Formale Sprachen. Script, Kapitel 4. Grammatiken
|
|
|
- Gerda Graf
- vor 9 Jahren
- Abrufe
Transkript
1 Formale Sprachen Grammatiken Script, Kapitel 4 erzeugen Sprachen eingeführt von Chomsky zur Beschreibung natürlicher Sprache bedeutend für die Syntaxdefinition und -analyse von Programmiersprachen Automaten akzeptieren Sprachen enge Beziehungen zu Grammatiken B. Reichel, R. Stiebe 117
2 Beispiel für eine Grammatik <Satz> <Subjekt><Prädikat><Objekt> <Subjekt> <Artikel><Attribut><Substantiv> <Prädikat> jagt <Objekt> <Artikel><Attribut><Substantiv> <Artikel> ε der die das <Attribut> ε <Adjektiv> <Adjektiv><Attribut> <Adjektiv> kleine bissige große <Substantiv> Hund Katze B. Reichel, R. Stiebe 118
3 Syntaxbaum für den Satz der kleine bissige Hund jagt die große Katze! " #$! %&! ' () 0.. " 1-.!% &.. '+ (# *+ (, (2 /+.(, "' &!&.3 4 ' / 3 3!5 6 7 * B. Reichel, R. Stiebe 119
4 Definition Grammatik Eine Grammatik ist ein 4-Tupel G = (V, Σ, P, S), wobei V ein Alphabet ist (Nichtterminalalphabet oder Alphabet der Variablen), Σ ein Alphabet ist (Terminalalphabet), V Σ = gilt, P eine endliche Teilmenge von ((V Σ) \ Σ ) (V Σ) ist (Menge der Regeln), S V ist (die Startvariable oder Axiom). Zur besseren Lesbarkeit werden wir u v P für (u, v) P schreiben. B. Reichel, R. Stiebe 120
5 Definitionen direkte Ableitung einer Grammatik Sei G = (V, Σ, P, S) eine Grammatik und u, v (V Σ) Wörter. Dann gilt u = G v (in Worten: u erzeugt bezüglich G direkt v) genau dann, wenn (i) u = γ 1 αγ 2 mit γ 1, γ 2 (V Σ), (ii) v = γ 1 βγ 2 und (iii) α β P ist. Wenn keine Verwechslungsgefahr besteht, schreiben wir statt = G einfach =. B. Reichel, R. Stiebe 121
6 Definitionen Ableitung und erzeugte Sprache Sei G = (V, Σ, P, S) eine Grammatik und u, v (V Σ) Wörter. Dann gilt u = G v (in Worten: u erzeugt bezüglich G in endlich vielen Schritten v) genau dann, wenn u = v gilt oder es ein n N und Wörter w 0, w 1,..., w n gibt, so dass gilt. u = w 0 = G w 1 = G w 2 = G = G w n = v Sei G = (V, Σ, P, S) eine Grammatik. Die von G erzeugte Sprache L(G) wird definiert als L(G) = {w Σ S = G w}. B. Reichel, R. Stiebe 122
7 Beispiel einer Grammatik Es sei G = ({S}, {a, b}, {S asb, S ab}, S) eine Grammatik, dann gilt L(G) = {a n b n n 1}. Eine Ableitung für das Wort a 4 b 4 sieht dann so aus: S = asb = aasbb = aaasbbb = aaaabbbb. B. Reichel, R. Stiebe 123
8 Weiteres Beispiel einer Grammatik Es sei G = ({S}, {a}, {S aas, S a}, S) eine Grammatik, dann gilt L(G) = {a 2n+1 n 0}. Eine Ableitung für das Wort a 7 sieht dann so aus: S = aas = aaaas = aaaaaas = aaaaaaa. B. Reichel, R. Stiebe 124
9 Weiteres Beispiel einer Grammatik Es sei G = ({S}, {a, b}, {S as, S bs, S a, S b}, S) eine Grammatik, dann gilt L(G) = {a, b} + = {w {a, b} w ε}. Eine Ableitung für das Wort aaba sieht dann so aus: S = as = aas = aabs = aaba. B. Reichel, R. Stiebe 125
10 Komplexeres Beispiel einer Grammatik Es sei die Grammatik G = ({S, B, C}, {a, b, c}, P, S) mit P = {S asbc, S abc, CB BC, ab ab, bb bb, bc bc, cc cc} gegeben. Wir können zum Beispiel die Ableitung S = asbc = aasbcbc = aaabcbcbc = aaabbccbc = aaabbcbcc = aaabbbccc = aaabbbccc = aaabbbccc = aaabbbccc = aaabbbccc = aaabbbccc = aaabbbccc aufstellen, also gehört das Wort aaabbbccc = a 3 b 3 c 3 zur erzeugten Sprache L(G), es gilt also a 3 b 3 c 3 L(G). B. Reichel, R. Stiebe 126
