Theoretische Informatik Mitschrift
|
|
|
- Stephan Mann
- vor 8 Jahren
- Abrufe
Transkript
1 Theoretische Informatik Mitschrift 7. Turingmaschinen Automatenmodell für Typ-0-Sprachen Einschränkung liefert Automatenmodell für Typ-1-Sprachen Alan Turing 1936, ursprüngliches Ziel: Formalisierung des Berechenbarkeitsbegriffs Modell einer Turingmaschine: Unendliches Schreib-/Leseband endl. Kontrolle Definition 7.1: Eine Turingmaschine (TM) ist ein 7-Tupel = Q,,,,,t 0, F mit endlicher Zustandsmenge Q Eingabealphabet Σ Arbeitsalphabet (Bandalphabet) Transitionsfunktion :Q Q {L, R, N im deterministischen Fall :Q Q {L, R, N im nichtdeterministischen Fall Startzustand Q Blank (Leerzeichen) b Endzustandsmenge F Q Bezeichnung: TM, DTM q,a, x q,b bedeutet: Falls die TM im Zustand q unter dem Schreib-/Lesekopf ein b sieht, kann sie das b mit a überschreiben, in den Zustand q wechseln und den Schreib-/Lesekopf gemäß der Positionsangabe x {L, R, N bewegen: L - ein Zeichen nach links R - ein Zeichen nach rechts N (neutral) - keine Kopfbewegung. Definition 7.2 (Sprache einer Turingmaschine): Menge der Konfigurationen: * * Bandinhalt links vom Lesekopf Q Zustand Lesekopf Bandinhalt rechts vom Lesekopf Einzelschrittrelation * Q * * Q * mit q X q' X ' falls q', X ', N q, x q Y XY X ' q' Y q X X ' q' b q X q' YX ' q X q' b X ' falls q', X ', R q, x falls q', X ', L q, x Anfangskonfiguration: w b bei Eingabe von w *
2 Endkonfigurationen: q X mit q F Von A erkannte Sprache: L ={w * w b * q X mit q F Beachte: Die Turingmaschine braucht nicht zu stoppen. Es genügt das Erreichen eines Endzustandes. Die Eingabe muß nicht vollständig gelesen werden. L,TM : Klasse der durch Turingmaschinen erkennbaren Sprachen, L, DTM analog Beispiel: Turingmaschine mit L ={a n b n c n n 1 Idee: Ersetze für k = 1, 2,... k-tes a, b, c nacheinander durch A, B, C, bis hinter C ein b folgt Teste vom Wortende aus, ob nur Cs, Bs und As in dieser Reihenfolge auf dem Band stehen = Q,{a,b, c,,,,b,{q f mit Q={,q f,,,,, ={a,b,c, A, B,C,b gegeben durch Turingtafel = Folge von Quintupeln q a b x q' mit der Bedeutung q',b, x q,a a A R % ersetze erstes a a a R b B R % suche erstes b B B R b b R c C R % suche erstes c C C R c c L % noch nicht am Wortende zurück b b L % Wortende Testphase Y Y L für alle Y {C,b,B,a A A R Y Y L für Y {C, B, A b b R q f % Testphase Konfigurationsfolge bei Eingabe von aabbcc: aabbccb A abbccb Aa bbccb AaB bccb AaBb cc b 4 AaBbC c b AaBb Cc b AaBbCcb A abbcc b AA BbCc b AAB bcc b AABB Cc b AABBC cb AABBCC b AABBC 5 C b AABBCC b b AABBCC b b q f AABBCC b Beobachtung: Turingmaschine arbeitet nur auf dem Eingabebereich linear beschränkter Automat
