-ntm M bei Eingabe x ist definiert als K = (q, u 1, a 1, v 1,..., u k, a k, v k ) space M (x) = max s 1 mit K x K und s = k u i a i v i. Sei s : N N eine monoton wachsende Funktion. i=2 M heißt s(n)-platzbeschränkt, falls für alle Eingaben x gilt: space M (x) s( x ).
9 Platzkomplexitätsklassen Wir fassen alle Sprachen, die in einer vorgegebenen Platzschranke s(n) entscheidbar sind, in folgenden Platzkomplexitätsklassen zusammen. Definition Die auf deterministischem Platz s(n) entscheidbaren Sprachen bilden die Klasse DSPACE(s(n)) = {L(M) M ist eine s(n)-platzb. offline-dtm}. Die auf nichtdeterministischem Platz s(n) entscheidbaren Sprachen bilden die Klasse NSPACE(s(n)) = {L(M) M ist eine s(n)-platzb. offline-ntm}.
10 Die wichtigsten Platzkomplexitätsklassen Die wichtigsten deterministischen Platzkomplexitätsklassen sind L = DSPACE(O(log n)) LINSPACE = DSPACE(O(n)) PSPACE = DSPACE(n O(1) ) Logarithmischer Platz Linearer Platz Polynomieller Platz Die nichtdeterministischen Klassen NL, NLINSPACE und NPSPACE sind analog definiert. Der Satz von Savitch besagt, dass NSPACE(s(n)) DSPACE(s 2 (n)) ist (dies wird in der VL Komplexitätstheorie gezeigt). Daher fallen die Klassen NPSPACE und PSPACE zusammen.
11 Die wichtigsten Zeit- und Platzkomplexitätsklassen Die wichtigsten Zeitkomplexitätsklassen sind LINTIME = DTIME(O(n)) Linearzeit P = DTIME(n O(1) ) Polynomialzeit NP = NTIME(n O(1) ) Nichtdet. Polynomialzeit E = DTIME(2 O(n) ) Lineare Exponentialzeit EXP = DTIME(2 no(1) ) Exponentialzeit Die wichtigsten Platzkomplexitätsklassen sind L = DSPACE(O(log n)) Logarithmischer Platz NL = NSPACE(O(log n)) Nichtdet. logarithmischer Platz LINSPACE = DSPACE(O(n)) Linearer Platz PSPACE = DSPACE(n O(1) ) Polynomieller Platz EXPSPACE = DSPACE(2 no(1) ) Exponentialer Platz
12 Elementare Beziehungen zwischen Komplexitätsklassen Frage Welche elementaren Beziehungen gelten zwischen den verschiedenen Zeitund Platzklassen? Satz Für jede Funktion s(n) log n gilt DSPACE(s) NSPACE(s) DTIME(2 O(s) ). Für jede Funktion t(n) n + 2 gilt DTIME(t) NTIME(t) DSPACE(t). Korollar Es gilt L NL P NP PSPACE EXP EXPSPACE.
13 Komplexitätsschranken für die Stufen der Chomsky-Hierarchie REG = DSPACE(O(1)) = NSPACE(O(1)) L, DCFL LINTIME, CFL NLINTIME DTIME(O(n 3 )) P, DCSL = LINSPACE CSL, CSL = NLINSPACE PSPACE E, REC = f DSPACE(f (n)) = f NSPACE(f (n)) = f DTIME(f (n)) = f NTIME(f (n)), wobei f alle (oder äquivalent: alle berechenbaren) Funktionen f : N N durchläuft. E CSL DCSL CFL DCFL RE REC EXP PSPACE NP P NL L REG
Komplexität und Komplexitätsklassen
Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 21 vom 21.01.2013 Komplexität und Komplexitätsklassen Die meisten Probleme mit denen wir zu tun haben sind entscheidbar.