11 Komplexeres Beispiel einer Grammatik Erzeugte Sprache Teil 1 Vermutung: L(G) = {a n b n c n n 1}. Zunächst wird L(G) {a n b n c n n 1} gezeigt, d.h. S = a n b n c n für jedes n 1. Wende (n 1)-mal Regel S asbc und dann einmal S abc an, d.h.: S = a n (BC) n. Solange wie möglich wende CB BC an, d.h.: a n (BC) n = a n B n C n. Wende einmal ab ab und (n 1)-mal bb bb an, d.h.: a n B n C n = a n b n C n. Wende einmal bc bc und (n 1)-mal cc cc an, d.h.: a n b n C n = a n b n c n. B. Reichel, R. Stiebe 127
12 Komplexeres Beispiel einer Grammatik Erzeugte Sprache Teil 2 Schwieriger zu zeigen ist die Behauptung L(G) {a n b n c n n 1}. Für jedes erzeugbare Wort α gilt: α a = α b + α B = α c + α C. In jedem erzeugbaren Wort stehen die a s am Anfang. Ein Symbol B kann nur dann in ein b umgewandelt werden, wenn unmittelbar links vor ihm ein a oder ein b steht, d.h. kein c steht vor einem b. Mathematisch exakter Beweis erfolgt durch vollständige Induktion. B. Reichel, R. Stiebe 128
13 Chomsky-Hierarchie Definition: Eine Grammatik G = (V, Σ, P, S) heißt vom Typ 0, wenn sie keinen Beschränkungen unterliegt, Typ 1 oder kontextabhängig, falls für jede Regel α β gilt: α β, mit der Ausnahme S ε, falls S nicht auf der rechten Seite einer Regel vorkommt. Typ 2 oder kontextfrei, wenn jede Regel von der Form A β mit A V und β (V Σ) ist. Typ 3 oder regulär, wenn jede Regel von der Form A wb oder A w mit A, B V und w Σ ist. B. Reichel, R. Stiebe 129
14 Chomsky-Hierarchie Fortsetzung Definition: Eine Sprache L Σ heißt vom Typ 0 (Typ 1, Typ 2, Typ 3), falls es eine Grammatik G = (V, Σ, P, S) vom Typ 0 (Typ 1, Typ 2, Typ 3) gibt, so dass L = L(G) gilt. Notation: Typ i: Familie der Sprachen vom Typ i {0, 1, 2, 3} Satz (Chomsky-Hierarchie). Es gilt: Typ 3 Typ 2 Typ 1 Typ 0. Der Beweis des Satzes wird in den folgenden Kapiteln erbracht. B. Reichel, R. Stiebe 130
15 Typ-0-Grammatiken und Turingmaschinen Satz Eine Sprache ist genau dann eine Typ-0-Sprache, wenn sie von einer NTM akzeptiert werden kann, d.h. wenn sie rekursiv aufzählbar ist. Beweisidee Ableitung einer Grammatik wird in umgekehrter Reihenfolge durch eine NTM simuliert. Konfigurationenfolge eines akzeptierenden Laufs einer NTM wird in umgekehrter Reihenfolge durch eine Grammatik erzeugt. B. Reichel, R. Stiebe 131
16 Simulation einer Grammatik durch eine NTM gegeben: Grammatik G = (V, Σ, P, S) Konstruiere NTM M = (Z, Σ, V Σ { }, δ, z 0,, {q}) Arbeitsweise von M in einer Phase: Rate eine Regel α β und ersetze ein Vorkommen von β durch α, d.h. Konfigurationsänderung: z 0 w 1 βw 2 z 0 w 1 αw 2 M akzeptiert, wenn nur noch S auf dem Band steht. B. Reichel, R. Stiebe 132
17 Linear beschränkte Automaten Definition Eine nichtdeterministische Turingmaschine M heißt linear beschränkter Automat (LBA), wenn bei jedem Lauf von M nur die Speicherzellen der Eingabe benutzt werden. Offenes Problem (LBA-Problem): Sind deterministische LBA so mächtig wie nichtdeterministische LBA? B. Reichel, R. Stiebe 133