3 Definition 7.3: Eine nichtdeterministische Turingmaschine = Q,,,,, b,f heißt linear beschränkt (linear beschränkter Automat: LBA), falls,$ und q, {q',, R q ' Q für alle q Q q,$ {q',$, L q' Q für alle q Q Sonst dürfen und $ nicht geschrieben werden. Bezeichnung: LBA. Die von einem LBA A akzeptierte Sprache ist L={w * w $ * q X für ein q F. Sprachklasse: L,LBA Zum Beispiel: = Q,{a,b, c,,,,b,{q f mit Q={,q f,,,,, ={a,b,c, A, B,C,,$ gegeben durch Turingtafel = Folge von Quintupeln q a b x q' mit der Bedeutung q',b, x q,a a A R % ersetze erstes a a a R b B R % suche erstes b B B R b b R c C R % suche erstes c C C R c c L % noch nicht am Wortende zurück $ $ L % Wortende Testphase Y Y L für alle Y {C,b,B,a A A R Y Y L für Y {C, B, A R q f % Testphase Satz 7.1: 1) L,TM=L 0 2) L,LBA=L 1 Beweis 1): " ": Simulation von Turingmaschine durch Typ-0-Grammatik Satzformen: Konfigurationen der Turingmaschine Ableitschritte: Schritte der Turingmaschine Nonterminale der Grammatik: - Zustände der TM - Felder des Arbeitsbandes in 2 Spuren 1. Spur: Sicherung der Eingabe 2. Spur: Simulation der TM
4 3 Phasen bei der Ableitung eines Wortes: 1. Konstruktion der Anfangskonfiguration mit genügend vielen Blank an den Rändern,b m a 1, a 1 a 2, a 2...a r, a r, b n 1. Spur: Eingabewort a 1... a r 2. Spur: Anfangskonfiguration der Turingmaschine 2. Simulation der Turingmaschine in zweiter Spur 3. Projektion auf Eingabe, falls Endzustand erreicht Konstruktion von G= N,, P, S mit N =Q { {S,,C 2 und P mit den folgenden Produktionen: Phase 1: S,b S a,a für alle a C 2 C 2,bC 2, b Phase 2: Falls q', X ', N q, X : q a, x q' a, X ' Falls q', X ',R q, X : qa, x a, X ' q' Falls q', X ', L q, X :b,y qa, x q' b,y a, X ' Phase 3: q falls q F a, X a für alle a {, X Es folgt: w LG S * w w b * q X mit q F w L Beweis für L,LBA L 1 analog; es sind keine ε-regeln nötig, weil der LBA nur auf dem Eingabebereich arbeitet und der Zustand in die Paare integriert werden kann. " ": Sei L L 0 mit G= N,,P,S Typ-0-Grammatik mit L= LG. Simulation von G durch TM : Idee: Neben Eingabewort Ableitungen von G simulieren und dann mit der Eingabe vergleichen. 1. Anfangsphase: w b *[w][s q G ] = N {b, [, ] 2. Simulationsphase [w][ w g ] [w ][ q i ] mit = X 1... X n, Regel i: X 1... X n Y 1...Y m *[w][ q i X 1... X n ] Erkennen linker Regelseite Ziel dieser Phase [w][v q g ] mit v * 3. Vergleichsphase q [ ]b...b[ ] mit Erkennung falls w=v. [w][q i, Y 1... Y m ] *[ w][ Y 1...Y m q G ] Ersetzen durch rechte Regelseite Bei LBA: beide Bereiche übereinanderlegen, d.h. Paare als Bandzeichen.
5 Satz 7.2: L,TM =L, DTM Beweisidee: DTM durchsucht systematisch alle Berechnungsalternativen der TM. Offenes Problem: L,LBA? L, DLBA? =?
2.4 Kontextsensitive und Typ 0-Sprachen
Definition 2.43 Eine Typ 1 Grammatik ist in Kuroda Normalform, falls alle Regeln eine der folgenden 4 Formen haben: Dabei: A, B, C, D V und a Σ. Satz 2.44 A a, A B, A BC, AB CD. Für jede Typ 1 Grammatik
8. Turingmaschinen und kontextsensitive Sprachen
8. Turingmaschinen und kontextsensitive Sprachen Turingmaschinen (TM) von A. Turing vorgeschlagen, um den Begriff der Berechenbarkeit formal zu präzisieren. Intuitiv: statt des Stacks bei Kellerautomaten
Rekursiv aufzählbare Sprachen
Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben
WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven
WS06/07 Referentin: Katharina Blinova Formale Sprachen Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven 1. Allgemeines 2. Formale Sprachen 3. Formale Grammatiken 4. Chomsky-Hierarchie 5.
