Übungsblatt Nr. 5. Lösungsvorschlag

Größe: px
Ab Seite anzeigen:

Download "Übungsblatt Nr. 5. Lösungsvorschlag"

Transkript

1 Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 5

2 Aufgabe 1: Eine schöne Bescherung (K) (4 Punkte) Der ebenso geniale wie kältefühlige Wissenschaftler und Superbösewicht Doktor Meta möchte den Weihnachtsmann ausrauben. Dazu hat er sich einen konkreten Plan überlegt. Er kennt alle n Kamine, die der Weihnachtsmann über Weihnachten anfliegt. Außerdem ist ihm klar, dass der Weihnachtsmann immer eine optimale Route fliegt, da es ihm sonst aufgrund relativistischer Effekte nicht möglich wäre, alle Geschenke rechtzeitig in t Zeiteinheiten auszuliefern. Doktor Meta möchte nun die Route bestimmen, die der Weihnachtsmann nimmt, um ihn abzupassen, jedoch ohne die ganze Nacht in der Kälte an einem Ort auszuharren. Allerdings hat er die Vermutung, dass der Weihnachtsmann über ein NP-Orakel verfügt, mit dem er schwierige Probleme löst. Gegeben sei das WEIHNACHTSMANNPROBLEM mit Kaminen K, Routenabschnitten R, und einer Funktion f : R N, welche die Reisedauer jedes Routenabschnitts angibt. Es sei K = n, R = m. Finde eine Route (r 1,..., r n 1 ), r i R, mit n 1 i f(r i ) t, auf der jeder Kamin k K genau einmal besucht wird. i.) Zeigen Sie, dass das WEIHNACHTSMANNPROBLEM NP-vollständig ist, indem Sie das im Skript beschriebene Problem HAMPATH (Problem 3.39) auf das WEIHNACHTS- MANNPROBLEM reduzieren. Nehmen Sie dabei HAMPATH als NP-vollständig an. (3P) ii.) Zeichnen Sie das Haus vom Nikolaus ohne Absetzen: (1P) i.) Wir zeigen zuerst, dass das WEIHNACHTSMANNPROBLEM in NP liegt. Dazu nehmen wir an, dass wir eine Route (r 1,..., r n1 ) gegeben bekommen. Wir bilden jetzt einfach die Summe n 1 i f(r i ) und prüfen, ob sie t ist. Weiterhin prüfen wir, ob alle Kamine aus K angeflogen werden. Diese Überprüfung ist in Linearzeit möglich. Jetzt muss eine Instanz des Problems HAMPATH in eine Instanz des WEIHNACHTS- MANNPROBLEMs transformiert werden. Dazu kurz zur Erinnerung: Gegeben ist ein Graph G = (V, E), wobei V die Knoten und E die Kanten beschreibt; weiterhin soll ein Pfad von den Knoten a nach b gefunden werden, sodass jeder Knoten v V einmal besucht wird. Wir nehmen im Folgenden an, dass Routen gerichtet sind. Die Transformation ist dann einfach: Jeder Knoten stellt einen Kamin dar, jede Kante eine Route. Als Reisedauer legen f(x) := 1 fest. Die Start- und Zielknoten a und b ergänzen wir durch je einen zusätzlichen Knoten, den wir hinzufügen. Diese neuen Knoten verbinden wir jeweils mit genau einer Kante mit a und b. Damit erzwingen wir, dass die Route des Weihnachtsmanns von a nach b geht (oder andersrum; die Route ist symmetrisch). ii