18 Typ-1-Grammatiken und LBA Satz Eine Sprache ist genau dann eine Typ-1-Sprache, wenn sie von einem linear beschränkten Automaten akzeptiert werden kann. Beweisidee Gleiche Konstruktionen wie für Typ-0-Grammatiken und NTM. Nichtverkürzende Regeln erlauben den beschränkten Platzbedarf. B. Reichel, R. Stiebe 134
19 Das Wortproblem Definition (Wortproblem) Gegeben: Grammatik G = (V, Σ, P, S) vom Typ i, i {0, 1, 2, 3}, und Wort w Σ, Frage: Gilt w L(G)? Folgerung Das Wortproblem für Typ-0-Grammatiken ist semi-entscheidbar, aber nicht entscheidbar. Satz Das Wortproblem für Typ-1-Grammatiken ist entscheidbar. B. Reichel, R. Stiebe 135
20 Weitere Entscheidungsprobleme Leerheitsproblem: Gegeben: Grammatik G. Frage: Gilt L(G) =? Endlichkeitsproblem: Gegeben: Grammatik G. Frage: Ist L(G) endlich? Schnittproblem: Gegeben: Zwei Grammatiken G 1, G 2. Frage: Gilt L(G 1 ) L(G 2 ) =? Äquivalenzproblem: Gegeben: Zwei Grammatiken G 1, G 2. Frage: Gilt L(G 1 ) = L(G 2 )? Satz: Das Leerheitsproblem, das Endlichkeitsproblem, das Äquivalenzproblem und das Schnittproblem sind unentscheidbar für Typ-1-Grammatiken. B. Reichel, R. Stiebe 136
2.1 Allgemeines. Was ist eine Sprache? Beispiele:
Was ist eine Sprache? Beispiele: (a) Deutsch, Japanisch, Latein, Esperanto,...: Natürliche Sprachen (b) Pascal, C, Java, Aussagenlogik,...: Formale Sprachen Wie beschreibt man eine Sprache? (i) Syntax
Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14
Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen
Kontextfreie Sprachen
Kontextfreie Sprachen besitzen große Bedeutung im Compilerbau Chomsky-Normalform effiziente Lösung des Wortproblems (CYK-Algorithmus) Grenzen kontextfreier Sprachen (Pumping Lemma) Charakterisierung durch
Formale Sprachen. Script, Kapitel 4. Grammatiken
Formale Sprachen Grammatiken Script, Kapitel 4 erzeugen Sprachen eingeführt von Chomsky zur Beschreibung natürlicher Sprachen bedeutend für die Syntaxdefinition von Programmiersprachen (Compilerbau) Automaten
1 Automatentheorie und Formale Sprachen
Sanders: TGI October 29, 2015 1 1 Automatentheorie und Formale Sprachen 1.1 Allgemeines Sanders: TGI October 29, 2015 2 Beispiel: Arithmetische Ausdrücke:EXPR Σ={1,a,+,,,(,)} a ist Platzhalter für Konstanten
Vorlesung Automaten und Formale Sprachen Sommersemester Beispielsprachen. Sprachen
Vorlesung Automaten und Formale Sprachen Sommersemester 2018 Prof. Barbara König Übungsleitung: Christina Mika-Michalski Wörter Wort Sei Σ ein Alphabet, d.h., eine endliche Menge von Zeichen. Dann bezeichnet
Kontextfreie Sprachen
Kontextfreie Sprachen Bedeutung: Programmiersprachen (Compilerbau) Syntaxbäume Chomsky-Normalform effiziente Lösung des Wortproblems (CYK-Algorithmus) Grenzen kontextfreier Sprachen (Pumping Lemma) Charakterisierung
Das Halteproblem für Turingmaschinen
Das Halteproblem für Turingmaschinen Das Halteproblem für Turingmaschinen ist definiert als die Sprache H := { T w : T ist eine TM, die bei Eingabe w {0, 1} hält }. Behauptung: H {0, 1} ist nicht entscheidbar.