1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie
1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 15 Ziele vgl. AFS: Berechnungsmodelle für Typ-0- und Typ-1-Sprachen (Nicht-)Abschlußeigenschaften
Theoretische Informatik 2
Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10 Die Chomsky-Hierarchie Definition Sei G = (V, Σ, P, S) eine Grammatik. 1 G heißt vom Typ 3 oder
11.1 Kontextsensitive und allgemeine Grammatiken
Theorie der Informatik 7. April 2014 11. Kontextsensitive und Typ-0-Sprachen Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen 11.1 Kontextsensitive und allgemeine Grammatiken Malte Helmert
Teil V. Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie
Teil V Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie Zwei Sorten von Grammatiken Kontextsensitive Grammatik (CSG) (Σ, V, P, S), Regeln der Form αaβ αγβ α, β (Σ V ),
Formale Sprachen. Script, Kapitel 4. Grammatiken
Formale Sprachen Grammatiken Script, Kapitel 4 erzeugen Sprachen eingeführt von Chomsky zur Beschreibung natürlicher Sprache bedeutend für die Syntaxdefinition und -analyse von Programmiersprachen Automaten
Typ-1-Sprachen. Satz 1 (Kuroda ( ) 1964)
Typ-1-Sprachen Satz 1 (Kuroda (1934-2009) 1964) Eine Sprache L hat Typ 1 (= ist kontextsensitiv) genau dann, wenn sie von einem nichtdeterministischen LBA erkannt wird. Beweis: Sei zunächst L Typ-1-Sprache.
Theoretische Informatik Mitschrift
3. Endliche Automaten endliche Zustandsübergangssysteme Theoretische Informatik Mitschrift Beispiel: 2-Bit-Ringzähler: ={Inc} L R ={IncInc Inc,Inc 7, Inc 11,...} n ' mod ' 4=3 ={Inc n k 0.n=4 k3 } 2-Bit-Ringzähler
1 Varianten von Turingmaschinen
1 Varianten von Turingmaschinen Es gibt weitere Definitionen für Turingmaschinen. Diese haben sich aber alle als äquivalent herausgestellt. Ein wiederkehrendes Element der Vorlesung: Äquivalenz von Formalismen
Berechenbarkeit. Script, Kapitel 2
Berechenbarkeit Script, Kapitel 2 Intuitiver Berechenbarkeitsbegriff Turing-Berechenbarkeit WHILE-Berechenbarkeit Church sche These Entscheidungsprobleme Unentscheidbarkeit des Halteproblems für Turingmaschinen
Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14
Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen
Automaten und formale Sprachen Klausurvorbereitung
Automaten und formale Sprachen Klausurvorbereitung Rami Swailem Mathematik Naturwissenschaften und Informatik FH-Gießen-Friedberg Inhaltsverzeichnis 1 Definitionen 2 2 Altklausur Jäger 2006 8 1 1 Definitionen
Theoretische Informatik Testvorbereitung Moritz Resl
Theoretische Informatik Testvorbereitung Moritz Resl Bestandteile einer Programmiersprache: a) Syntax (Form): durch kontextfreie Grammatik beschrieben b) Semantik (Bedeutung) 1.) Kontextfreie Sprachen
Sprachen und Automaten. Tino Hempel
Sprachen und Automaten 11 Tino Hempel Bisherige Automaten Automat mit Ausgabe/Mealy-Automat Akzeptor, Sprache eines Akzeptors Grenze: L = {a n b n } Kellerautomat erkennt L = {a n b n } Grenze:? T. Hempel
Kontextfreie Sprachen
Kontextfreie Sprachen Bedeutung: Programmiersprachen (Compilerbau) Syntaxbäume Chomsky-Normalform effiziente Lösung des Wortproblems (CYK-Algorithmus) Grenzen kontextfreier Sprachen (Pumping Lemma) Charakterisierung
Berechenbarkeit/Entscheidbarkeit
Berechenbarkeit/Entscheidbarkeit Frage: Ist eine algorithmische Problemstellung lösbar? was ist eine algorithmische Problemstellung? formale Sprachen benötigen einen Berechenbarkeitsbegriff Maschinenmodelle
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik Wintersemester 2007 / 2008 Prof. Dr. Heribert Vollmer Institut für Theoretische Informatik 29.10.2007 Reguläre Sprachen Ein (deterministischer) endlicher Automat
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (II) 2.07.2015 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Übersicht 1. Motivation 2. Terminologie
Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie
Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 07.02.2006 28. und letzte Vorlesung 1 Die Chomsky-Klassifizierung Chomsky-Hierachien 3: Reguläre Grammatiken
Beispiele für Turingmaschinen. 1. Addition 1.1 Trennzeichen l öschen 1.2 Summanden kopieren
01 Beispiele für Turingmaschinen 1. Addition 1.1 Trennzeichen l öschen 1.2 Summanden kopieren 2. Subtraktion 2.1 rechts löschen 2.2 links löschen 2.3 in der Mitte löschen 2.4 am Rand löschen Eine Turingmaschine
Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014
Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014 Klausurnummer Nachname: Vorname: Matr.-Nr.: Aufgabe 1 2 3 4 5 6 7 max. Punkte 6 8 4 7 5 6 8 tats. Punkte Gesamtpunktzahl: Note: Punkte Aufgabe
Einige Beispiele zur Turingmaschine
Einige Beispiele zur Turingmaschine Beispiel 1: Addition von 1 zu einer Dualzahl Aufgabe: Auf dem Eingabe-Band einer Turingmaschine steht eine Dualzahl (= Binärzahl, bestehend aus 0-en und 1-en, links
c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} c) {abcabc} d) {abcbc, abc, a} c) {aa, ab, ba, bb} d) {{aa}, {ab}, {ba}, {bb}}
2 Endliche Automaten Fragen 1. Was ergibt sich bei {a, bc} {de, fg}? a) {abc, defg} b) {abcde, abcfg} c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} 2. Was ergibt sich bei {abc, a} {bc, λ}?
Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie
Theorie der Informatik 17. März 2014 6. Formale Sprachen und Grammatiken Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 6.1 Einführung
Falls H die Eingabe verwirft, so wissen wir, dass M bei Eingabe w nicht hält. M hält im verwerfenden Haltezustand. Beweis:
1 Unentscheidbarkeit 2 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 #include char *s="include
Turing-Maschinen. Definition 1. Eine deterministische Turing-Maschine (kurz DTM) ist ein 6- Dem endlichen Alphabet Σ von Eingabesymbolen.
Turing-Maschinen Nachdem wir endliche Automaten und (die mächtigeren) Kellerautomaten kennengelernt haben, werden wir nun ein letztes, noch mächtigeres Automatenmodell kennenlernen: Die Turing-Maschine
Deterministische Turing-Maschinen (DTM) F3 03/04 p.46/395
Deterministische Turing-Maschinen (DTM) F3 03/04 p.46/395 Turing-Machine Wir suchen ein Modell zur formalen Definition der Berechenbarkeit von Funktionen und deren Zeit- und Platzbedarf. Verschiedene Modelle
Algorithmen mit konstantem Platzbedarf: Die Klasse REG
Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August
Endliche Sprachen. Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für
Endliche Sprachen Folgerung: Alle endlichen Sprachen sind regulär. Beweis: Sei L={w 1,,w n } Σ*. Dann ist w 1 +L+w n ein regulärer Ausdruck für L. 447 Zusammenfassung Beschreibungsformen für reguläre Sprachen:
Lösungen zur 3. Projektaufgabe TheGI1
Marco Kunze ([email protected]) WS 2001/2002 Sebastian Nowozin ([email protected]) 21. 1. 2002 Lösungen zur 3. Projektaufgabe TheGI1 Definition: Turing-Aufzähler Ein Turing-Aufzähler einer
Sanders: Informatik III December 14, Kontextsensitive und Typ 0-Sprachen
Sanders: Informatik III December 14, 2006 1 1.4 Kontextsensitive und Typ 0-Sprachen Sanders: Informatik III December 14, 2006 2 Kuroda Normalform Eine Typ 1 Grammatik G = (V,Σ,P,S) in Kuroda Normalform
Formale Sprachen und Automaten
Turingmaschinen Formale Sprachen und Automaten Das Konzept der Turingmaschine wurde von dem Englischen Mathematiker Alan M. Turing (1912-1954) ersonnen. Turingmaschinen, Typ-0- und Typ-1-Grammatiken Der
Grundbegriffe. Grammatiken
Grammatiken Grammatiken in der Informatik sind ähnlich wie Grammatiken für natürliche Sprachen ein Mittel, um alle syntaktisch korrekten Sätze (hier: Wörter) einer Sprache zu erzeugen. Beispiel: Eine vereinfachte
Chomsky-Grammatiken 16. Chomsky-Grammatiken
Chomsky-Grammatiken 16 Chomsky-Grammatiken Ursprünglich von Chomsky in den 1950er Jahren eingeführt zur Beschreibung natürlicher Sprachen. Enge Verwandschaft zu Automaten Grundlage wichtiger Softwarekomponenten
Theoretische Informatik. Grammatiken. Grammatiken. Grammatiken. Rainer Schrader. 9. Juli 2009
Theoretische Informatik Rainer Schrader Institut für Informatik 9. Juli 2009 1 / 41 2 / 41 Gliederung die Chomsky-Hierarchie Typ 0- Typ 3- Typ 1- Die Programmierung eines Rechners in einer höheren Programmiersprache
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 10.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik
Abschluss gegen Substitution. Wiederholung. Beispiel. Abschluss gegen Substitution