Theoretische Informatik 1
Theoretische Informatik 1 Teil 5 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Problemklassen 2 NTM Nichtdeterministische Algorithmen 3 Problemarten Konstruktionsprobleme
Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF
Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF Einflussgrößen bei der Bildung von Komplexitätsklassen Das zugrunde liegende Berechnungsmodell (Turingmaschine, Registermaschine
13. ZEIT- UND PLATZKOMPLEXITÄT
EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2011 13. ZEIT- UND PLATZKOMPLEXITÄT VON MEHRBAND-TURINGMASCHINEN Theoretische Informatik (SoSe 2011) 13. Zeit- und Platzkomplexität
Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I
Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:
Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1
Zeitkomplexität (1) Proseminar Theoretische Informatik Proseminar Theoretische Informatik: Lisa Dohrmann 1 Warum Komplexitätsbetrachtung? Ein im Prinzip entscheidbares und berechenbares Problem kann in
Kapitel II : Zeit- und platzbeschränkte Berechnungen
Kapitel II : Zeit- und platzbeschränkte Berechnungen Prof. Dr. F. Otto (Universität Kassel) Komplexitätstheorie 41 / 286 Rechenzeit- und Speicherplatzbedarf bei Turingmaschinen Komplexitätsklassen Grundlegende
Laufzeit einer DTM, Klasse DTIME
Laufzeit einer DTM, Klasse DTIME Definition Laufzeit einer DTM Sei M eine DTM mit Eingabealphabet Σ, die bei jeder Eingabe hält. Sei T M (w) die Anzahl der Rechenschritte d.h. Bewegungen des Lesekopfes
Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Teil VI. Komplexitätstheorie.
Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen
Motivation. Formale Grundlagen der Informatik 1 Kapitel 10. Motivation. Motivation. Bisher haben wir mit TMs. Probleme gelöst/entschieden/berechnet.
bei TMs bei Computern Formale Grundlagen der Informatik 1 Kapitel 10 Frank Heitmann [email protected] Bisher haben wir mit TMs Probleme gelöst/entschieden/berechnet. Dabei war entscheidbar
Chaos?! Überblick. Beispiele für Rekurrenzen. fn := 3fn-1 + 4fn Beweisen. Abwickeln. Raten Summen. Formelsammlung. Suche nach einer Systematik
Überblick fn := 3fn-1 + 4fn-2 + 1 Beispiele für Rekurrenzen Beweisen Raten Summen Abwickeln Formelsammlung Chaos?! Suche nach einer Systematik F3 03/04 p.294/395 Allgemeines Verfahren Bestimmung einer
11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P
11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie
Polynomielle Verifizierer und NP
Polynomielle Verifizierer und NP Definition Polynomieller Verifizierer Sei L Σ eine Sprache. Eine DTM V heißt Verifizierer für L, falls V für alle Eingaben w Σ hält und folgendes gilt: w L c Σ : V akzeptiert
12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP
12 Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, NP 254/ 333 Polynomielle Verifizierer und NP Ḋefinition Polynomieller
Komplexitätstheorie. Arfst Nickelsen Universität zu Lübeck Institut für Theoretische Informatik Wintersemester 2006/07. Stand 8.
Komplexitätstheorie Arfst Nickelsen Universität zu Lübeck Institut für Theoretische Informatik Wintersemester 2006/07 Stand 8. Februar 2007 Inhaltsverzeichnis 1 Probleme, Ressourcen, Klassen 4 1.1 Probleme,
Reelle Komplexität - Grundlagen II
Reelle Komplexität - Grundlagen II Julian Bitterlich Themenübersicht: Beziehungen zwischen den Komplexitätsklassen Savitchs Theorem conp und Charakterisierungen von NP und conp Reduktion, Vollständigkeit,
5. Universelle Maschinen und uniform rekursive Klassen
5. Universelle Maschinen und uniform rekursive Klassen Die Existenz universeller Maschinen erlaubt effektive Aufzählungen der Klasse der r.a. Mengen, der Klasse der partiell rekursiven Funktionen und der
Komplexitätstheorie. Markus Lohrey. Wintersemester 2009/2010. Universität Leipzig 09/STU-KT/
Komplexitätstheorie Markus Lohrey Universität Leipzig http://www.informatik.uni-leipzig.de/alg/lehre/ws08 09/STU-KT/ Wintersemester 2009/2010 Markus Lohrey (Universität Leipzig) Komplexitätstheorie WS
Herzlich willkommen!!!