Grundbegriffe. Grammatiken
Grammatiken Grammatiken in der Informatik sind ähnlich wie Grammatiken für natürliche Sprachen ein Mittel, um alle syntaktisch korrekten Sätze (hier: Wörter) einer Sprache zu erzeugen. Beispiel: Eine vereinfachte
Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S)
Grammatiken Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V Startsymbol S V Produktionen P ( (V Σ) \ Σ ) (V Σ) Kurzschreibweise G = (V, Σ, P, S) Schreibweise für Produktion (α, β) P: α β 67 /
Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive
Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Grammatik G mit L(G) = L(G ). Beweis im Beispiel (2.): G = (V,Σ, P, S) : P = {S asbc, S abc, CB BC, ab ab, bb bb, bc bc, cc cc}. (i) G
Definition 4 (Operationen auf Sprachen) Beispiel 5. Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A + = n 1 An
Definition 4 (Operationen auf Sprachen) Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A 0 = {ɛ}, A n+1 = AA n A = n 0 An A + = n 1 An Beispiel 5 {ab, b}{a, bb} = {aba, abbb,
Theorie der Informatik
Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen Malte Helmert Gabriele Röger Universität Basel 7. April 2014 Kontextsensitive und allgemeine Grammatiken Wiederholung: (kontextsensitive)
Theoretische Informatik I (Grundzüge der Informatik I)
Theoretische Informatik I (Grundzüge der Informatik I) Literatur: Buch zur Vorlesung: Uwe Schöning, Theoretische Informatik - kurzgefasst. Spektrum Akademischer Verlag, Heidelberg/Berlin, 4. Auflage, 2001.
Teil V. Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie
Teil V Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie Zwei Sorten von Grammatiken Kontextsensitive Grammatik (CSG) (Σ, V, P, S), Regeln der Form αaβ αγβ α, β (Σ V ),
Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,
Reguläre Sprachen Reguläre Sprachen (Typ-3-Sprachen) haben große Bedeutung in Textverarbeitung und Programmierung (z.b. lexikalische Analyse) besitzen für viele Entscheidungsprobleme effiziente Algorithmen
11.1 Kontextsensitive und allgemeine Grammatiken
Theorie der Informatik 7. April 2014 11. Kontextsensitive und Typ-0-Sprachen Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen 11.1 Kontextsensitive und allgemeine Grammatiken Malte Helmert
WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven
WS06/07 Referentin: Katharina Blinova Formale Sprachen Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven 1. Allgemeines 2. Formale Sprachen 3. Formale Grammatiken 4. Chomsky-Hierarchie 5.
Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie
Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 07.02.2006 28. und letzte Vorlesung 1 Die Chomsky-Klassifizierung Chomsky-Hierachien 3: Reguläre Grammatiken
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik Sommersemester 2015 22.04.2015 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen
Alphabet, formale Sprache
n Alphabet Alphabet, formale Sprache l nichtleere endliche Menge von Zeichen ( Buchstaben, Symbole) n Wort über einem Alphabet l endliche Folge von Buchstaben, die auch leer sein kann ( ε leere Wort) l
Informatik III - WS07/08
Informatik III - WS07/08 Kapitel 5 1 Informatik III - WS07/08 Prof. Dr. Dorothea Wagner [email protected] Kapitel 5 : Grammatiken und die Chomsky-Hierarchie Informatik III - WS07/08 Kapitel 5 2 Definition
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 18. Januar 2018 INSTITUT FÜR THEORETISCHE 0 18.01.2018 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität
Formale Sprachen. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marian KOGLER
Formale Sprachen Grammatiken und die Chomsky-Hierarchie Rudolf FREUND, Marian KOGLER Grammatiken Das fundamentale Modell zur Beschreibung von formalen Sprachen durch Erzeugungsmechanismen sind Grammatiken.
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik Sommersemester 2017 20.04.2017 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Bis jetzt Organisatorisches Literatur Motivation und Inhalt Kurzer
Theoretische Informatik für Wirtschaftsinformatik und Lehramt
Theoretische Informatik für Wirtschaftsinformatik und Lehramt Reguläre Sprachen Priv.-Doz. Dr. Stefan Milius [email protected] Theoretische Informatik Friedrich-Alexander Universität Erlangen-Nürnberg
2.4 Kontextsensitive und Typ 0-Sprachen
Definition 2.43 Eine Typ 1 Grammatik ist in Kuroda Normalform, falls alle Regeln eine der folgenden 4 Formen haben: Dabei: A, B, C, D V und a Σ. Satz 2.44 A a, A B, A BC, AB CD. Für jede Typ 1 Grammatik
Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18
Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Ausgabe 10. Januar 2018 Abgabe 23. Januar 2018, 11:00 Uhr (im
Automatentheorie und formale Sprachen
Automatentheorie und formale Sprachen VL 8 Chomsky-Grammatiken Kathrin Hoffmann 23. Mai 2012 Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen 23.5. 2012 250 Wortproblem Wortproblem ist das
Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (ii) ε ist ein regulärer Ausdruck über Σ.
Reguläre Ausdrücke Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (i) ist ein regulärer Ausdruck über Σ. (ii) ε ist ein regulärer Ausdruck über Σ. (iii) Für jedes a Σ ist a ein regulärer
Kapitel IV Formale Sprachen und Grammatiken
Kapitel IV Formale Sprachen und Grammatiken 1. Begriffe und Notationen Sei Σ ein (endliches) Alphabet. Dann Definition 42 1 ist Σ das Monoid über Σ, d.h. die Menge aller endlichen Wörter über Σ; 2 ist
Formale Sprachen. Grammatiken. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marion OSWALD. Grammatiken: Ableitung
Formale Sprachen rammatiken und die Chomsky-Hierarchie Rudolf FREUND, Marion OSWALD rammatiken Das fundamentale Modell zur Beschreibung von formalen Sprachen durch Erzeugungsmechanismen sind rammatiken.
Rekursiv aufzählbare Sprachen
Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben
Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz.
