2.4 Kontextsensitive und Typ 0-Sprachen

Größe: px
Ab Seite anzeigen:

Download "2.4 Kontextsensitive und Typ 0-Sprachen"

Transkript

1 Definition 2.43 Eine Typ 1 Grammatik ist in Kuroda Normalform, falls alle Regeln eine der folgenden 4 Formen haben: Dabei: A, B, C, D V und a Σ. Satz 2.44 A a, A B, A BC, AB CD. Für jede Typ 1 Grammatik G mit ε L(G) gibt es eine Grammatik G in Kuroda Normalform mit L(G) = L(G ). Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 288 / 311

2 Beweis: G = (V,Σ, P, S) mit ε L(G). (1.) Terminalzeichen nur in Regeln der Form A a. (2.) Regel A B 1 B 2...B k (k > 2) : A B 1 C 2, C 2 B 2 C 3,...,C k 1 B k 1 B k mit neuen Variablen C 2,...,C k 1. (3.) Regel A 1...A m B 1...B n (m+n > 4) : A 1 A 2 B 1 C 2 C m B m C m+1 C 2 A 3 B 2 C 3 C m+1 B m+1 C m+2.. C m 1 A m B m 1 C m C n 1 B n 1 B n mit neuen Variablen C 2,...,C n 1 Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 289 / 311

3 Turingmaschine (TM) (vgl. Kapitel 1) unendliches Band... a b c # Lese-/Schreibkopf endliche Kontrolleinheit Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 290 / 311

4 Definition 2.45 Eine nicht-deterministische Turingmaschine (NTM) ist gegeben durch ein 7-Tupel M = (Z,Σ,Γ,δ, z 0,, E): Z endliche Zustandsmenge Σ Eingabealphabet Γ Σ Arbeitsalphabet z 0 Z Startzustand Γ Σ Blank (Leerzeichen) E Z Endzustände δ : Z Γ P(Z Γ {L, R, N}) Überführungsrelation Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 291 / 311

5 Definition 2.46 Eine Konfiguration der NTM M ist ein Wort k Γ ZΓ +. k deckt den von verschiedenen Teil des Bandes ab. Beispiel: 10zabc 1z 0bbc Startkonfiguration für Eingabe x Σ : z 0 x Definition 2.47 Berechnungsrelation : a 1...a m zb 1...b n a 1...a m z cb 2...b n falls (z, c, N) δ(z, b 1 ) (m 0, n 1) a 1...a m cz b 2...b n falls (z, c, R) δ(z, b 1 ) (m 0, n 2) a 1...a m 1 z a m cb 2...b n falls (z, c, L) δ(z, b 1 ) (m 1, n 1) Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 292 / 311

6 Sonderfälle: a 1...a m zb 1 a 1...a m cz falls (z, c, R) δ(z, b 1 ). zb 1...b n z cb 2...b n falls (z, c, L) δ(z, b 1 ). Die Relation ist im Allgemeinen nicht-deterministisch! Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 293 / 311

7 Definition 2.48 Die von einer NTM M = (Z,Σ,Γ,δ, z 0,, E) akzeptierte Sprache ist definiert als T(M) := { x Σ z 0 x αzβ (α,β Γ, z E)}. Satz 2.49 Zu jeder NTM M gibt es eine deterministische TM M, sodass T(M ) = T(M) gilt. Beweis: Eingabe: M = (Z,Σ,Γ,δ, z 0,, E) eine NTM mit δ(z, a) k für alle z Z, a Γ Ziel: Eine TM M, die alle Rechnungen von M der Länge l zur Eingabe x Σ durchführt. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 294 / 311

8 Verfahren 1. Numeriere die Elemente von δ(z, a) von 0 bis r 1, r k, fest durch (für alle z, a). Ist (z, a) aktuell, so sind also r Rechenschritte möglich. 2. Zu 0 z k l sei z l 1...z 1 z 0 die k-näre Darstellung von z, also z = l 1 z i k i, 0 z i < k. i=0 Dann beschreibt z folgende Rechnung der Länge l: Führe im i-ten Schritt den z i -ten Befehl von δ(z, a) aus, falls (z, a) aktuell ist. Hat δ(z, a) weniger als z i Schritte, so stoppe. 3. Das Band habe 3 Spuren: Auf Spur 1 steht x Σ. Auf Spur 2 wird gezählt, z = 0 bis z = k l 1. Auf Spur 3 wird zum z auf Spur 2 die Rechnung ausgeführt. Zur festen Eingabe x Σ gibt es O(k l ) Rechnungen von M der Länge l. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 295 / 311