Wiederholung Beschreibungsformen für reguläre Sprachen: DFAs NFAs Reguläre Ausdrücke:, {ε}, {a}, und deren Verknüpfung mit + (Vereinigung), (Konkatenation) und * (kleenescher Abschluss) Abschluss gegen
Kontextsensitive und Typ 0 Sprachen
Kontextsensitive und Typ 0 Sprachen Slide 1 Kontextsensitive und Typ 0 Sprachen Hans U. Simon (RUB) Email: [email protected] Homepage: http://www.ruhr-uni-bochum.de/lmi Kontextsensitive und Typ 0 Sprachen
Endliche Automaten. Im Hauptseminar Neuronale Netze LMU München, WS 2016/17
Endliche Automaten Im Hauptseminar Neuronale Netze LMU München, WS 2016/17 RS- Flipflop RS-Flipflop Ausgangszustand 0 1 0 1 0 1 Set Reset neuer Zustand 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 1 0 Was ist ein endlicher
Das Rechenmodell namens. Turing-Maschine. Hans U. Simon (RUB) Homepage:
Turing-Maschine Slide 1 Das Rechenmodell namens Turing-Maschine Hans U. Simon (RUB) Email: [email protected] Homepage: http://www.ruhr-uni-bochum.de/lmi Turing-Maschine Slide 2 Die Turingmaschine DTM =
Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive
Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Grammatik G mit L(G) = L(G ). Beweis im Beispiel (2.): G = (V,Σ, P, S) : P = {S asbc, S abc, CB BC, ab ab, bb bb, bc bc, cc cc}. (i) G
Lexikalische Analyse, Tokenizer, Scanner
Lexikalische Analyse, Tokenizer, Scanner Frühe Phase des Übersetzers Aufgabenteilung: Scanner (lokale) Zeichen (Symbol-)Analyse Parser Syntax-Analyse Aufgabe des Scanners: Erkennung von: Zahlen, Bezeichner,
Formale Sprachen. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marian KOGLER
Formale Sprachen Grammatiken und die Chomsky-Hierarchie Rudolf FREUND, Marian KOGLER Grammatiken Das fundamentale Modell zur Beschreibung von formalen Sprachen durch Erzeugungsmechanismen sind Grammatiken.
Grammatik Prüfung möglich, ob eine Zeichenfolge zur Sprache gehört oder nicht
Zusammenhang: Formale Sprache Grammatik Formale Sprache kann durch Grammatik beschrieben werden. Zur Sprache L = L(G) gehören nur diejenigen Kombinationen der Zeichen des Eingabealphabets, die durch die
Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny
Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 1. Automaten und Sprachen 1.1 Endlicher Automat Einen endlichen Automaten stellen wir uns als Black Box vor, die sich aufgrund einer Folge von
11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P
11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie
a n b n c n ist kontextsensitiv kontextfreie Sprachen (Typ 2) Abschnitt 3.3 kontextfreie Sprachen: Abschlusseigenschaften Chomsky NF und binäre Bäume
Kap 3: Grammatiken Chomsky-Hierarchie 32 Kap 3: Grammatiken Kontextfreie 33 a n b n c n ist kontextsensiti Beispiel 3111 modifizieren: Σ = {a, b, c G = (Σ, V, P, X ) V = {X, Y, Z P : X ε X axyz ZY YZ ay
2. Übungsblatt 6.0 VU Theoretische Informatik und Logik
2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 25. September 2013 Aufgabe 1 Geben Sie jeweils eine kontextfreie Grammatik an, welche die folgenden Sprachen erzeugt, sowie einen Ableitungsbaum
Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012
Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Hier Aufkleber mit Name und Matrikelnr. anbringen
Grundlagen der Theoretischen Informatik