Chomsky-0-Grammatik Rek. Aufz. Satz T5.2.2: Wenn L durch eine Chomsky-0- Grammatik G beschrieben wird, gibt es eine NTM M, die L akzeptiert. Beweis: Algo von M: Schreibe S auf freie Spur. Iteriere: Führe
Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 18/19
Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 18/19 Ausgabe 8. Januar 2019 Abgabe 22. Januar 2019, 11:00 Uhr (im
Theoretische Informatik I
Theoretische Informatik I Einheit 4.3 Eigenschaften von L 0 /L 1 -Sprachen 1. Abschlußeigenschaften 2. Prüfen von Eigenschaften 3. Grenzen der Sprachklassen Sprachklassen Semi-entscheidbare Sprache Sprache,
Theoretische Informatik I
Theoretische Informatik I Einheit 2.5 Grammatiken 1. Arbeitsweise 2. Klassifizierung 3. Beziehung zu Automaten Beschreibung des Aufbaus von Sprachen Mathematische Mengennotation Beschreibung durch Eigenschaften
Definition 98 Eine Turingmaschine heißt linear beschränkt (kurz: LBA), falls für alle q Q gilt:
5.2 Linear beschränkte Automaten Definition 98 Eine Turingmaschine heißt linear beschränkt (kurz: LBA), falls für alle q Q gilt: (q, c, d) δ(q, ) = c =. Ein Leerzeichen wird also nie durch ein anderes
Theoretische Informatik für Wirtschaftsinformatik und Lehramt
Theoretische Informatik für Wirtschaftsinformatik und Lehramt Entscheidungsprobleme Priv.-Doz. Dr. Stefan Milius [email protected] Theoretische Informatik Friedrich-Alexander Universität Erlangen-Nürnberg
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 17. Januar 2012 INSTITUT FÜR THEORETISCHE 0 KIT 18.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der
Theoretische Informatik 2
Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10 Die Chomsky-Hierarchie Definition Sei G = (V, Σ, P, S) eine Grammatik. 1 G heißt vom Typ 3 oder
Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004
Lösung zur Klausur Grundlagen der Theoretischen Informatik im WiSe 2003/2004 1. Geben Sie einen deterministischen endlichen Automaten an, der die Sprache aller Wörter über dem Alphabet {0, 1} akzeptiert,
1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie
1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie WS 11/12 155 Überblick Zunächst einmal definieren wir formal den Begriff
Theorie der Informatik
Theorie der Informatik 8. Reguläre Sprachen II Malte Helmert Gabriele Röger Universität Basel 24. März 24 Pumping Lemma Pumping Lemma: Motivation Man kann zeigen, dass eine Sprache regulär ist, indem man
1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie
1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 139 Unentscheidbarkeit Überblick Zunächst einmal definieren wir formal
Berechenbarkeit und Komplexität
Berechenbarkeit und Komplexität Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2010/11 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien und Übungsblätter
(Prüfungs-)Aufgaben zu formale Sprachen
(Prüfungs-)Aufgaben zu formale Sprachen (siehe auch bei den Aufgaben zu endlichen Automaten) 1) Eine Grammatik G sei gegeben durch: N = {S, A}, T = {a, b, c, d}, P = { (S, Sa), (S, ba), (A, ba), (A, c),
1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,
Theorie der Informatik 8. März 25 8. Reguläre Sprachen I Theorie der Informatik 8. Reguläre Sprachen I 8. Reguläre Grammatiken Malte Helmert Gabriele Röger 8.2 DFAs Universität Basel 8. März 25 8.3 NFAs
Theoretische Informatik II
Theoretische Informatik II Einheit 4.2 Modelle für Typ-0 & Typ-1 Sprachen 1. Nichtdeterministische Turingmaschinen 2. Äquivalenz zu Typ-0 Sprachen 3. Linear beschränkte Automaten und Typ-1 Sprachen Maschinenmodelle
q 0 q gdw. nicht (q A) (q A) q i+1 q gdw. q i q oder ( a Σ) δ(q, a) i δ(q, a) L = {a n b n : n N} für a, b Σ, a b
Kap. 2: Endliche Automaten Myhill Nerode 2.4 Minimalautomat für reguläre Sprache Abschnitt 2.4.3 L Σ regulär der Äuivalenzklassen-Automat zu L ist ein DFA mit minimaler Zustandszahl (= index( L )) unter
Theoretische Grundlagen der Informatik. Vorlesung am 8. Januar INSTITUT FÜR THEORETISCHE INFORMATIK
Theoretische Grundlagen der Informatik 0 08.01.2019 Torsten Ueckerdt - Theoretische Grundlagen der Informatik KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Letzte Vorlesung Eine
Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011
Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2011 Dr. Sander Bruggink Übungsleitung: Jan Stückrath Sander Bruggink Automaten und Formale Sprachen 1 Wir beschäftigen uns ab
Theoretische Grundlagen des Software Engineering
Theoretische Grundlagen des Software Engineering 5: Reguläre Ausdrücke und Grammatiken [email protected] Software Systems Engineering Reguläre Sprachen Bisher: Charakterisierung von Sprachen über Automaten
8. Turingmaschinen und kontextsensitive Sprachen