9 Damit kann M die Sprache T(M) wie folgt akzeptieren: Eingabe: x Σ ; l := 1; LOOP: simuliere alle Rechnungen von M der Länge l zur Eingabe x; if keine dieser Rechnungen akzeptiert then l := l+1; goto LOOP else halt und accept. Dann gilt T(M ) = T(M). Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 296 / 311

10 Linear beschränkte TM (LBA) a b b a b b a Lese-/Schreibkopf endliche Kontrolleinheit Definition 2.50 Eine nichtdeterministische TM M heißt linear beschränkt, wenn für alle a 1 a 2...a n 1 a n Σ + und alle Konfigurationen αzβ mit z 0 a 1 a 2...a n 1 â n αzβ folgendes gilt: Hierbei ist Σ := Σ { â a Σ}. αβ = n. T(M) := { a 1...a n 1 a n Σ z 0 a 1...a n 1 â n αzβ (α,β Γ, z E)}. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 297 / 311

11 Satz 2.51 (Kuroda) Die von linear beschränkten, nichtdeterministischen TMen (LBAs) akzeptierten Sprachen sind genau die kontextsensitiven Sprachen. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 298 / 311

12 Beweis: : Sei L = L(G), G = (V, Σ, P, S) eine Typ 1-Grammatik. Eine TM M, die L akzeptiert: Eingabe: x = a 1 a 2...a n 1 a n Σ +. (W) wähle nichtdet. eine Regel (u v) P aus; suche ein Vorkommen von v auf dem Band; if gefunden then ersetze v durch u; (beachte: u v ) if Bandinhalt = S then accept else goto (W) Dann gilt: x L(G) gdw. gdw. gdw. Ableitung S... x Rechnung von M, die eine Ableitung S... x in umgekehrter Reihenfolge konstruiert x T(M). Offensichtlich ist M linear beschränkt. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 299 / 311

13 : Sei L = T(M) für eine linear beschränkte TM M. Eine kontextsensitive Grammatik G = (V, Σ, P, S) für L: Sei := Γ (Z Γ) : Konfiguration k: Beschreibung k:... a b c d... a(z, b)cd + z Hilfsregeln P (Simulation): (z, b, L) δ(z, a) : c(z, a) (z, c)b P (c Γ) (z, b, R) δ(z, a) : (z, a)c b(z, c) P (c Γ) (z, b, N) δ(z, a) : (z, a) (z, b) P Dann gilt: Konfigurationen : k k gdw. k k. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 300 / 311

14 V := {S, A} ( Σ) P :={ S A(â, a) a Σ} (1) { A A(a, a) a Σ} (2) { A ((z 0, a), a) a Σ} (3) {(α 1, a)(α 2, b) (β 1, a)(β 2, b) α 1 α 2 β 1 β 2 P, a, b Σ} (4) {(α, a) (β, a) α β P, a Σ} (5) {((z, a), b) b z E, a Γ, b Σ} (6) {(a, b) b a Γ, b Σ} (7) S (1 3) ((z 0, a 1 ), a 1 )(a 2, a 2 )...(a n 1, a n 1 )(â n, a n ) (4,5) (γ 1, a 1 )...(γ k 1, a k 1 )((z,γ k ), a k )(γ k+1, a k+1 )...(γ n, a n ) (6,7) a 1...a k 1 a k a k+1...a n. Also: x = a 1...a n T(M) gdw. x L(G). Offensichtlich ist G kontextsensitiv. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 301 / 311

15 Satz 2.52 Die durch allgemeine TMen akzeptierbaren Sprachen sind genau die Typ 0-Sprachen. LBA-Problem: Kann jede kontextsensitive Sprache von einer linear beschränkten, deterministischen TM (DLBA) akzeptiert werden, d.h. gilt L(LBA) = L(DLBA)? Satz 2.53 (Immerman, Szelepcsényi) Die Klasse der kontextsensitiven Sprachen ist unter Komplementbildung abgeschlossen. Prof. Dr. F. Otto (Universität Kassel) Berechenbarkeit und Formale Sprachen 302 / 311

1.5 Turing-Berechenbarkeit

1.5 Turing-Berechenbarkeit A.M. Turing (1937): Maschinenmodell zur exakten Beschreibung des Begriffs effektiv berechenbar Stift Mensch a c b b Rechenblatt a b b c Lese-/Schreibkopf endliche Kontrolle Turingmaschine Eine Turingmaschine

Mehr

1.5 Turing-Berechenbarkeit

1.5 Turing-Berechenbarkeit A.M. Turing (1937): Maschinenmodell zur exakten Beschreibung des Begriffs effektiv berechenbar Stift Mensch a c b b Rechenblatt a b b c Lese-/Schreibkopf endliche Kontrolle Turingmaschine Eine Turingmaschine