3 Gibt es jetzt einen effizienten Algorithmus für das WEIHNACHTSMANNPROBLEM, können wir diesen nutzen, um jedes Problem aus HAMPATH in Polynomialzeit zu lösen. Also folgt, dass das WEIHNACHTSMANNPROBLEM NP-vollständig ist. Sind die Routen des WEIHNACHTSMANNPROBLEMs ungerichtet und betrachten wir das Hamiltonpfadproblem für gerichtete Graphen, ist nicht so einfach klar, wie die Transformation gelingt. Tatsächlich ist aber auch das Hamiltonpfadproblem für ungerichtete Graphen NP-vollständig. Auf Übungsblatt 6 zeigen wir, dass das Hamiltonpfadproblem für gerichtete und ungerichtete Graphen äquivalent sind. ii.) Aufgabe 2 (K): Komplexitätstheorie (4 Punkte) 5 7 Geben Sie für die folgenden Aussagen mit einer Begründung an, ob sie stimmen. (jeweils 1P) i.) 2-COL / NP. 4 6 ii.) Wenn P = NP, dann gilt für jede Sprache L P, dass L NP C. iii.) Es gibt keine Probleme, die NP -schwer sind, aber nicht in NP liegen. iv.) Das Problem DNF-SAT, also die Erfüllbarkeit einer aussagenlogischen Formel in disjunktiver Normalform, liegt in P. 8 i.) Die Aussage ist falsch, 2-COL ist sogar in P. Gegeben ein 2-gefärbten Graphen müssen alle zu einem Knoten adjazenten Knoten eine andere Farbe haben. Dies ist in polynomieller Laufzeit überprüfbar. iii

4 ii.) Die Aussage ist falsch, obwohl sie für alle Sprachen außer und Σ korrekt ist. Wenn P = NP, dann ist jede Sprache aus P auch in NP. Weiter ist die auch NP -schwer: Die Transformation aus jeder anderen NP -Sprache L kann die L -Instanz selbst in Polynomialzeit lösen und dann eine ja oder nein -Instanz von L ausgeben. Dieser Trick versagt bei und Σ, da diese Sprachen keine ja -, respektive nein -Instanzen haben. iii.) Doch, das Halteproblem ist NP -schwer, aber es liegt nicht in NP. iv.) Richtig, ein Algorithmus, um dies in Polynomialzeit zu lösen: Es muss nur eine Klausel gefunden werden, die zu wahr auswertet. Dazu prüft man für alle Literale einer Klausel, ob sie sowohl negiert als auch nicht-negiert in der Klausel vorkommen. Ist dies nicht der Fall, ist die Klausel erfüllbar und damit die komplette Formel. Aufgabe 3: Das Partyproblem (K) (4 Punkte) Gegeben sei das folgende NP-vollständige PARTYPROBLEM mit einer (endlichen) Menge S an Studenten, einer (endlichen) Menge P an Parties, einer Menge T an Terminen und einer Relation R S P. Dabei bedeutet (s, p) R, dass Student s die Party p besuchen möchte. Gibt es eine Abbildung f : P T, sodass alle Studenten alle Parties besuchen können, ohne dass sie eine Party vorzeitig verlassen müssen, also p 1, p 2 P : (s, p 1 ) R (s, p 2 ) R p 1 p 2 f(p 1 ) f(p 2 ) Nutzen Sie dieses Problem, um zu zeigen, dass SAT NP-vollständig ist. Aus der Vorlesung wissen wir, dass SAT NP. Nun müssen wir eine Polynomialzeit-Transformation vom PARTYPROBLEM auf SAT angeben. Dazu nutzen wir die folgende Codierung: Jede Party-Termin-Kombination ergibt eine boolesche Variable, x t p, die genau dann wahr ist, wenn an Termin t die Party p stattfindet. Jede Party findet nur an einem Termin statt: C 1 = p P t T p ) t T,t t (x t p x t Für keinen Studenten finden zwei Parties zeitgleich statt: C 2 = (p 1,p 2 ) P P mit t T (s,p 1 ) R,(s,p 2 ) R und p 1 p 2 (x t p 1 x t p 2 ) iv