Komplexitätstheorie Sommersemester 2013 Prof. Dr. Georg Schnitger AG Theoretische Informatik Johann Wolfgang Goethe-Universität Frankfurt am Main Herzlich willkommen!!! Einführung 1 / 30 Kapitel 1: Einführung
Diskrete Mathematik II
Diskrete Mathematik II Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Sommersemester 2011 DiMa II - Vorlesung 01-04.04.2011 1 / 252 Organisatorisches Vorlesung: Mo 12-14 in HZO 70, Di 09-10
Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie
Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 20.12.2005 18. Vorlesung 1 Komplexitätstheorie - Zeitklassen Komplexitätsmaße Wiederholung: O,o,ω,Θ,Ω Laufzeitanalyse
P, NP und NP -Vollständigkeit
P, NP und NP -Vollständigkeit Mit der Turing-Maschine haben wir einen Formalismus kennengelernt, um über das Berechenbare nachdenken und argumentieren zu können. Wie unsere bisherigen Automatenmodelle
Kapitel 3: Grundlegende Ergebnisse aus der Komplexitätstheorie Gliederung
Gliederung 1. Berechenbarkeitstheorie 2. Grundlagen 3. Grundlegende Ergebnisse aus der Komplexitätstheorie 4. Die Komplexitätsklassen P und NP 5. Die Komplexitätsklassen RP und BPP 3.1. Ressourcenkompression
Nichtdeterministische Platzklassen
Sommerakademie 2010 Rot an der Rot AG 1: Wieviel Platz brauchen Algorithmen wirklich? Nichtdeterministische Platzklassen Ulf Kulau August 23, 2010 1 Contents 1 Einführung 3 2 Nichtdeterminismus allgemein
Die Komplexitätsklassen P und NP
Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und
Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014
Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Ulrich Furbach Institut für Informatik Sommersemester 2014 Furbach Grundlagen d. Theoretischen Informatik:
Proseminar Theoretische Informatik. Die Klasse NP. von Marlina Spanel
Proseminar Theoretische Informatik Die Klasse NP von Marlina Spanel 29.11.2011 1 Gliederung Gliederung Problem des Handlungsreisenden Die Klasse NP Einleitung und Wiederholung Sprachen Nichtdeterministische
Speicherplatz-Komplexität 1 / 30
Speicherplatz-Komplexität 1 / 30 Speicherplatz-Komplexität Warum sollte uns die Ressource Speicherplatz interessieren? Um die Komplexität der Berechnung von Gewinnstrategien für viele nicht-triviale 2-Personen
3.3 Laufzeit von Programmen
3.3 Laufzeit von Programmen Die Laufzeit eines Programmes T(n) messen wir als die Zahl der Befehle, die für die Eingabe n abgearbeitet werden Betrachten wir unser Programm zur Berechnung von Zweierpotenzen,
Theoretische Informatik 1
Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die
Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie.
Einführung (1/3) 3 Wir verfolgen nun das Ziel, Komplexitätsklassen mit Hilfe von charakteristischen Problemen zu beschreiben und zu strukturieren Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit
Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016)
Technische Universität Berlin, Berlin, 28.07.2016 Name:... Matr.-Nr.:... Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016) Einlesezeit: Bearbeitungszeit: Max.
Komplexita tstheorie eine erste Ubersicht. KTV bedeutet: Details erfahren Sie in der Komplexitätstheorie-Vorlesung.
Komplexita tstheorie eine erste Ubersicht KTV bedeutet: Details erfahren Sie in der Komplexitätstheorie-Vorlesung. Probleme Problem = Menge von unendlich vielen konkreten Einzelfragen (Instanzen) F n,
Theoretische Informatik 1
Theoretische Informatik 1 Teil 2 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Codierung, Gödelisierung Paare, Tupel, Listen Überabzählbarkeit 2 Ist universell?
Theoretische Informatik 2
Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10 Die Chomsky-Hierarchie Definition Sei G = (V, Σ, P, S) eine Grammatik. 1 G heißt vom Typ 3 oder
Theoretische Informatik: Berechenbarkeit und Formale Sprachen
Prof. Dr. F. Otto 26.09.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen SS 2011 Name:................................