1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 Kontextfreie Grammatiken Definition: Eine Grammatik G
Deterministischer Kellerautomat (DPDA)
Deterministische Kellerautomaten Deterministischer Kellerautomat (DPDA) Definition Ein Septupel M = (Σ,Γ, Z,δ, z 0,#, F) heißt deterministischer Kellerautomat (kurz DPDA), falls gilt: 1 M = (Σ,Γ, Z,δ,
Kontextsensitive und Typ 0 Sprachen
Kontextsensitive und Typ 0 Sprachen Slide 1 Kontextsensitive und Typ 0 Sprachen Hans U. Simon (RUB) mit Modifikationen von Maike Buchin (RUB) Lehrstuhl Mathematik und Informatik Homepage: http://www.ruhr
1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,
Theorie der Informatik 8. März 25 8. Reguläre Sprachen I Theorie der Informatik 8. Reguläre Sprachen I 8. Reguläre Grammatiken Malte Helmert Gabriele Röger 8.2 DFAs Universität Basel 8. März 25 8.3 NFAs
1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005
Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 2004/05 ILKD Prof. Dr. D. Wagner 24. Februar 2005 1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005 Aufkleber Beachten
Einführung in die Theoretische Informatik
Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2011/12 Deterministische Kellerautomaten Von besonderem Interesse sind kontextfreie Sprachen,
Grundlagen der Informatik II
Grundlagen der Informatik II Tutorium 2 Professor Dr. Hartmut Schmeck Miniaufgabe * bevor es losgeht * Finden Sie die drei Fehler in der Automaten- Definition. δ: A = E, S, δ, γ, s 0, F, E = 0,1, S = s
Theorie der Informatik (CS206) Kellerautomat, Postfix-Notation, Turing-Maschine, Busy Beaver
Theorie der Informatik (CS206) Kellerautomat, Postfix-Notation, Turing-Maschine, Busy Beaver 20. März 2013 Proff Malte Helmert und Christian Tschudin Departement Mathematik und Informatik, Universität
Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23
1/23 Formale Methoden 1 Gerhard Jäger [email protected] Uni Bielefeld, WS 2007/2008 9. Januar 2008 2/23 Automaten (informell) gedachte Maschine/abstraktes Modell einer Maschine verhält sich
(Prüfungs-)Aufgaben zu formale Sprachen
(Prüfungs-)Aufgaben zu formale Sprachen (siehe auch bei den Aufgaben zu endlichen Automaten) 1) Eine Grammatik G sei gegeben durch: N = {S, A}, T = {a, b, c, d}, P = { (S, Sa), (S, ba), (A, ba), (A, c),
Theoretische Informatik SS 04 Übung 1
Theoretische Informatik SS 04 Übung 1 Aufgabe 1 Es gibt verschiedene Möglichkeiten, eine natürliche Zahl n zu codieren. In der unären Codierung hat man nur ein Alphabet mit einem Zeichen - sagen wir die
GTI. Hannes Diener. 6. Juni - 13. Juni. ENC B-0123, [email protected]
GTI Hannes Diener ENC B-0123, [email protected] 6. Juni - 13. Juni 1 / 49 Die Turingmaschine war das erste (bzw. zweite) formale Modell der Berechenbarkeit. Sie wurden bereits 1936 (also lange
Turing-Maschine. Berechenbarkeit und Komplexität Turing-Maschinen. Turing-Maschine. Beispiel
Berechenbarkeit und Komplexität Turing-Maschinen Wolfgang Schreiner [email protected] Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.jku.at
Wortproblem für kontextfreie Grammatiken
Wortproblem für kontextfreie Grammatiken G kontextfreie Grammatik. w Σ w L(G)? Wortproblem ist primitiv rekursiv entscheidbar. (schlechte obere Schranke!) Kellerautomat der L(G) akzeptiert Ist dieser effizient?