5 Jede Party muss stattfinden: C 3 = x t p p P t T Eine erfüllende Belegung für C = C 1 C 2 C 3 löst das PARTYPROBLEM. Die Transformation kann offensichtlich in Polyzeit berechnet werden. Daraus folgt, dass SAT NP C. Aufgabe 4: Mehr Entscheidbarkeit (K) (4 Punkte) Zeigen Sie: i.) Die Sprache L = { M M ist eine Turingmaschine und L(M) ist semi-entscheidbar} ist entscheidbar. (2P) ii.) Das Halteproblem HALT = { M w M ist eine Turingmaschine und M hält auf der Eingabe w.} ist semi-entscheidbar. (2P) i.) Durch probeweises Decodieren der Gödelnummer kann man leicht testen, ob sie eine Turingmaschine beschreibt. Weiter ist eine Sprache nach Definition dann semi-entscheidbar, wenn eine Turingmaschine existiert, die sie akzeptiert. Folglich ist jede Sprache, die von einer Turingmaschine akzeptiert wird, semi-entscheidbar. Insgesamt ist L also entscheidbar. ii.) Um zu zeigen, dass das Halteproblem semi-entscheidbar ist, müssen wir eine Maschine angeben, die genau dann akzeptiert, wenn die gegebene Maschine M auf w hält: Simuliere M auf w. Akzeptiere. v

Lösungen zur Vorlesung Berechenbarkeit und Komplexität

Lösungen zur Vorlesung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin

Mehr

Übungsblatt Nr. 6. Lösungsvorschlag

Übungsblatt Nr. 6. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Nico Döttling Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 6 Aufgabe (K) (4 Punkte)

Mehr

Übungsblatt Nr. 7. Lösungsvorschlag

Übungsblatt Nr. 7. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Nico Döttling Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 7 svorschlag Aufgabe (K)

Mehr

Übungsblatt Nr. 5. Lösungsvorschlag

Übungsblatt Nr. 5. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Nico Döttling Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 5 svorschlag Aufgabe 1

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2011 Lösungsblatt 11 1. August 2011 Einführung in die Theoretische Informatik

Mehr

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14 Institut für Theoretische Informatik Prof. Dr. Jörn Müller-Quade Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 23/4 Vorname Nachname Matrikelnummer Hinweise Für die

Mehr

Theorie der Informatik Übersicht. Theorie der Informatik SAT Graphenprobleme Routing-Probleme. 21.

Theorie der Informatik Übersicht. Theorie der Informatik SAT Graphenprobleme Routing-Probleme. 21. Theorie der Informatik 19. Mai 2014 21. einige NP-vollständige Probleme Theorie der Informatik 21. einige NP-vollständige Probleme 21.1 Übersicht 21.2 Malte Helmert Gabriele Röger 21.3 Graphenprobleme

Mehr

Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016)

Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016) Technische Universität Berlin, Berlin, 28.07.2016 Name:... Matr.-Nr.:... Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016) Einlesezeit: Bearbeitungszeit: Max.

Mehr

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2016/2017

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2016/2017 2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2016/2017 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Weitere NP-vollständige Probleme Wir betrachten nun folgende Reduktionskette und weisen dadurch nach, daß alle diese Probleme NP-hart sind (sie sind auch in NP und damit NP-vollständig). SAT p 3-SAT p

Mehr

NP-vollständige Probleme. Michael Budahn - Theoretische Informatik 1

NP-vollständige Probleme. Michael Budahn - Theoretische Informatik 1 NP-vollständige Probleme Michael Budahn - Theoretische Informatik 1 Motivation Michael Budahn - Theoretische Informatik 2 Motivation viele praxisrelevante Probleme sind NPvollständig und eine Lösung würde

Mehr

Dank. Theoretische Informatik II. Teil VI. Vorlesung

Dank. Theoretische Informatik II. Teil VI. Vorlesung Dank Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von Katrin Erk (gehalten an der Universität

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

Kochrezept für NP-Vollständigkeitsbeweise

Kochrezept für NP-Vollständigkeitsbeweise Kochrezept für NP-Vollständigkeitsbeweise Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 11. Januar 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Formale Grundlagen der Informatik 1 Kapitel 23 NP-Vollständigkeit (Teil 2)

Formale Grundlagen der Informatik 1 Kapitel 23 NP-Vollständigkeit (Teil 2) Formale Grundlagen der Informatik 1 Kapitel 23 (Teil 2) Frank Heitmann heitmann@informatik.uni-hamburg.de 5. Juli 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/37 Die Klassen P und NP P := {L

Mehr

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012 Die Klassen P und NP Dr. Eva Richter 29. Juni 2012 1 / 35 Die Klasse P P = DTIME(Pol) Klasse der Probleme, die sich von DTM in polynomieller Zeit lösen lassen nach Dogma die praktikablen Probleme beim