8 Isomorphe, dünne und dichte Sprachen
8 Isomorphe, dünne und dichte Sprachen In diesem Abschnitt legen wir die Vermutung nahe, dass alle NP-vollständigen Sprachen zueinander isomorph sind. Dies würde ausschließen, dass es dünne NP-vollständige
Definition 98 Eine Turingmaschine heißt linear beschränkt (kurz: LBA), falls für alle q Q gilt:
5.2 Linear beschränkte Automaten Definition 98 Eine Turingmaschine heißt linear beschränkt (kurz: LBA), falls für alle q Q gilt: (q, c, d) δ(q, ) = c =. Ein Leerzeichen wird also nie durch ein anderes
Grundlagen der Theoretischen Informatik Prüfungsvorbereitung September 2013
Grundlagen der Theoretischen Informatik Prüfungsvorbereitung September 2013 Themenkomplex Turingmaschinen Aufgabe In beiden Kursteilen der Grundlagen tauchen Turingmaschinen auf. Dabei sind die Modelle
Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben
Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekte mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten
Theoretische Informatik. Berechenbarkeit
Theoretische Informatik Berechenbarkeit 1 Turing Maschine Endlicher Automat mit unendlichem Speicher Ein Modell eines realen Computers Was ein Computer berechnen kann, kann auch eine TM berechnen. Was
es gibt Probleme, die nicht berechenbar sind (z.b. Menge aller Funktionen N N und die Menge aller Sprachen sind überabzählbar)
Komplexitätstheorie es gibt Probleme, die nicht berechenbar sind (z.b. Menge aller Funktionen N N und die Menge aller Sprachen sind überabzählbar) andere Probleme sind im Prinzip berechenbar, möglicherweise
Teil V. Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie
Teil V Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie Zwei Sorten von Grammatiken Kontextsensitive Grammatik (CSG) (Σ, V, P, S), Regeln der Form αaβ αγβ α, β (Σ V ),
Einführung in die Theoretische Informatik I/ Grundlagen der Theoretischen Informatik. SS 2007 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch
Einführung in die Theoretische Informatik I/ Grundlagen der Theoretischen Informatik SS 2007 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch 3. Teilklausur 25. 07. 2007 Persönliche Daten bitte gut leserlich
Algorithmen und Datenstrukturen 1 Kapitel 5
Algorithmen und Datenstrukturen 1 Kapitel 5 Technische Fakultät [email protected] Vorlesung, U. Bielefeld, Winter 2005/2006 Kapitel 5: Effizienz von Algorithmen 5.1 Vorüberlegungen Nicht
Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008
Problemseminar Komplexitätstheorie und Kryptographie Martin Huschenbett Student am Institut für Informatik an der Universität Leipzig 30. Oktober 2008 1 / 33 Gliederung 1 Randomisierte Algorithmen und
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (V) 16.07.2015 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Übersicht 1. Motivation 2. Terminologie
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 20. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 20.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der
Speicherplatz-Komplexität 1 / 78
Speicherplatz-Komplexität 1 / 78 Speicherplatz-Komplexität Warum sollte uns die Ressource Speicherplatz interessieren? Um die Komplexität der Berechnung von Gewinnstrategien für viele nicht-triviale 2-Personen
2. Schriftliche Leistungskontrolle (EK)
TheGI 2: Berechenbarkeit und Komplexität Prof. Dr.-Ing. Uwe Nestmann - 13. Juli 2010 2. Schriftliche Leistungskontrolle EK Punktzahl In dieser schriftlichen Leistungskontrolle sind 100 Punkte erreichbar.