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen Malte Helmert Gabriele Röger Universität Basel 7. April 2014 Kontextsensitive und allgemeine Grammatiken Wiederholung: (kontextsensitive)

Mehr

11.1 Kontextsensitive und allgemeine Grammatiken

11.1 Kontextsensitive und allgemeine Grammatiken Theorie der Informatik 7. April 2014 11. Kontextsensitive und Typ-0-Sprachen Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen 11.1 Kontextsensitive und allgemeine Grammatiken Malte Helmert

Mehr

Typ-1-Sprachen. Satz 1 (Kuroda ( ) 1964)

Typ-1-Sprachen. Satz 1 (Kuroda ( ) 1964) Typ-1-Sprachen Satz 1 (Kuroda (1934-2009) 1964) Eine Sprache L hat Typ 1 (= ist kontextsensitiv) genau dann, wenn sie von einem nichtdeterministischen LBA erkannt wird. Beweis: Sei zunächst L Typ-1-Sprache.

Mehr

Turingmaschinen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen

Turingmaschinen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: und effiziente Algorithmen Wintersemester 2011/12 Schematische Darstellung einer Turing-Maschine: Kopf kann sich nach links und

Mehr

Kontextsensitive und Typ 0 Sprachen Slide 2. Die Turingmaschine

Kontextsensitive und Typ 0 Sprachen Slide 2. Die Turingmaschine Kontextsensitive und Typ 0 Sprachen Slide 2 Die Turingmaschine DTM = Deterministische Turingmaschine NTM = Nichtdeterministische Turingmaschine TM = DTM oder NTM Intuitiv gilt: DTM = (DFA + dynamischer

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 15 Ziele vgl. AFS: Berechnungsmodelle für Typ-0- und Typ-1-Sprachen (Nicht-)Abschlußeigenschaften

Mehr

Beweis: Nach dem Pumping-Lemma für kontextfreie Sprachen ist

Beweis: Nach dem Pumping-Lemma für kontextfreie Sprachen ist CF versus CS Theorem CF ist echt in CS enthalten. Beweis: Nach dem Pumping-Lemma für kontextfreie Sprachen ist L = {a m b m c m m 1} nicht kontextfrei. Andererseits ist L kontextsensitiv, wie die Grammatik

Mehr

Theoretische Informatik 2

Theoretische Informatik 2 Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10 Die Chomsky-Hierarchie Definition Sei G = (V, Σ, P, S) eine Grammatik. 1 G heißt vom Typ 3 oder

Mehr

8. Turingmaschinen und kontextsensitive Sprachen

8. Turingmaschinen und kontextsensitive Sprachen 8. Turingmaschinen und kontextsensitive Sprachen Turingmaschinen (TM) von A. Turing vorgeschlagen, um den Begriff der Berechenbarkeit formal zu präzisieren. Intuitiv: statt des Stacks bei Kellerautomaten

Mehr

Theoretische Informatik Mitschrift

Theoretische Informatik Mitschrift Theoretische Informatik Mitschrift 7. Turingmaschinen Automatenmodell für Typ-0-Sprachen Einschränkung liefert Automatenmodell für Typ-1-Sprachen Alan Turing 1936, ursprüngliches Ziel: Formalisierung des

Mehr

4 Kontextsensitive und Typ 0 Sprachen

4 Kontextsensitive und Typ 0 Sprachen Hans U. Simon Bochum, den 05.02.2009 Annette Ilgen Beispiele zur Vorlesung Theoretische Informatik WS 08/09 Vorbemerkung: Hier findet sich eine Sammlung von Beispielen und Motivationen zur Vorlesung Theoretische

Mehr

Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen

Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 15 + 16 vom 17.12.2012 und 20.12.2012 Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen

Mehr

Rekursiv aufzählbare Sprachen

Rekursiv aufzählbare Sprachen Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben

Mehr

Einfache Turing Maschine. Formale Spezifikation einer einfachen Turing Maschine. M = (Σ,Γ,#,Q,s,F, ) Σ

Einfache Turing Maschine. Formale Spezifikation einer einfachen Turing Maschine. M = (Σ,Γ,#,Q,s,F, ) Σ Einfache Turing Maschine Band Formale Spezifikation einer einfachen Turing Maschine Lese-/ Schreibkopf Endliche Kontrolle Rechenschrittregeln: (endlich viele) Startkonfiguration: x Σ * auf Band L/S-Kopf

Mehr

Formale Sprachen. Script, Kapitel 4. Grammatiken

Formale Sprachen. Script, Kapitel 4. Grammatiken Formale Sprachen Grammatiken Script, Kapitel 4 erzeugen Sprachen eingeführt von Chomsky zur Beschreibung natürlicher Sprache bedeutend für die Syntaxdefinition und -analyse von Programmiersprachen Automaten