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 01. Dezember 2011 INSTITUT FÜR THEORETISCHE 0 KIT 01.12.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Ausgabe 22. Dezember 2016 Abgabe 17. Januar 2017, 11:00 Uhr

Mehr

14. Die polynomiell beschränkten Komplexitätsklassen. Die Grenzen der tatsächlichen Berechenbarkeit

14. Die polynomiell beschränkten Komplexitätsklassen. Die Grenzen der tatsächlichen Berechenbarkeit 14. Die polynomiell beschränkten Komplexitätsklassen Die Grenzen der tatsächlichen Berechenbarkeit PRINZIPIELLE VS. TATSÄCHLICHE BERECHENBARKEIT Prinzipielle (theoretische) Berechenbarkeit: Eine Funktion

Mehr

Statt Turingmaschinen anzugeben, genügt die Angabe eines C++ Programms oder die Angabe eines Pseudocodes.

Statt Turingmaschinen anzugeben, genügt die Angabe eines C++ Programms oder die Angabe eines Pseudocodes. Turingmaschinen Wir haben Turingmaschinen eingeführt. Bis auf einen polynomiellen Anstieg der Rechenzeit haben Turingmaschinen die Rechenkraft von parallelen Supercomputern! Statt Turingmaschinen anzugeben,

Mehr

Grundlagen der Informatik II

Grundlagen der Informatik II Grundlagen der Informatik II Tutorium 4 Professor Dr. Hartmut Schmeck Ob P = NP, ist ein offenes Problem. d) ist Quatsch, weil pol eine ordnende Relation ist. In der Arithmetik gilt ja auch nicht x y y

Mehr

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie.

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie. Einführung (1/3) 3 Wir verfolgen nun das Ziel, Komplexitätsklassen mit Hilfe von charakteristischen Problemen zu beschreiben und zu strukturieren Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit

Mehr

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekte mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2011 Lösungsblatt 9 25. Juli 2011 Einführung in die Theoretische Informatik

Mehr

Vorname Name Matrikelnummer 1. a) Benennen Sie die übrigen 6 Komponenten einer nicht-deterministischen Turingmaschine (TM): (3 Punkte)

Vorname Name Matrikelnummer 1. a) Benennen Sie die übrigen 6 Komponenten einer nicht-deterministischen Turingmaschine (TM): (3 Punkte) 1 Aufgabe 1 (19 Punkte) a) Benennen Sie die übrigen 6 Komponenten einer nicht-deterministischen Turingmaschine (TM): (3 Punkte) Q, die endliche Zustandsmenge b) Was besagt die Church-Turing-These? (1 Punkt)

Mehr

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 13

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 13 Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 2003/04 ILKD Prof. Dr. D. Wagner 14. April 2004 2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Hier Aufkleber

Mehr

Berechenbarkeitstheorie 24. Vorlesung

Berechenbarkeitstheorie 24. Vorlesung 1 Berechenbarkeitstheorie Dr. Institut für Mathematische Logik und Grundlagenforschung WWU Münster WS 15/16 Alle Folien unter Creatie Commons Attribution-NonCommercial 3.0 Unported Lizenz. DHC Eingabe:

Mehr

Konjunktive Normalform

Konjunktive Normalform Konjunktive Normalform Eine Formel α in konjunktiver Normalform hat die Form α k 1 k 2... k r. Die Klauseln k 1,..., k r sind Disjunktionen von Literalen, also Disjunktionen von Variablen oder negierten

Mehr

Übungsblatt Nr. 3. Lösungsvorschlag

Übungsblatt Nr. 3. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 3 Aufgabe 1: Karlsruhe ist nicht genug

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 07.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Gestern Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Klausur zur Vorlesung Mathematische Logik

Klausur zur Vorlesung Mathematische Logik Universität Heidelberg 13. Februar 2014 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Mathematische Logik Musterlösung Aufgabe 1 (Aussagenlogik

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 23. November 2017 INSTITUT FÜR THEORETISCHE 0 23.11.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Grundlagen der Informatik II Übungsblatt: 4, WS 17/18 mit Lösungen