Kapitel 7: Kellerautomaten und kontextfreie Sprachen
Kapitel 7: Kellerautomaten und kontextfreie Sprachen Prof.-Dr. Peter Brezany Institut für Softwarewissenschaft Universität Wien, Liechtensteinstraße 22 1090 Wien Tel. : 01/4277 38825 E-mail : [email protected]
Kapitel 3: Reguläre Grammatiken und Endliche. Automaten
Kapitel 3: Reguläre Grammatiken und Endliche Automaten Prof.-Dr. Peter Brezany Institut für Softwarewissenschaft Universität Wien, Liechtensteinstraße 22 090 Wien Tel. : 0/4277 38825 E-mail : [email protected]
Formale Sprachen und Automaten
Formale Sprachen und Automaten Kapitel 5: Typ 1 und Typ 0 Vorlesung an der DHBW Karlsruhe Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2012 Kapitel 5 Typ 1
Einführung in die Informatik
Universität Innsbruck - Institut für Informatik Datenbanken und Informationssysteme Prof. Günther Specht, Eva Zangerle 24. November 28 Einführung in die Informatik Übung 7 Allgemeines Für die Abgabe der
Zusammenfassung Grundzüge der Informatik 4
Zusammenfassung Grundzüge der Informatik 4 Sommersemester 04 Thorsten Wink 21. September 2004 Version 1.2 Dieses Dokument wurde in L A TEX 2εgeschrieben. Stand: 21. September 2004 Inhaltsverzeichnis 1
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Übung am 02.02.2012 INSTITUT FÜR THEORETISCHE 0 KIT 06.02.2012 Universität des Andrea Landes Schumm Baden-Württemberg - Theoretische und Grundlagen der Informatik
Einführung in Berechenbarkeit, Komplexität und formale Sprachen
Johannes Blömer Skript zur Vorlesung Einführung in Berechenbarkeit, Komplexität und formale Sprachen Universität Paderborn Wintersemester 2011/12 Inhaltsverzeichnis 1 Einleitung 2 1.1 Ziele der Vorlesung...................................
Das Postsche Korrespondenzproblem
Das Postsche Korrespondenzproblem Eine Instanz des PKP ist eine Liste von Paaren aus Σ Σ : (v 1, w 1 ),..., (v n, w n ) Eine Lösung ist eine Folge i 1,..., i k von Indizes 1 i j n mit v i1... v ik = w
Tutoraufgabe 1 (ɛ-produktionen):
Prof aa Dr J Giesl Formale Systeme, Automaten, Prozesse SS 2010 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Hausaufgaben sollen in Gruppen von je 2 Studierenden aus dem gleichen Tutorium
Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III
Name Vorname Matrikelnummer Universität Karlsruhe Institut für Theoretische Informatik o. Prof. Dr. P. Sanders 26. Feb. 2007 Klausur: Informatik III Aufgabe 1. Multiple Choice 10 Punkte Aufgabe 2. Teilmengenkonstruktion
Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz.
Chomsky-0-Grammatik Rek. Aufz. Satz T5.2.2: Wenn L durch eine Chomsky-0- Grammatik G beschrieben wird, gibt es eine NTM M, die L akzeptiert. Beweis: Algo von M: Schreibe S auf freie Spur. Iteriere: Führe
Aufgabentypen: Spickerblatt: kontextfrei (Typ 2): zusätzlich: u ist eine!"# v 1
Info4 Stoff Aufgabentypen: Grammatik CH einordnen NFA DFA Grammatik Chomsky-NF CYK-Algorithmus: Tabelle / Ableitungsbäume Grammatik streng kf. Grammatik Grammatik Pumping Lemma Beweis, dass Gr. nicht reg,
2. Berechnungsmächtigkeit von Zellularautomaten. Ziele Simulation von Schaltwerken Simulation von Turingmaschinen
2. Berechnungsmächtigkeit von Zellularautomaten Ziele Simulation von Schaltwerken Simulation von Turingmaschinen Beispiel WIREWORLD Elektronen laufen über Drähte von einem Gatter zum nächsten 2.3 Satz
Formale Methoden 1. Gerhard Jäger 16. Januar Uni Bielefeld, WS 2007/2008 1/19
1/19 Formale Methoden 1 Gerhard Jäger [email protected] Uni Bielefeld, WS 2007/2008 16. Januar 2008 2/19 Reguläre Ausdrücke vierte Art (neben Typ-3-Grammatiken, deterministischen und nicht-deterministischen
Kontextfreie Grammatiken
Kontextfreie Grammatiken Bisher haben wir verschiedene Automatenmodelle kennengelernt. Diesen Automaten können Wörter vorgelegt werden, die von den Automaten gelesen und dann akzeptiert oder abgelehnt
Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat
Formale Grundlagen der Informatik 1 Kapitel 5 Über reguläre Sprachen hinaus und (Teil 2) Frank Heitmann [email protected] 21. April 2015 Der Kellerautomat - Formal Definition (Kellerautomat
3 kontextfreie Sprachen
Hans U. Simon Bochum, den 7.10.2008 Annette Ilgen Beispiele zur Vorlesung Theoretische Informatik WS 08/09 Vorbemerkung: Hier findet sich eine Sammlung von Beispielen und Motivationen zur Vorlesung Theoretische
Mathematische Grundlagen der Computerlinguistik formale Sprachen
Mathematische Grundlagen der Computerlinguistik formale Sprachen Dozentin: Wiebke Petersen 3. Foliensatz Wiebke Petersen math. Grundlagen 49 Alphabete und Wörter Denition ˆ Alphabet Σ: endliche Menge von
Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17
Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Vorlesung Theoretische Grundlagen der Informatik im W 16/17 Ausgabe 17. Januar 2017 Abgabe 31. Januar 2017, 11:00 Uhr (im
Konfiguration einer TM als String schreiben: Bandinschrift zwischen den Blank-Zeichen Links von der Kopfposition Zustand einfügen.