8. Turingmaschinen und kontextsensitive Sprachen Turingmaschinen (TM) von A. Turing vorgeschlagen, um den Begriff der Berechenbarkeit formal zu präzisieren. Intuitiv: statt des Stacks bei Kellerautomaten
Automaten und formale Sprachen Klausurvorbereitung
Automaten und formale Sprachen Klausurvorbereitung Rami Swailem Mathematik Naturwissenschaften und Informatik FH-Gießen-Friedberg Inhaltsverzeichnis 1 Definitionen 2 2 Altklausur Jäger 2006 8 1 1 Definitionen
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 10.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik
Sprachanalyse. Fachseminar WS 08/09 Dozent: Prof. Dr. Helmut Weber Referentin: Nadia Douiri
Sprachanalyse WS 08/09 Dozent: Prof. Dr. Helmut Weber Referentin: Inhalt 1. Formale Sprachen 2. Chomsky-Hierarchie 2 FORMALE SPRACHE 1. WAS IST EINE SPRACHE? 2. WIE BESCHREIBT MAN EINE SPRACHE? 3. WAS
Lösungen zum Ergänzungsblatt 2
Theoretische Informatik I WS 2018 Carlos Camino en zum Ergänzungsblatt 2 Hinweise: In der Literatur sind zwei verschiedene Definitionen der natürlichen Zahlen gängig. Während in der Mathematik-I-Vorlesung
1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,
Theorie der Informatik 9. März 24 7. Reguläre Sprachen I Theorie der Informatik 7. Reguläre Sprachen I Malte Helmert Gabriele Röger Universität Basel 9. März 24 7. Reguläre Grammatiken 7.2 DFAs 7.3 NFAs
Theoretische Informatik. Grammatiken. Grammatiken. Grammatiken. Rainer Schrader. 9. Juli 2009
Theoretische Informatik Rainer Schrader Institut für Informatik 9. Juli 2009 1 / 41 2 / 41 Gliederung die Chomsky-Hierarchie Typ 0- Typ 3- Typ 1- Die Programmierung eines Rechners in einer höheren Programmiersprache
Turingautomaten Jörg Roth Turingautomaten
Turingautomaten Jörg Roth 331 5 Turingautomaten Wir führen nochmals ein neues Automatenmodell ein und erweitern die Fähigkeit, Sprachen zu erkennen: Problem vom Kellerautomaten: wir können zwar beliebig
Einführung in die Computerlinguistik
Einführung in die Computerlinguistik Kontextfreie Sprachen und Pushdown-Automaten Dozentin: Wiebke Petersen WS 2004/2005 Wiebke Petersen Formale Komplexität natürlicher Sprachen WS 03/04 Wiederholung c
Turingmaschinen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen
Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: und effiziente Algorithmen Wintersemester 2011/12 Schematische Darstellung einer Turing-Maschine: Kopf kann sich nach links und
Zusammenfassung. Endliche Sprachen. Fazit zu endlichen Automaten. Teil 4: Grammatiken und Syntaxanalyse
Endliche Sprachen Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für L. Zusammenfassung Beschreibungsformen für reguläre Sprachen:
Was bisher geschah: Formale Sprachen
Was bisher geschah: Formale Sprachen Alphabet, Wort, Sprache Operationen und Relationen auf Wörtern und Sprachen Darstellung unendlicher Sprachen durch reguläre Ausdrücke (Syntax, Semantik, Äquivalenz)
Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen
Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 15 + 16 vom 17.12.2012 und 20.12.2012 Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen
Carlos Camino Einführung in die Theoretische Informatik SS 2015
Themenüberblick Dies ist eine Art Checkliste für die Klausurvorbereitung. Zu jedem Thema im Skript sind hier ein paar Leitfragen aufgelistet. Besonders nützlich sind die Tabellen und Abbildungen auf den
Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie
Theorie der Informatik 17. März 2014 6. Formale Sprachen und Grammatiken Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 6.1 Einführung
Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17
Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Vorlesung Theoretische Grundlagen der Informatik im W 16/17 Ausgabe 17. Januar 2017 Abgabe 31. Januar 2017, 11:00 Uhr (im
Endliche Sprachen. Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für
Endliche Sprachen Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für L. 447 Zusammenfassung Beschreibungsformen für reguläre Sprachen:
Falls H die Eingabe verwirft, so wissen wir, dass M bei Eingabe w nicht hält. M hält im verwerfenden Haltezustand. Beweis:
1 Unentscheidbarkeit 2 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 #include char *s="include
Typ-0-Sprachen und Turingmaschinen
Typ-0-Sprachen und Turingmaschinen Jean Vancoppenolle Universität Potsdam Einführung in formale Sprachen und Automaten Dr. Thomas Hanneforth (Präsentation aus Foliensätzen von Dr. Thomas Hanneforth und
Theoretische Informatik Mitschrift
Theoretische Informatik Mitschrift 7. Turingmaschinen Automatenmodell für Typ-0-Sprachen Einschränkung liefert Automatenmodell für Typ-1-Sprachen Alan Turing 1936, ursprüngliches Ziel: Formalisierung des
Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden kann.