Grundlagen der Informatik II Übungsblatt: 4, WS 17/18 mit Lösungen PD. Dr. Pradumn Shukla Marlon Braun Micaela Wünsche Dr. Friederike Pfeiffer-Bohnen Dr. Lukas König Institut für Angewandte Informatik und Formale Beschreibungsverfahren Grundlagen der Informatik II Übungsblatt:

Mehr

Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13

Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13 Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 22/3 Vorname Nachname Matrikelnummer

Mehr

Kapitel 1.4. Exkurs: Entscheidbarkeit und Komplexität. Mathematische Logik (WS 2012/3) K. 1.4: Entscheidbarkeit und Komplexität 1/10

Kapitel 1.4. Exkurs: Entscheidbarkeit und Komplexität. Mathematische Logik (WS 2012/3) K. 1.4: Entscheidbarkeit und Komplexität 1/10 Kapitel 1.4 Exkurs: Entscheidbarkeit und Komplexität Mathematische Logik (WS 2012/3) K. 1.4: Entscheidbarkeit und Komplexität 1/10 Algorithmen Ein Algorithmus oder eine Rechenvorschrift ist ein effektives

Mehr

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Hochschuldozent Dr. Christian Schindelhauer Paderborn, den 21. 2. 2006 Lösungen zur 1. Klausur in Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Name :................................

Mehr

Die Klassen P und NP. Formale Grundlagen der Informatik 1 Kapitel 11. Die Klassen P und NP. Die Klasse P

Die Klassen P und NP. Formale Grundlagen der Informatik 1 Kapitel 11. Die Klassen P und NP. Die Klasse P Die Klassen Formale Grundlagen der Informatik 1 Kapitel 11 Frank Heitmann heitmann@informatik.uni-hamburg.de P := {L es gibt ein Polynom p und eine p(n)-zeitbeschränkte DTM A mit L(A) = L} = i 1 DTIME(n

Mehr

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/36 Ersetzbarkeitstheorem

Mehr

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2014/2015

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2014/2015 2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2014/2015 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie

Mehr

Maike Buchin 18. Februar 2016 Stef Sijben. Probeklausur. Theoretische Informatik. Bearbeitungszeit: 3 Stunden

Maike Buchin 18. Februar 2016 Stef Sijben. Probeklausur. Theoretische Informatik. Bearbeitungszeit: 3 Stunden Maike Buchin 8. Februar 26 Stef Sijben Probeklausur Theoretische Informatik Bearbeitungszeit: 3 Stunden Name: Matrikelnummer: Studiengang: Geburtsdatum: Hinweise: Schreibe die Lösung jeder Aufgabe direkt

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung!

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung! Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 23/4 ILKD Prof. Dr. D. Wagner 2. Februar 24. Klausur zur Vorlesung Informatik III Wintersemester 23/24 Mit Lösung! Beachten Sie:

Mehr

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III Name Vorname Matrikelnummer Universität Karlsruhe Institut für Theoretische Informatik o. Prof. Dr. P. Sanders 26. Feb. 2007 Klausur: Informatik III Aufgabe 1. Multiple Choice 10 Punkte Aufgabe 2. Teilmengenkonstruktion

Mehr

Diskrete Strukturen Wiederholungsklausur

Diskrete Strukturen Wiederholungsklausur Technische Universität München (I7) Winter 2013/14 Prof. J. Esparza / Dr. M. Luttenberger LÖSUNG Diskrete Strukturen Wiederholungsklausur Beachten Sie: Soweit nicht anders angegeben, ist stets eine Begründung

Mehr

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13)

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) Berlin, 21. Februar 2013 Name:... Matr.-Nr.:... Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) 1 2 3 4 5 6 7 8 9 Σ Bearbeitungszeit: 90 min. max. Punktezahl:

Mehr

Unentscheidbarkeitssätze der Logik

Unentscheidbarkeitssätze der Logik Unentscheidbarkeitssätze der Logik Elmar Eder () Unentscheidbarkeitssätze der Logik 1 / 30 Die Zahlentheorie ist nicht formalisierbar Satz (Kurt Gödel) Zu jedem korrekten formalen System der Zahlentheorie