Mehr

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14 Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen

Mehr

Berechenbarkeit. Script, Kapitel 2

Berechenbarkeit. Script, Kapitel 2 Berechenbarkeit Script, Kapitel 2 Intuitiver Berechenbarkeitsbegriff Turing-Berechenbarkeit WHILE-Berechenbarkeit Church sche These Entscheidungsprobleme Unentscheidbarkeit des Halteproblems für Turingmaschinen

Mehr

2.2 Reguläre Sprachen Endliche Automaten

2.2 Reguläre Sprachen Endliche Automaten 2.2.1 Endliche Automaten E I N G A B E Lesekopf endliche Kontrolle Signal für Endzustand Ein endlicher Automat liest ein Wort zeichenweise und akzeptiert oder verwirft. endlicher Automat Sprache der akzeptierten

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 18. Januar 2018 INSTITUT FÜR THEORETISCHE 0 18.01.2018 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven

WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven WS06/07 Referentin: Katharina Blinova Formale Sprachen Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven 1. Allgemeines 2. Formale Sprachen 3. Formale Grammatiken 4. Chomsky-Hierarchie 5.

Mehr

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer, Reguläre Sprachen Reguläre Sprachen (Typ-3-Sprachen) haben große Bedeutung in Textverarbeitung und Programmierung (z.b. lexikalische Analyse) besitzen für viele Entscheidungsprobleme effiziente Algorithmen

Mehr

Theoretische Informatik II

Theoretische Informatik II Theoretische Informatik II Einheit 4.2 Modelle für Typ-0 & Typ-1 Sprachen 1. Nichtdeterministische Turingmaschinen 2. Äquivalenz zu Typ-0 Sprachen 3. Linear beschränkte Automaten und Typ-1 Sprachen Maschinenmodelle

Mehr

Informatik III - WS07/08

Informatik III - WS07/08 Informatik III - WS07/08 Kapitel 5 1 Informatik III - WS07/08 Prof. Dr. Dorothea Wagner [email protected] Kapitel 5 : Grammatiken und die Chomsky-Hierarchie Informatik III - WS07/08 Kapitel 5 2 Definition

Mehr

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln, Theorie der Informatik 8. März 25 8. Reguläre Sprachen I Theorie der Informatik 8. Reguläre Sprachen I 8. Reguläre Grammatiken Malte Helmert Gabriele Röger 8.2 DFAs Universität Basel 8. März 25 8.3 NFAs

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Wintersemester 2007 / 2008 Prof. Dr. Heribert Vollmer Institut für Theoretische Informatik 29.10.2007 Reguläre Sprachen Ein (deterministischer) endlicher Automat

Mehr

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln, Theorie der Informatik 9. März 24 7. Reguläre Sprachen I Theorie der Informatik 7. Reguläre Sprachen I Malte Helmert Gabriele Röger Universität Basel 9. März 24 7. Reguläre Grammatiken 7.2 DFAs 7.3 NFAs

Mehr

Sprachen und Grammatiken

Sprachen und Grammatiken Grundlagen der Theoretischen Informatik Wintersemester 2007 / 2008 Prof. Dr. Heribert Vollmer Institut für Theoretische Informatik 03.12.2007 Sprachen und Grammatiken Alphabete, Zeichen und Symbole Ein

Mehr

Kontextsensitive und Typ 0 Sprachen

Kontextsensitive und Typ 0 Sprachen Kontextsensitive und Typ 0 Sprachen Slide 1 Kontextsensitive und Typ 0 Sprachen Hans U. Simon (RUB) Email: [email protected] Homepage: http://www.ruhr-uni-bochum.de/lmi Kontextsensitive und Typ 0 Sprachen

Mehr

Definition 98 Eine Turingmaschine heißt linear beschränkt (kurz: LBA), falls für alle q Q gilt:

Definition 98 Eine Turingmaschine heißt linear beschränkt (kurz: LBA), falls für alle q Q gilt: 5.2 Linear beschränkte Automaten Definition 98 Eine Turingmaschine heißt linear beschränkt (kurz: LBA), falls für alle q Q gilt: (q, c, d) δ(q, ) = c =. Ein Leerzeichen wird also nie durch ein anderes

Mehr

Kontextsensitive und Typ 0 Sprachen

Kontextsensitive und Typ 0 Sprachen Kontextsensitive und Typ 0 Sprachen Slide 1 Kontextsensitive und Typ 0 Sprachen Hans U. Simon (RUB) mit Modifikationen von Maike Buchin (RUB) Lehrstuhl Mathematik und Informatik Homepage: http://www.ruhr

Mehr

Das Halteproblem für Turingmaschinen

Das Halteproblem für Turingmaschinen Das Halteproblem für Turingmaschinen Das Halteproblem für Turingmaschinen ist definiert als die Sprache H := { T w : T ist eine TM, die bei Eingabe w {0, 1} hält }. Behauptung: H {0, 1} ist nicht entscheidbar.