Der Satz von Kleene Wir haben somit Folgendes bewiesen: Der Satz von Kleene Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden
Theoretische Informatik Mitschrift
Theoretische Informatik Mitschrift 9. Berechenbarkeit, Entscheidbarkeit, Aufzählbarkeit 9.1 Grundbegriffe bereits gezeigt: Spracherkennung durch Turingmaschine = Berechnung der semi-charakteristischen
1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen - 1 -
1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen I.2. I.2. Grundlagen von von Programmiersprachen. - 1 - 1. Der Begriff Informatik "Informatik" = Kunstwort aus Information und Mathematik
1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen - 1 -
1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen I.2. I.2. Grundlagen von von Programmiersprachen. - 1 - 1. Der Begriff Informatik "Informatik" = Kunstwort aus Information und Mathematik
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik Sommersemester 2016 20.04.2016 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen
16. Die Chomsky-Hierarchie
16. Die Chomsky-Hierarchie Die Chomsky-Sprachen sind gerade die rekursiv aufzählbaren Sprachen: CH = RA Da es nicht rekursive (d.h. unentscheidbare) r.a. Sprachen gibt, ist das Wortproblem für Chomsky-Grammatiken,
Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie
Gliederung 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.1. 2.2. Reguläre Sprachen 2.3. Kontextfreie Sprachen 2/1, Folie 1 2015 Prof. Steffen
Grammatik Prüfung möglich, ob eine Zeichenfolge zur Sprache gehört oder nicht
Zusammenhang: Formale Sprache Grammatik Formale Sprache kann durch Grammatik beschrieben werden. Zur Sprache L = L(G) gehören nur diejenigen Kombinationen der Zeichen des Eingabealphabets, die durch die
Automatentheorie und formale Sprachen
Automatentheorie und formale Sprachen Zusammenfassung Kathrin Hoffmann 27. Juni 2012 Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen 27.6. 2012 329 Kontextsensitive Grammatiken und Sprachen
Formale Grundlagen der Wirtschaftsinformatik
Formale Grundlagen der Wirtschaftsinformatik Nikolaj Popov Research Institute for Symbolic Computation [email protected] Sprachen und Grammatiken Teil II Sprache Definition: Ein Alphabet Σ ist
Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung
Informatik III Christian Schindelhauer Wintersemester 2006/07 13. Vorlesung 07.12.2006 1 Überblick: Die Church- Turing-These Turing-Maschinen 1-Band Turing-Maschine Mehrband-Turing-Maschinen Nichtdeterministische
Algorithmen mit konstantem Platzbedarf: Die Klasse REG
Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August
Typ-1-Sprachen. Satz 1 (Kuroda ( ) 1964)
Typ-1-Sprachen Satz 1 (Kuroda (1934-2009) 1964) Eine Sprache L hat Typ 1 (= ist kontextsensitiv) genau dann, wenn sie von einem nichtdeterministischen LBA erkannt wird. Beweis: Sei zunächst L Typ-1-Sprache.