H MPKP Konfiguration einer TM als String schreiben: Bandinschrift zwischen den Blank-Zeichen Links von der Kopfposition Zustand einfügen. Beispiel: 1234q567 bedeutet: Kopf steht auf 5, Zustand ist q. Rechnung:
Ausgewählte unentscheidbare Sprachen
Proseminar Theoretische Informatik 15.12.15 Ausgewählte unentscheidbare Sprachen Marian Sigler, Jakob Köhler Wolfgang Mulzer 1 Entscheidbarkeit und Semi-Entscheidbarkeit Definition 1: L ist entscheidbar
Theoretische Informatik Mitschrift
6. Kontextfreie Sprachen Theoretische Informatik Mitschrift Typ-2-Grammatiken: Regeln der Form A mit A N und N * Beispiel: Grammatik für arithmetische Ausdrücke G= {E,T,F },{,,,,a}, P, E, P : E ET T T
Einführung in die Informatik Turing Machines
Einführung in die Informatik Turing Machines Eine abstrakte Maschine zur Präzisierung des Algorithmenbegriffs Wolfram Burgard Cyrill Stachniss 1/14 Motivation und Einleitung Bisher haben wir verschiedene
Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III
Name Vorname Matrikelnummer Universität Karlsruhe Institut für Theoretische Informatik o. Prof. Dr. P. Sanders 10.4.2007 Klausur: Informatik III Aufgabe 1. Multiple Choice 11 Punkte Aufgabe 2. Minimalautomaten
DKA und dkfs (mit Übungen)
DKA und dkfs (mit Übungen) Prof.Dr.Christian Wagenknecht mit Beiträgen von Herrn Dr.Michael Hielscher Prof.Dr.Chr. Wagenknecht Formale Sprachen und Automaten 1/15 kurz DKA Analog zu endlichen Automaten
Reguläre Sprachen und endliche Automaten
Reguläre Sprachen und endliche Automaten 1 Motivation: Syntaxüberprüfung Definition: Fließkommazahlen in Java A floating-point literal has the following parts: a whole-number part, a decimal point (represented
Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S)
Grammatiken Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V Startsymbol S V Produktionen P ( (V Σ) \ Σ ) (V Σ) Kurzschreibweise G = (V, Σ, P, S) Schreibweise für Produktion (α, β) P: α β 67 /
Welches ist die fleißigste unter allen erdenklichen Turingmaschinen mit n Zuständen?
Fleißige Biber In den frühen sechziger Jahren ging Tibor Rado von der Ohio State University der Frage nach, wie viele Einsen eine Turingmaschine wohl auf ein zu Beginn leeres Band schreiben könne, ehe
Theoretische Informatik I
heoretische Informatik I Einheit 2 Endliche Automaten & Reguläre Sprachen. Deterministische endliche Automaten 2. Nichtdeterministische Automaten 3. Reguläre Ausdrücke 4. Grammatiken 5. Eigenschaften regulärer
Theorie der Informatik
Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax
11. Übungsblatt. x y(top(push(x, y)) = y)
Logik, Berechenbarkeit und Komplexität Sommersemester 2012 Hochschule RheinMain Prof. Dr. Steffen Reith 11. Übungsblatt 1. Ein Keller (engl. stack) ist eine bekannte Datenstruktur. Sei die Signatur S =