Mehr

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23 1/23 Formale Methoden 1 Gerhard Jäger [email protected] Uni Bielefeld, WS 2007/2008 9. Januar 2008 2/23 Automaten (informell) gedachte Maschine/abstraktes Modell einer Maschine verhält sich

Mehr

Übersicht. 3 3 Kontextfreie Sprachen

Übersicht. 3 3 Kontextfreie Sprachen Formale Systeme, Automaten, Prozesse Übersicht 3 3.1 Kontextfreie Sprachen und Grammatiken 3.2 Ableitungsbäume 3.3 Die pre -Operation 3.4 Entscheidungsprobleme für CFGs 3.5 Normalformen für CFGs 3.6 Chomsky-Normalform

Mehr

Teil V. Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie

Teil V. Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie Teil V Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie Zwei Sorten von Grammatiken Kontextsensitive Grammatik (CSG) (Σ, V, P, S), Regeln der Form αaβ αγβ α, β (Σ V ),

Mehr

Rucksackproblem und Verifizierbarkeit

Rucksackproblem und Verifizierbarkeit Rucksackproblem und Verifizierbarkeit Gegeben: n Gegenstände mit Gewichten G={g 1,g 2,,g n } und Werten W={w 1,w 2,,w n } sowie zulässiges Gesamtgewicht g. Gesucht: Teilmenge S {1,,n} mit i i S unter der

Mehr

Automaten und formale Sprachen Klausurvorbereitung

Automaten und formale Sprachen Klausurvorbereitung Automaten und formale Sprachen Klausurvorbereitung Rami Swailem Mathematik Naturwissenschaften und Informatik FH-Gießen-Friedberg Inhaltsverzeichnis 1 Definitionen 2 2 Altklausur Jäger 2006 8 1 1 Definitionen

Mehr

Typ-0-Sprachen und Turingmaschinen

Typ-0-Sprachen und Turingmaschinen Typ-0-Sprachen und Turingmaschinen Jean Vancoppenolle Universität Potsdam Einführung in formale Sprachen und Automaten Dr. Thomas Hanneforth (Präsentation aus Foliensätzen von Dr. Thomas Hanneforth und

Mehr

2.1 Allgemeines. Was ist eine Sprache? Beispiele:

2.1 Allgemeines. Was ist eine Sprache? Beispiele: Was ist eine Sprache? Beispiele: (a) Deutsch, Japanisch, Latein, Esperanto,...: Natürliche Sprachen (b) Pascal, C, Java, Aussagenlogik,...: Formale Sprachen Wie beschreibt man eine Sprache? (i) Syntax

Mehr

Aufgabentypen: Spickerblatt: kontextfrei (Typ 2): zusätzlich: u ist eine!"# v 1

Aufgabentypen: Spickerblatt: kontextfrei (Typ 2): zusätzlich: u ist eine!# v 1 Info4 Stoff Aufgabentypen: Grammatik CH einordnen NFA DFA Grammatik Chomsky-NF CYK-Algorithmus: Tabelle / Ableitungsbäume Grammatik streng kf. Grammatik Grammatik Pumping Lemma Beweis, dass Gr. nicht reg,

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informatik I Einheit 4.3 Eigenschaften von L 0 /L 1 -Sprachen 1. Abschlußeigenschaften 2. Prüfen von Eigenschaften 3. Grenzen der Sprachklassen Sprachklassen Semi-entscheidbare Sprache Sprache,

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 13. Vorlesung 07.12.2006 1 Überblick: Die Church- Turing-These Turing-Maschinen 1-Band Turing-Maschine Mehrband-Turing-Maschinen Nichtdeterministische

Mehr

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Grammatik G mit L(G) = L(G ). Beweis im Beispiel (2.): G = (V,Σ, P, S) : P = {S asbc, S abc, CB BC, ab ab, bb bb, bc bc, cc cc}. (i) G

Mehr

Weitere universelle Berechnungsmodelle

Weitere universelle Berechnungsmodelle Weitere universelle Berechnungsmodelle Mehrband Turingmaschine Nichtdeterministische Turingmaschine RAM-Modell Vektoradditionssysteme λ-kalkül µ-rekursive Funktionen 1 Varianten der dtm Mehrkopf dtm Kontrolle

Mehr

Berechenbarkeit. Script, Kapitel 2

Berechenbarkeit. Script, Kapitel 2 Berechenbarkeit Script, Kapitel 2 Intuitiver Berechenbarkeitsbegriff Turing-Berechenbarkeit WHILE-Berechenbarkeit Church sche These Entscheidungsprobleme Unentscheidbarkeit des Halteproblems für Turingmaschinen