Mehr

Theoretische Informatik SS 03 Übung 11

Theoretische Informatik SS 03 Übung 11 Theoretische Informatik SS 03 Übung 11 Aufgabe 1 Zeigen Sie, dass es eine einfachere Reduktion (als die in der Vorlesung durchgeführte) von SAT auf 3KNF-SAT gibt, wenn man annimmt, dass die Formel des

Mehr

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

P, NP und NP -Vollständigkeit

P, NP und NP -Vollständigkeit P, NP und NP -Vollständigkeit Mit der Turing-Maschine haben wir einen Formalismus kennengelernt, um über das Berechenbare nachdenken und argumentieren zu können. Wie unsere bisherigen Automatenmodelle

Mehr

Polynomielle Verifizierer und NP

Polynomielle Verifizierer und NP Polynomielle Verifizierer und NP Definition Polynomieller Verifizierer Sei L Σ eine Sprache. Eine DTM V heißt Verifizierer für L, falls V für alle Eingaben w Σ hält und folgendes gilt: w L c Σ : V akzeptiert

Mehr

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, NP 254/ 333 Polynomielle Verifizierer und NP Ḋefinition Polynomieller

Mehr

Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z}

Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z} u v u v z w z w y x y x Abbildung 1: Reduktion: CLIQUE zu VERTEX-COVER. links: Clique V = {u, v, x, y}. rechts:der Graph Ḡ mit VC V \ V = {w, z} Definition 0.0.1 (Vertex Cover (VC)). Gegeben: Ein ungerichteter

Mehr

Reduktionen. Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie. Exkurs: Reduktionen allgemein. Reduktionen: Erläuterungen

Reduktionen. Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie. Exkurs: Reduktionen allgemein. Reduktionen: Erläuterungen en Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie P, und C Definition () Seien L 1, L 2 {0, 1} zwei Sprachen. Wir sagen, dass L 1 auf L 2 in polynomialer Zeit reduziert wird, wenn eine

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 NP-Vollständigkeit Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v.

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 25. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 25.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Algorithmen zur Visualisierung von Graphen

Algorithmen zur Visualisierung von Graphen Algorithmen zur Visualisierung von Graphen Kombinatorische Optimierung mittels Flussmethoden II Vorlesung im Wintersemester 2011/2012 10.11.2011 Orthogonale Zeichnungen II letztes Mal: Satz G Maxgrad-4-Graph

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 5. Dezember 2017 INSTITUT FÜR THEORETISCHE 0 05.12.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Wie komme ich von hier zum Hauptbahnhof?

Wie komme ich von hier zum Hauptbahnhof? NP-Vollständigkeit Wie komme ich von hier zum Hauptbahnhof? P Wie komme ich von hier zum Hauptbahnhof? kann ich verwende für reduzieren auf Finde jemand, der den Weg kennt! Alternativ: Finde eine Stadtkarte!

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die

Mehr

Übungsblatt 3. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 3. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 3 Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Ausgabe 21. November 2017 Abgabe 5. Dezember 2017, 11:00 Uhr

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2011 15. DIE POLYNOMIELL BESCHRÄNKTEN KOMPLEXITÄTSKLASSEN Theoretische Informatik (SoSe 2011) 15. Polynomiell beschränkte

Mehr

3. Klausur Einführung in die Theoretische Informatik Seite 1 von Welches der folgenden klassischen Probleme der Informatik ist entscheidbar?

3. Klausur Einführung in die Theoretische Informatik Seite 1 von Welches der folgenden klassischen Probleme der Informatik ist entscheidbar? 3. Klausur Einführung in die Theoretische Informatik Seite 1 von 14 1. Welches der folgenden klassischen Probleme der Informatik ist entscheidbar? A. Gegeben eine kontextfreie Grammatik G. Gibt es ein

Mehr

Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage. Ideen der Informatik Kurt Mehlhorn

Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage. Ideen der Informatik Kurt Mehlhorn Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage Ideen der Informatik Kurt Mehlhorn Gliederung Ziele von Theorie Gibt es Probleme, die man prinzipiell nicht mit einem Rechner lösen kann?