Berechenbarkeitstheorie 19. Vorlesung
1 Berechenbarkeitstheorie Dr. Institut für Mathematische Logik und Grundlagenforschung WWU Münster WS 15/16 Alle Folien unter Creative Commons Attribution-NonCommercial 3.0 Unported Lizenz. Erinnerung:
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 2015 Marc Bux, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Ulf Leser RUD 26, 0 115 Mittwoch 11 13 Uhr Ulf Leser RUD 26,
2 Wachstumsverhalten von Funktionen
Algorithmen und Datenstrukturen 40 2 Wachstumsverhalten von Funktionen Beim Vergleich der Worst-Case-Laufzeiten von Algorithmen in Abhängigkeit von der Größe n der Eingabedaten ist oft nur deren Verhalten
Einführung in Algorithmen und Komplexität
Einführung in Algorithmen und Komplexität SS2004 w u v High Performance = Innovative Computer Systems + Efficient Algorithms Friedhelm Meyer auf der Heide 1 Was haben wir bisher gemacht? - Rechenmodell:
FORMALE SYSTEME. Kompexitätsklassen. Deterministisch vs. nichtdeterministisch. Die Grenzen unseres Wissens. 25. Vorlesung: NP-Vollständigkeit
Kompexitätsklassen FORMALE SYSTEME 25. Vorlesung: NP-Vollständigkeit Markus Krötzsch Lehrstuhl Wissensbasierte Systeme Komplexitätsklassen sind Mengen von Sprachen, die man (grob) einteilt entsprechend
Theoretische Informatik. nichtdeterministische Turingmaschinen NDTM. Turingmaschinen. Rainer Schrader. 29. April 2009
Theoretische Informatik Rainer Schrader nichtdeterministische Turingmaschinen Zentrum für Angewandte Informatik Köln 29. April 2009 1 / 33 2 / 33 Turingmaschinen das Konzept des Nichtdeterminismus nahm
TU Berlin Nachklausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2012)
Berlin, 05. Oktober 2012 Name:... Matr.-Nr.:... TU Berlin Nachklausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2012) 1 2 3 4 5 6 7 Σ Bearbeitungszeit: 60 min.
Vorname Name Matrikelnummer 1. a) Benennen Sie die übrigen 6 Komponenten einer nicht-deterministischen Turingmaschine (TM): (3 Punkte)
1 Aufgabe 1 (19 Punkte) a) Benennen Sie die übrigen 6 Komponenten einer nicht-deterministischen Turingmaschine (TM): (3 Punkte) Q, die endliche Zustandsmenge b) Was besagt die Church-Turing-These? (1 Punkt)
abgeschlossen unter,,,, R,
Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen
Komplexitätstheorie. Markus Lohrey. Wintersemester 2016/2017. Universität Siegen
Komplexitätstheorie Markus Lohrey Universität Siegen Wintersemester 2016/2017 Markus Lohrey (Universität Siegen) Komplexitätstheorie WS 2016/2017 1 / 303 Teil 1: Grundlagen Im folgenden behandeln wir einige
Theoretische Informatik 1
Theoretische Informatik 1 Die Komplexitätsklasse P David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Äquivalenz von RM und TM Äquivalenz, Sätze Simulation DTM
Klassische Informationstheorie: Berechenbarkeit und Komplexität
Klassische Informationstheorie: Berechenbarkeit und Komplexität Christian Slupina 1. Institut für Theoretische Physik Datum: 12.Juli 2011 Inhalt Gedankenexperiment: Die Turingmaschine Standard-Turingmaschinen
Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie
Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 07.02.2006 28. und letzte Vorlesung 1 Die Chomsky-Klassifizierung Chomsky-Hierachien 3: Reguläre Grammatiken
Willkommen zur Vorlesung Komplexitätstheorie
Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V11, 16.1.2012 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar
Präsenzübung Berechenbarkeit und Komplexität
Lehrstuhl für Informatik 1 WS 2013/14 Prof. Dr. Berthold Vöcking 28.01.2014 Kamal Al-Bawani Benjamin Ries Präsenzübung Berechenbarkeit und Komplexität Musterlösung Name:...................................
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
8 Komplexitätstheorie und Kryptologie
8 Komplexitätstheorie und Kryptologie Verschlüsselung, Authentisierung,... müssen schnell berechenbar sein. Formal: polynomiell zeitbeschränkte Funktionen/Algorithmen Angreifer hat beschränkte Ressourcen.