Mehr

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 07.02.2006 28. und letzte Vorlesung 1 Die Chomsky-Klassifizierung Chomsky-Hierachien 3: Reguläre Grammatiken

Mehr

Theoretische Informatik. Grammatiken. Grammatiken. Grammatiken. Rainer Schrader. 9. Juli 2009

Theoretische Informatik. Grammatiken. Grammatiken. Grammatiken. Rainer Schrader. 9. Juli 2009 Theoretische Informatik Rainer Schrader Institut für Informatik 9. Juli 2009 1 / 41 2 / 41 Gliederung die Chomsky-Hierarchie Typ 0- Typ 3- Typ 1- Die Programmierung eines Rechners in einer höheren Programmiersprache

Mehr

Das Rechenmodell namens. Turing-Maschine. Hans U. Simon (RUB) Homepage:

Das Rechenmodell namens. Turing-Maschine. Hans U. Simon (RUB)   Homepage: Turing-Maschine Slide 1 Das Rechenmodell namens Turing-Maschine Hans U. Simon (RUB) Email: [email protected] Homepage: http://www.ruhr-uni-bochum.de/lmi Turing-Maschine Slide 2 Die Turingmaschine DTM =

Mehr

Sanders: Informatik III December 14, Kontextsensitive und Typ 0-Sprachen

Sanders: Informatik III December 14, Kontextsensitive und Typ 0-Sprachen Sanders: Informatik III December 14, 2006 1 1.4 Kontextsensitive und Typ 0-Sprachen Sanders: Informatik III December 14, 2006 2 Kuroda Normalform Eine Typ 1 Grammatik G = (V,Σ,P,S) in Kuroda Normalform

Mehr

Kontextfreie Sprachen

Kontextfreie Sprachen Kontextfreie Sprachen besitzen große Bedeutung im Compilerbau Chomsky-Normalform effiziente Lösung des Wortproblems (CYK-Algorithmus) Grenzen kontextfreier Sprachen (Pumping Lemma) Charakterisierung durch

Mehr

Kontextfreie Sprachen

Kontextfreie Sprachen Kontextfreie Sprachen Bedeutung: Programmiersprachen (Compilerbau) Syntaxbäume Chomsky-Normalform effiziente Lösung des Wortproblems (CYK-Algorithmus) Grenzen kontextfreier Sprachen (Pumping Lemma) Charakterisierung

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004 Lösung zur Klausur Grundlagen der Theoretischen Informatik im WiSe 2003/2004 1. Geben Sie einen deterministischen endlichen Automaten an, der die Sprache aller Wörter über dem Alphabet {0, 1} akzeptiert,

Mehr

Turing-Maschinen: Ein abstrakes Maschinenmodell

Turing-Maschinen: Ein abstrakes Maschinenmodell Wann ist eine Funktion (über den natürlichen Zahlen) berechenbar? Intuitiv: Wenn es einen Algorithmus gibt, der sie berechnet! Was heißt, eine Elementaroperation ist maschinell ausführbar? Was verstehen

Mehr

Churchsche These. Die Menge der Turing-berechenbaren Funktionen ist genau die Menge der im intuitiven Sinne berechenbaren Funktionen.

Churchsche These. Die Menge der Turing-berechenbaren Funktionen ist genau die Menge der im intuitiven Sinne berechenbaren Funktionen. 1 Churchsche These Die Menge der Turing-berechenbaren Funktionen ist genau die Menge der im intuitiven Sinne berechenbaren Funktionen. Varianten von Turing-Maschinen 2 Varianten von Turing-Maschinen Turing-Maschinen

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (IV) 15.06.2016 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Definition 78 Ein NPDA = PDA (= Nichtdeterministischer Pushdown-Automat) besteht aus:

Definition 78 Ein NPDA = PDA (= Nichtdeterministischer Pushdown-Automat) besteht aus: 4.7 Kellerautomaten In der Literatur findet man häufig auch die Bezeichnungen Stack-Automat oder Pushdown-Automat. Kellerautomaten sind, wenn nichts anderes gesagt wird, nichtdeterministisch. Definition

Mehr

Grundlagen der Theoretischen Informatik Musterlösungen zu ausgewählten Übungsaufgaben

Grundlagen der Theoretischen Informatik Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekt mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

10 Kellerautomaten. Kellerautomaten

10 Kellerautomaten. Kellerautomaten 10 Kellerautomaten Bisher hatten wir kontextfreie Sprachen nur mit Hilfe von Grammatiken charakterisiert. Wir haben gesehen, dass endliche Automaten nicht in der Lage sind, alle kontextfreien Sprachen

Mehr

FORMALE SYSTEME. 20. Vorlesung: Typ 0 und Typ 1. TU Dresden, 4. Januar Markus Krötzsch Professur für Wissensbasierte Systeme

FORMALE SYSTEME. 20. Vorlesung: Typ 0 und Typ 1. TU Dresden, 4. Januar Markus Krötzsch Professur für Wissensbasierte Systeme FORMALE SYSTEME 20. Vorlesung: Typ 0 und Typ 1 Markus Krötzsch Professur für Wissensbasierte Systeme TU Dresden, 4. Januar 2017 Rückblick Markus Krötzsch, 4. Januar 2017 Formale Systeme Folie 2 von 32

Mehr

Beweisidee: 1 Verwende den Keller zur Simulation der Grammatik. Leite ein Wort. 2 Problem: der Keller darf nicht beliebig verwendet werden, man kann

Beweisidee: 1 Verwende den Keller zur Simulation der Grammatik. Leite ein Wort. 2 Problem: der Keller darf nicht beliebig verwendet werden, man kann Automaten und Formale prachen alias Theoretische Informatik ommersemester 2011 Dr. ander Bruggink Übungsleitung: Jan tückrath Wir beschäftigen uns ab jetzt einige Wochen mit kontextfreien prachen: Kontextfreie

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (V) 15.07.2015 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Formale Sprachen und Automaten

Formale Sprachen und Automaten Turingmaschinen Formale Sprachen und Automaten Das Konzept der Turingmaschine wurde von dem Englischen Mathematiker Alan M. Turing (1912-1954) ersonnen. Turingmaschinen, Typ-0- und Typ-1-Grammatiken Der

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 18/19

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 18/19 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 18/19 Ausgabe 8. Januar 2019 Abgabe 22. Januar 2019, 11:00 Uhr (im

Mehr

2. Gegeben sei folgender nichtdeterministischer endlicher Automat mit ɛ-übergängen:

2. Gegeben sei folgender nichtdeterministischer endlicher Automat mit ɛ-übergängen: Probeklausur Automatentheorie & Formale Sprachen WiSe 2012/13, Wiebke Petersen Name: Matrikelnummer: Aufgabe A: Typ3-Sprachen 1. Konstruieren Sie einen endlichen Automaten, der die Sprache aller Wörter

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 17. Januar 2012 INSTITUT FÜR THEORETISCHE 0 KIT 18.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Turing: prinzipielle Berechenbarkeit Abschnitt 4.2. Turingmaschinen: DTM Abschnitt 4.2. DTM: Akzeptieren und Entscheiden Abschnitt 4.

Turing: prinzipielle Berechenbarkeit Abschnitt 4.2. Turingmaschinen: DTM Abschnitt 4.2. DTM: Akzeptieren und Entscheiden Abschnitt 4. Kap. 4: Berechnungsmodelle Turingmaschinen 4.2 Turing: prinzipielle Berechenbarkeit Abschnitt 4.2 Kap. 4: Berechnungsmodelle Turingmaschinen 4.2 Turingmaschinen: DTM Abschnitt 4.2 DTM = DFA + unbeschränkter

Mehr

2. Gegeben sei folgender nichtdeterministischer endlicher Automat mit ɛ-übergängen:

2. Gegeben sei folgender nichtdeterministischer endlicher Automat mit ɛ-übergängen: Probeklausur Automatentheorie & Formale Sprachen WiSe 2012/13, Wiebke Petersen Name: Matrikelnummer: Aufgabe A: Typ3-Sprachen 1. Konstruieren Sie einen endlichen Automaten, der die Sprache aller Wörter

Mehr

Formale Grundlagen der Wirtschaftsinformatik

Formale Grundlagen der Wirtschaftsinformatik Formale Grundlagen der Wirtschaftsinformatik Nikolaj Popov Research Institute for Symbolic Computation [email protected] Turingmaschinen und Kontextsensitive Sprachen Eine Turingmaschine besteht

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 Kontextfreie Grammatiken Definition: Eine Grammatik G

Mehr

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit. Zugangsnummer: 9201

Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit.  Zugangsnummer: 9201 Informatik IV Theoretische Informatik: Formale Sprachen und Automaten, Berechenbarkeit und NP-Vollständigkeit Wiederholung Kapitel 3 und 4 http://pingo.upb.de Zugangsnummer: 9201 Dozent: Jun.-Prof. Dr.