Mehr

Musterlösung Informatik-III-Klausur

Musterlösung Informatik-III-Klausur Musterlösung Informatik-III-Klausur Aufgabe 1 (1+4+3+4 Punkte) (a) 01010 wird nicht akzeptiert: s q 0 q 1 q 2 f q 2 10101 wird akzeptiert: s q 2 q 2 f q 2 f (b) ε: {s, q 0, q 1, q 2 }, {f} 0: {s, q 0,

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 11 15. Juli 2010 Einführung in die Theoretische

Mehr

Berechenbarkeitstheorie 19. Vorlesung

Berechenbarkeitstheorie 19. Vorlesung 1 Berechenbarkeitstheorie Dr. Institut für Mathematische Logik und Grundlagenforschung WWU Münster WS 15/16 Alle Folien unter Creative Commons Attribution-NonCommercial 3.0 Unported Lizenz. Erinnerung:

Mehr

Allgemeingültige Aussagen

Allgemeingültige Aussagen Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt

Mehr

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann Grundlagen der Informatik Kapitel 20 Harald Krottmaier Sven Havemann Agenda Klassen von Problemen Einige Probleme... Approximationsalgorithmen WS2007 2 Klassen P NP NP-vollständig WS2007 3 Klasse P praktisch

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 8.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (V) 16.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Entscheidungsprobleme

Entscheidungsprobleme Entscheidungsprobleme übliche Formulierung gegeben: Eingabe x aus einer Grundmenge U Frage: Hat x eine bestimmte Eigenschaft P? Beispiel: gegeben: Frage: n N Ist n eine Primzahl? Formalisierung: Grundmenge

Mehr

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Hier Aufkleber mit Name und Matrikelnr. anbringen

Mehr

Teil III. Komplexitätstheorie

Teil III. Komplexitätstheorie Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein

Mehr

Probeklausur zur Vorlesung Berechenbarkeit und Komplexität

Probeklausur zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Probeklausur 25.01.2013 Probeklausur zur Vorlesung Berechenbarkeit und Komplexität Aufgabe 1 (1+2+6+3 Punkte)

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Teil VI. Komplexitätstheorie.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Teil VI. Komplexitätstheorie. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

NP-vollständige Probleme

NP-vollständige Probleme NP-vollständige Probleme Dr. Eva Richter 6. Juli 2012 1 / 13 NP-Vollständigkeit Definition Eine Sprache B heißt NP-vollständig, wenn sei zwei Bedingungen erfüllt: (i) B ist in NP (ii) Jedes Problem A in

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Komplexitätstheorie (I) 22.07.2015 und 23.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie 3. Endliche

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Formale Systeme. Übung: Reinhard Hemmerling Büsgenweg 4, Raum 89 (1. Stock) rhemmer<at>gwdg.de

Formale Systeme. Übung: Reinhard Hemmerling Büsgenweg 4, Raum 89 (1. Stock) rhemmer<at>gwdg.de Formale Systeme Vorlesung: Winfried Kurth Lehrstuhl Computergrafik und ökologische Informatik Büsgenweg 4, Raum 90 (1. Stock) 39-9715 wkinformatik.uni-goettingen.de http://www.uni-goettingen.de/de/72781.html

Mehr

Reelle Komplexität - Grundlagen II

Reelle Komplexität - Grundlagen II Reelle Komplexität - Grundlagen II Julian Bitterlich Themenübersicht: Beziehungen zwischen den Komplexitätsklassen Savitchs Theorem conp und Charakterisierungen von NP und conp Reduktion, Vollständigkeit,

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker Wintersemester 2007/08 Thomas Schwentick Teil A: Aussagenlogik 3. Erfüllbarkeit Version von: 23. Januar 2008(16:11) Inhalt 3.1 Grundbegriffe 3.2 Aussagenlogische Resolution 3.3 Endlichkeitssatz

Mehr

Reduktion / Hilberts 10. Problem

Reduktion / Hilberts 10. Problem Reduktion / Hilberts 10. Problem Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 9. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

NP-Vollständigkeit und der Satz von Cook und Levin

NP-Vollständigkeit und der Satz von Cook und Levin NP-Vollständigkeit und der Satz von Cook und Levin Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 17. Dezember 2010 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