Komplexität des Äquivalenzproblems für reguläre Ausdrücke
Philipp Zschoche [email protected] Proseminar ÄRA: Äquivalenz regulärer Ausdrücke Sommersemester 2014 Modulverantwortlich: Dr. Hans Fleischhack, Prof. Dr. Eike Best Carl von Ossietzky Universität
14. Die polynomiell beschränkten Komplexitätsklassen. Die Grenzen der tatsächlichen Berechenbarkeit
14. Die polynomiell beschränkten Komplexitätsklassen Die Grenzen der tatsächlichen Berechenbarkeit PRINZIPIELLE VS. TATSÄCHLICHE BERECHENBARKEIT Prinzipielle (theoretische) Berechenbarkeit: Eine Funktion
FORMALE SYSTEME. 25. Vorlesung: NP-Vollständigkeit. TU Dresden, 23. Januar Markus Krötzsch Lehrstuhl Wissensbasierte Systeme
FORMALE SYSTEME 25. Vorlesung: NP-Vollständigkeit Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 23. Januar 2017 Rückblick Markus Krötzsch, 23. Januar 2017 Formale Systeme Folie 2 von 32
Kapitel 1.4. Exkurs: Entscheidbarkeit und Komplexität. Mathematische Logik (WS 2012/3) K. 1.4: Entscheidbarkeit und Komplexität 1/10
Kapitel 1.4 Exkurs: Entscheidbarkeit und Komplexität Mathematische Logik (WS 2012/3) K. 1.4: Entscheidbarkeit und Komplexität 1/10 Algorithmen Ein Algorithmus oder eine Rechenvorschrift ist ein effektives
Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung
Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung Frank Heitmann [email protected] 13. Mai 2014 Frank Heitmann [email protected] 1/17 Überblick Wir hatten
Modelle der Parallelverarbeitung
Modelle der Parallelverarbeitung Modelle der Parallelverarbeitung 1. Turingmaschinen Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Sommersemester 2017 1 / 52 Überblick Überblick
PROBEKLAUSUR SoSe 2016
Die Anzahl der Aufgaben, das Punkteschema, die Themenschwerpunkte, etc. können sich in der echten Klausur unterscheiden! Universität Osnabrück/ FB6 / Theoretische Informatik Prof. Chimani, Beyer Informatik
Referatsausarbeitung
Referatsausarbeitung Thema: Das zweite LBA-Problem Vorlesung: Sequentielle und parallele Komplexitätstheorie Übung Dozent Datum Referenten Dr. Renate Winter 08.01.1998 Marcus Hörning Michael Muth Ronny
Formale Grundlagen der Informatik 1 Kapitel 23 NP-Vollständigkeit (Teil 2)
Formale Grundlagen der Informatik 1 Kapitel 23 (Teil 2) Frank Heitmann [email protected] 5. Juli 2016 Frank Heitmann [email protected] 1/37 Die Klassen P und NP P := {L
Theorie der Informatik
Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen Malte Helmert Gabriele Röger Universität Basel 7. April 2014 Kontextsensitive und allgemeine Grammatiken Wiederholung: (kontextsensitive)
Übungsblatt Nr. 5. Lösungsvorschlag
Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 5 Aufgabe 1: Eine schöne Bescherung (K)
Teil III. Komplexitätstheorie
Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein
... B B B w w w w w... w B B...
Vorlesung zur Komplexitatstheorie Hans Ulrich Simon Sommersemester 2004 1 1 Grundbegrie der Komplexitatstheorie 1.1 Das Standardmodell der Turing-Maschine Denition 1.1 (deterministische 1-Band Turing-Maschinen)
Komplexitätstheorie. Kapitel 6: Schaltkreise
Komplexitätstheorie Kapitel 6: Schaltkreise Motivation Wir betrachten Schaltkreise als alternatives Berechnungsmodell Damit lassen sich weitere Komplexitätsklassen definieren Dies ist von Bedeutung, denn
Lösungen zur Vorlesung Berechenbarkeit und Komplexität
Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin
V. Claus, Juli 2005 Einführung in die Informatik II 45
Um die Größenordnung einer reellwertigen oder ganzzahligen Funktion zu beschreiben, verwenden wir die so genannten Landau-Symbole (nach dem deutschen Mathematiker Edmund Landau, 1877-1938). Hierbei werden
Theoretische Informatik
Theoretische Informatik von Dirk Hoffmann 2., aktualisierte Auflage Hanser München 2011 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 42639 9 Zu Leseprobe schnell und portofrei erhältlich bei
Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14
Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen