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Kontextfreie Sprachen und Pushdown-Automaten Dozentin: Wiebke Petersen WS 2004/2005 Wiebke Petersen Formale Komplexität natürlicher Sprachen WS 03/04 Wiederholung c

Mehr

Zusammenfassung. Endliche Sprachen. Fazit zu endlichen Automaten. Teil 4: Grammatiken und Syntaxanalyse

Zusammenfassung. Endliche Sprachen. Fazit zu endlichen Automaten. Teil 4: Grammatiken und Syntaxanalyse Endliche Sprachen Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für L. Zusammenfassung Beschreibungsformen für reguläre Sprachen:

Mehr

Abschluss gegen Substitution. Wiederholung. Beispiel. Abschluss gegen Substitution

Abschluss gegen Substitution. Wiederholung. Beispiel. Abschluss gegen Substitution Wiederholung Beschreibungsformen für reguläre Sprachen: DFAs NFAs Reguläre Ausdrücke:, {ε}, {a}, und deren Verknüpfung mit + (Vereinigung), (Konkatenation) und * (kleenescher Abschluss) Abschluss gegen

Mehr

Halteproblem/Kodierung von Turing-Maschinen

Halteproblem/Kodierung von Turing-Maschinen Halteproblem/Kodierung von Turing-Maschinen Unser Ziel ist es nun zu zeigen, dass das sogenannte Halteproblem unentscheidbar ist. Halteproblem (informell) Eingabe: Turing-Maschine M mit Eingabe w. Frage:

Mehr

Theoretische Informatik I (Winter 2018/19) Prof. Dr. Ulrich Hertrampf. 1.5 Tabellen

Theoretische Informatik I (Winter 2018/19) Prof. Dr. Ulrich Hertrampf. 1.5 Tabellen 1.5 Tabellen Welche Sprachklassen haben wir betrachtet? Und mit welchen Mitteln haben wir sie beschrieben? Zunächst haben wir die vier Chomsky-Klassen eingeführt: Typ-0 bis Typ-3 Grammatiken beschreiben

Mehr

Algorithmen mit konstantem Platzbedarf: Die Klasse REG

Algorithmen mit konstantem Platzbedarf: Die Klasse REG Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August

Mehr

Theoretische Informatik. nichtdeterministische Turingmaschinen NDTM. Turingmaschinen. Rainer Schrader. 29. April 2009

Theoretische Informatik. nichtdeterministische Turingmaschinen NDTM. Turingmaschinen. Rainer Schrader. 29. April 2009 Theoretische Informatik Rainer Schrader nichtdeterministische Turingmaschinen Zentrum für Angewandte Informatik Köln 29. April 2009 1 / 33 2 / 33 Turingmaschinen das Konzept des Nichtdeterminismus nahm

Mehr

Berechenbarkeit und Komplexität

Berechenbarkeit und Komplexität Berechenbarkeit und Komplexität Vorlesung SS 2013 1. Einführung I. Berechenbarkeitsbegriff, typische Fragen: wann ist eine Funktion berechenbar? wie lässt sich der intuitive Berechenbarkeitsbegriff formal

Mehr

a n b n c n ist kontextsensitiv kontextfreie Sprachen (Typ 2) Abschnitt 3.3 kontextfreie Sprachen: Abschlusseigenschaften Chomsky NF und binäre Bäume

a n b n c n ist kontextsensitiv kontextfreie Sprachen (Typ 2) Abschnitt 3.3 kontextfreie Sprachen: Abschlusseigenschaften Chomsky NF und binäre Bäume Kap 3: Grammatiken Chomsky-Hierarchie 32 Kap 3: Grammatiken Kontextfreie 33 a n b n c n ist kontextsensiti Beispiel 3111 modifizieren: Σ = {a, b, c G = (Σ, V, P, X ) V = {X, Y, Z P : X ε X axyz ZY YZ ay

Mehr

FORMALE SYSTEME. 3. Vorlesung: Endliche Automaten. TU Dresden, 17. Oktober Markus Krötzsch

FORMALE SYSTEME. 3. Vorlesung: Endliche Automaten. TU Dresden, 17. Oktober Markus Krötzsch FORMALE SYSTEME 3. Vorlesung: Endliche Automaten Markus Krötzsch TU Dresden, 17. Oktober 2016 Rückblick Markus Krötzsch, 17. Oktober 2016 Formale Systeme Folie 2 von 31 Wiederholung Mit Grammatiken können

Mehr

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, NP 254/ 333 Polynomielle Verifizierer und NP Ḋefinition Polynomieller

Mehr

Wortproblem für kontextfreie Grammatiken

Wortproblem für kontextfreie Grammatiken Wortproblem für kontextfreie Grammatiken G kontextfreie Grammatik. w Σ w L(G)? Wortproblem ist primitiv rekursiv entscheidbar. (schlechte obere Schranke!) Kellerautomat der L(G) akzeptiert Ist dieser effizient?

Mehr