1. Klausur Einführung in die Theoretische Informatik Seite 1 von 14

1. Klausur Einführung in die Theoretische Informatik Seite 1 von 14 1. Klausur Einführung in die Theoretische Informatik Seite 1 von 14 1. Welche der folgenden Aussagen zu Normalformen einer aussagenlogischen Formel A ist falsch? A. Für Formel A existiert eine KNF K, sodass

Mehr

Knoten-Partitionierung in feste Eigenschaften ist NP-schwer

Knoten-Partitionierung in feste Eigenschaften ist NP-schwer Knoten-Partitionierung in feste Eigenschaften ist NP-schwer Seminar: Ausgewählte Kapitel der Informatik bei Prof. Dr. R. Schrader Seminarvortrag von Nils Rosjat Wintersemester 09 / 10 1 Einleitung Dieser

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Übungsblatt Nr. 3. Lösungsvorschlag

Übungsblatt Nr. 3. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Nico Döttling Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 3 svorschlag Aufgabe 1

Mehr

Die Klasse NP und die polynomielle Reduktion

Die Klasse NP und die polynomielle Reduktion Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Dezember 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen. Wintersemester 2012/13

Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen. Wintersemester 2012/13 Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: und effiziente Algorithmen Wintersemester 2012/13 Prof. Barbara König Übungsleitung: Henning Kerstan & Sebastian Küpper Barbara

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 26. November 2007 Semi-Entscheidbarkeit

Mehr

Die Reduktion Hilberts 10. Problem

Die Reduktion Hilberts 10. Problem Die Reduktion Hilberts 10. Problem Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 8. November 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Der Lese-Schreib-Kopf kann auch angehalten werden (H). Die Verarbeitung ist dann beendet.

Der Lese-Schreib-Kopf kann auch angehalten werden (H). Die Verarbeitung ist dann beendet. Die Turingmaschine besteht aus der Steuereinheit, die verschiedene Zustände annimmt dem Band, welches unendlich ausgedehnt ist, aber nur auf einem endlichem Bereich mit Zeichen aus einem Alphabet beschrieben

Mehr

Hier ist ein einfaches Turingprogramm. Außer dem Leerzeichen ist das Band nur mit. 1 belegt.

Hier ist ein einfaches Turingprogramm. Außer dem Leerzeichen ist das Band nur mit. 1 belegt. Die Turingmaschine besteht aus der Steuereinheit, die verschiedene Zustände annimmt dem Band, welches unendlich ausgedehnt ist, aber nur auf einem endlichem Bereich mit Zeichen aus einem Alphabet beschrieben

Mehr

Lösungsvorschläge Blatt Z1

Lösungsvorschläge Blatt Z1 Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt Z1 Zürich, 2. Dezember 2016 Lösung zu Aufgabe Z1 Wir zeigen L qi /

Mehr

Informatik-Grundlagen

Informatik-Grundlagen Informatik-Grundlagen Komplexität Karin Haenelt 1 Komplexitätsbetrachtungen: Ansätze Sprachentheorie Klassifiziert Mengen nach ihrer strukturellen Komplexität Komplexitätstheorie Klassifiziert Probleme

Mehr

2.5 Halteproblem und Unentscheidbarkeit

2.5 Halteproblem und Unentscheidbarkeit 38 25 Halteproblem und Unentscheidbarkeit Der Berechenbarkeitsbegriff ist auf Funktionen zugeschnitten Wir wollen nun einen entsprechenden Begriff für Mengen einführen Definition 255 Eine Menge A Σ heißt

Mehr

3. Klausur Einführung in die Theoretische Informatik Seite 1 von 14

3. Klausur Einführung in die Theoretische Informatik Seite 1 von 14 3. Klausur Einführung in die Theoretische Informatik Seite 1 von 14 1. Welche der folgenden Aussagen zur Verifikation nach Hoare ist richtig? A. Eine Formel, die sowohl vor der Ausführung des Programmes,

Mehr

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren:

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren: Resolutionskalkül Ein Kalkül ist eine Kollektion von syntaktischen Umformungsregeln, die unter gegebenen Voraussetzungen aus bereits vorhandenen Formeln neue Formeln erzeugen. Der Resolutionskalkül besteht

Mehr