Formale Grundlagen der Wirtschaftsinformatik
|
|
|
- Bärbel Lenz
- vor 7 Jahren
- Abrufe
Transkript
1 Formale Grundlagen der Wirtschaftsinformatik Nikolaj Popov Research Institute for Symbolic Computation Turingmaschinen und Kontextsensitive Sprachen
2 Eine Turingmaschine besteht aus einem unendlichen Band, d.h., einem Band mit unendlichvielen Feldern. Auf diesen Feldern steht je ein Zeichen, wobei nur auf endlichen vielen Feldern nicht das Bandzeichen steht. Zeichen steht für ein unbeschriftetes Feld.
3 Es gibt einen Schreib- und Lesekopf (kurz SLK), der immer auf einem bestimmten Feld des Bandes steht. Die Steuereinheit (endliche Kontrolle) ist immer in einem bestimmten Zustand.
4
5 Ein Schritt der Maschine besteht aus 4 Teilen: der SLK liest das Zeichen im aktuellen Feld; der SLK schreibt ein Zeichen auf das aktuelle Feld; der SLK bewegt sich nach links (L), rechts (R) oder bleibt stehen (N); die Kontrolle (Steuereinheit) geht in den nächsten Zustand über.
6 Definition: Eine Turingmaschine ist ein Tupel M = (Q, Σ, G,, d, q 0, q f ) mit: Q einer endlichen Menge von Zuständen; Σ dem Alphabet der Maschine; G dem Bandalphabet der Maschine (Zeichen, die als Feldbeschriftungen verwende werden dürfen). G, Σ G.
7 Definition: Eine Turingmaschine ist ein Tupel M = (Q, Σ, G,, d, q 0, q f ) mit: d (Q G ) (Q G {L, R, N}) ist die Übergangsrelation; q 0 ist der Anfangszustand; q f ist der Endzustand.
8 Ein Konfiguration ist ein Wort a q b mit a,b G *, q Q wobei: q ist der momentane Zustand; a ist die Beschriftung des Bandes links vom aktuellen Feld; b ist die Beschriftung des Bandes rechts vom aktuellen Feld.
9 Die aktuelle Konfiguration ist q a b b a a.
10 Definition: Ein Wort w S * liegt in der von einer gegebenen Turingmaschine M akzeptierten Sprache L(M), wenn ausgehend von der Anfangskonfiguration q 0 w durch die Übergangsrelationen der Endzustand q f erreicht werden kann.
11 Definition: Zwei Turingmaschinen M 1 und M 2 heissen sprachäquivalent, wenn L(M 1 ) = L(M 2 ). In dieser Definition muss nicht zwischen einer DTM und einer NTM unterschieden werden, da zu jeder nichtderministischen Turingmaschine eine sprachäquivalente deterministische Turingmaschine gefunden werden kann.
12 Beispiel: Die Sprache L 1 = {a n b n c n n N} ist Turing-akzeptierbar. Die Turingmaschine geht wie folgt vor: das erste a wird durch ein x ersetzt, dann wird das erste b gesucht und durch ein y ersetzt und dann das erste c durch ein z;
13 man geht zurück zum zweiten a, ersetzt es durch ein x, läuft zum zweiten b, ersetzt es durch ein y, läuft zum zweiten c und ersetzt es durch ein z; diese Schritte werden wiederholt solange, bis nach dem erzeugten z ein steht;
14 dann wird überprüft, ob es nur noch einen z-block, gefolgt von einem y-block, gefolgt von einem x-block gibt (abgeschlossen mit ); in dem Fall wird das Wort akzeptiert; die Maschine blockiert, wenn das nicht eintritt, oder schon vorher, falls das erwartete Zeichen (a, b, c) nicht gefunden wird.
15 Satz: Sei S ein Alphabet und L S *. Dann ist L vom Typ Chomsky-0, genau dann wenn L Turing-akzeptierbar ist.
16 Zur Charakterisierung von Typ 1-Sprachen benötigt man eine Unterklasse von NTM, bei der sich die Maschine nie über die linke oder rechte Grenze des Eingabeworts hinausbewegt. Diese speziellen NTMs werden linear beschränkte Automaten genannt.
17 Satz: Sei S ein Alphabet und L S *. Dann ist L vom Typ Chomsky-1, genau dann wenn L von einem linear beschränkten Automaten akzeptiert wird.
18 Kellerautomat Pushdown Automat PDA
19 Reguläre Sprachen Beispiel: Sei L 1 = {b m (aaa) n b k m,n,k N}. Diese Sprache ist regulär. Es gibt einen Automaten DEA oder NEA, der die Sprache akzeptiert.
20 Kontextfreie Sprachen Beispiel: Sei L 2 = {a n b n n N}. Diese Sprache ist kontextfrei, aber nicht regulär. Sie wird von einem Kellerautomaten akzeptiert.
21 Kontexsensitive Sprachen Beispiel: Sei L 3 = {a n b n c n n N}. Diese Sprache ist kontexsensitiv, aber nicht kontextfrei. Sie wird von eine TM akzeptiert.
Formale Grundlagen der Wirtschaftsinformatik
Formale Grundlagen der Wirtschaftsinformatik Nikolaj Popov Research Institute for Symbolic Computation [email protected] Sprachen und Grammatiken Teil II Sprache Definition: Ein Alphabet Σ ist
1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie
1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 15 Ziele vgl. AFS: Berechnungsmodelle für Typ-0- und Typ-1-Sprachen (Nicht-)Abschlußeigenschaften
Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen
Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 15 + 16 vom 17.12.2012 und 20.12.2012 Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen
WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven
WS06/07 Referentin: Katharina Blinova Formale Sprachen Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven 1. Allgemeines 2. Formale Sprachen 3. Formale Grammatiken 4. Chomsky-Hierarchie 5.
8. Turingmaschinen und kontextsensitive Sprachen
8. Turingmaschinen und kontextsensitive Sprachen Turingmaschinen (TM) von A. Turing vorgeschlagen, um den Begriff der Berechenbarkeit formal zu präzisieren. Intuitiv: statt des Stacks bei Kellerautomaten
Theorie der Informatik
Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen Malte Helmert Gabriele Röger Universität Basel 7. April 2014 Kontextsensitive und allgemeine Grammatiken Wiederholung: (kontextsensitive)
Rekursiv aufzählbare Sprachen
Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben
Turingmaschinen Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen
Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: und effiziente Algorithmen Wintersemester 2011/12 Schematische Darstellung einer Turing-Maschine: Kopf kann sich nach links und
11.1 Kontextsensitive und allgemeine Grammatiken
Theorie der Informatik 7. April 2014 11. Kontextsensitive und Typ-0-Sprachen Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen 11.1 Kontextsensitive und allgemeine Grammatiken Malte Helmert
Informatik III - WS07/08
Informatik III - WS07/08 Kapitel 5 1 Informatik III - WS07/08 Prof. Dr. Dorothea Wagner [email protected] Kapitel 5 : Grammatiken und die Chomsky-Hierarchie Informatik III - WS07/08 Kapitel 5 2 Definition
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (II) 2.07.2015 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Übersicht 1. Motivation 2. Terminologie
Definition 98 Eine Turingmaschine heißt linear beschränkt (kurz: LBA), falls für alle q Q gilt:
5.2 Linear beschränkte Automaten Definition 98 Eine Turingmaschine heißt linear beschränkt (kurz: LBA), falls für alle q Q gilt: (q, c, d) δ(q, ) = c =. Ein Leerzeichen wird also nie durch ein anderes
2. Gegeben sei folgender nichtdeterministischer endlicher Automat mit ɛ-übergängen:
Probeklausur Automatentheorie & Formale Sprachen WiSe 2012/13, Wiebke Petersen Name: Matrikelnummer: Aufgabe A: Typ3-Sprachen 1. Konstruieren Sie einen endlichen Automaten, der die Sprache aller Wörter
Theoretische Informatik Mitschrift
Theoretische Informatik Mitschrift 7. Turingmaschinen Automatenmodell für Typ-0-Sprachen Einschränkung liefert Automatenmodell für Typ-1-Sprachen Alan Turing 1936, ursprüngliches Ziel: Formalisierung des
Kontextfreie Sprachen
Kontextfreie Sprachen besitzen große Bedeutung im Compilerbau Chomsky-Normalform effiziente Lösung des Wortproblems (CYK-Algorithmus) Grenzen kontextfreier Sprachen (Pumping Lemma) Charakterisierung durch
11.3 Eindimensionale Turingmaschinen
11.3 Eindimensionale Turingmaschinen 156 11.3 Eindimensionale Turingmaschinen Turing ging vom schriftlichen Rechnen aus, also vom Beschreiben eines Papiers mit einem Stift. Wollen wir etwas aufschreiben,
Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14
Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen
Ist eine algorithmische Problemstellung lösbar und wenn ja, mit welchen Mitteln? was ist eine algorithmische Problemstellung?
Überblick 1. reguläre Sprachen endliche Automaten (deterministisch vs. nichtdeterministisch) Nichtregularität 2. Berechenbarkeit Registermaschinen/Turingmaschinen Churchsche These Unentscheidbarkeit 3.
Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung
Informatik III Christian Schindelhauer Wintersemester 2006/07 13. Vorlesung 07.12.2006 1 Überblick: Die Church- Turing-These Turing-Maschinen 1-Band Turing-Maschine Mehrband-Turing-Maschinen Nichtdeterministische
Kontextfreie Sprachen
Kontextfreie Sprachen Bedeutung: Programmiersprachen (Compilerbau) Syntaxbäume Chomsky-Normalform effiziente Lösung des Wortproblems (CYK-Algorithmus) Grenzen kontextfreier Sprachen (Pumping Lemma) Charakterisierung
Das Halteproblem für Turingmaschinen
Das Halteproblem für Turingmaschinen Das Halteproblem für Turingmaschinen ist definiert als die Sprache H := { T w : T ist eine TM, die bei Eingabe w {0, 1} hält }. Behauptung: H {0, 1} ist nicht entscheidbar.
Typ-1-Sprachen. Satz 1 (Kuroda ( ) 1964)
Typ-1-Sprachen Satz 1 (Kuroda (1934-2009) 1964) Eine Sprache L hat Typ 1 (= ist kontextsensitiv) genau dann, wenn sie von einem nichtdeterministischen LBA erkannt wird. Beweis: Sei zunächst L Typ-1-Sprache.
Kontextsensitive und Typ 0 Sprachen Slide 2. Die Turingmaschine
Kontextsensitive und Typ 0 Sprachen Slide 2 Die Turingmaschine DTM = Deterministische Turingmaschine NTM = Nichtdeterministische Turingmaschine TM = DTM oder NTM Intuitiv gilt: DTM = (DFA + dynamischer
Einfache Turing Maschine. Formale Spezifikation einer einfachen Turing Maschine. M = (Σ,Γ,#,Q,s,F, ) Σ
Einfache Turing Maschine Band Formale Spezifikation einer einfachen Turing Maschine Lese-/ Schreibkopf Endliche Kontrolle Rechenschrittregeln: (endlich viele) Startkonfiguration: x Σ * auf Band L/S-Kopf
Turing Maschine. Thorsten Timmer. SS 2005 Proseminar Beschreibungskomplexität bei Prof. D. Wotschke. Turing Maschine SS 2005 p.
Thorsten Timmer SS 2005 Proseminar Beschreibungskomplexität bei Prof. D. Wotschke Turing Maschine SS 2005 p. 1/35 Inhalt Einführung Formale Definition Berechenbare Sprachen und Funktionen Berechnung ganzzahliger
Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014
Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014 Klausurnummer Nachname: Vorname: Matr.-Nr.: Aufgabe 1 2 3 4 5 6 7 max. Punkte 6 8 4 7 5 6 8 tats. Punkte Gesamtpunktzahl: Note: Punkte Aufgabe
Typ-0-Sprachen und Turingmaschinen
Typ-0-Sprachen und Turingmaschinen Jean Vancoppenolle Universität Potsdam Einführung in formale Sprachen und Automaten Dr. Thomas Hanneforth (Präsentation aus Foliensätzen von Dr. Thomas Hanneforth und
Übersicht. 3 3 Kontextfreie Sprachen
Formale Systeme, Automaten, Prozesse Übersicht 3 3.1 Kontextfreie Sprachen und Grammatiken 3.2 Ableitungsbäume 3.3 Die pre -Operation 3.4 Entscheidungsprobleme für CFGs 3.5 Normalformen für CFGs 3.6 Chomsky-Normalform
2. Gegeben sei folgender nichtdeterministischer endlicher Automat mit ɛ-übergängen:
Probeklausur Automatentheorie & Formale Sprachen WiSe 2012/13, Wiebke Petersen Name: Matrikelnummer: Aufgabe A: Typ3-Sprachen 1. Konstruieren Sie einen endlichen Automaten, der die Sprache aller Wörter
Weitere universelle Berechnungsmodelle
Weitere universelle Berechnungsmodelle Mehrband Turingmaschine Nichtdeterministische Turingmaschine RAM-Modell Vektoradditionssysteme λ-kalkül µ-rekursive Funktionen 1 Varianten der dtm Mehrkopf dtm Kontrolle
10 Kellerautomaten. Kellerautomaten
10 Kellerautomaten Bisher hatten wir kontextfreie Sprachen nur mit Hilfe von Grammatiken charakterisiert. Wir haben gesehen, dass endliche Automaten nicht in der Lage sind, alle kontextfreien Sprachen
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 18. Januar 2018 INSTITUT FÜR THEORETISCHE 0 18.01.2018 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität
Klausur zur Vorlesung Informatik III Wintersemester 2007/2008
Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Klausur zur Vorlesung Informatik III Wintersemester 2007/2008 Hier Aufkleber mit Name und Matrikelnr. anbringen Vorname: Nachname: Matrikelnummer:
Automaten und formale Sprachen Klausurvorbereitung
Automaten und formale Sprachen Klausurvorbereitung Rami Swailem Mathematik Naturwissenschaften und Informatik FH-Gießen-Friedberg Inhaltsverzeichnis 1 Definitionen 2 2 Altklausur Jäger 2006 8 1 1 Definitionen
Sprachen und Automaten. Tino Hempel
Sprachen und Automaten 11 Tino Hempel Bisherige Automaten Automat mit Ausgabe/Mealy-Automat Akzeptor, Sprache eines Akzeptors Grenze: L = {a n b n } Kellerautomat erkennt L = {a n b n } Grenze:? T. Hempel
ALP I Turing-Maschine
ALP I Turing-Maschine Teil I WS 2012/2013 Äquivalenz vieler Berechnungsmodelle Alonzo Church λ-kalkül Kombinatorische Logik Alan Turing Turing-Maschine Mathematische Präzisierung Effektiv Berechenbare
Theoretische Informatik II
Theoretische Informatik II Einheit 4.2 Modelle für Typ-0 & Typ-1 Sprachen 1. Nichtdeterministische Turingmaschinen 2. Äquivalenz zu Typ-0 Sprachen 3. Linear beschränkte Automaten und Typ-1 Sprachen Maschinenmodelle
Theoretische Informatik I (Winter 2018/19) Prof. Dr. Ulrich Hertrampf. 1.5 Tabellen
1.5 Tabellen Welche Sprachklassen haben wir betrachtet? Und mit welchen Mitteln haben wir sie beschrieben? Zunächst haben wir die vier Chomsky-Klassen eingeführt: Typ-0 bis Typ-3 Grammatiken beschreiben
Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07. Nichtdeterministische Turingmaschinen und NP
Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07 Vortrag am 17.11.2006 Nichtdeterministische Turingmaschinen und NP Yves Radunz Inhaltsverzeichnis 1 Wiederholung 3 1.1 Allgemeines........................................
Theoretische Informatik 2
Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10 Die Chomsky-Hierarchie Definition Sei G = (V, Σ, P, S) eine Grammatik. 1 G heißt vom Typ 3 oder
Definition 78 Ein NPDA = PDA (= Nichtdeterministischer Pushdown-Automat) besteht aus:
4.7 Kellerautomaten In der Literatur findet man häufig auch die Bezeichnungen Stack-Automat oder Pushdown-Automat. Kellerautomaten sind, wenn nichts anderes gesagt wird, nichtdeterministisch. Definition
Proseminar TI: Kellerautomaten. 1 Motivation. 2 Einführung. Vortrag: Von Sebastian Oltmanns und Dorian Wachsmann. Dozent: Wolfgang Mulzer.
Proseminar TI: Kellerautomaten Vortrag: 10.11.2015 Von Sebastian Oltmanns und Dorian Wachsmann. Dozent: Wolfgang Mulzer. 1 Motivation Wir kennen bereits die Chomsky-Hierarchie. Sie klassiziert formale
Kapitel 3: Grundlegende Ergebnisse aus der Komplexitätstheorie Gliederung
Gliederung 1. Berechenbarkeitstheorie 2. Grundlagen 3. Grundlegende Ergebnisse aus der Komplexitätstheorie 4. Die Komplexitätsklassen P und NP 5. Die Komplexitätsklassen RP und BPP 3.1. Ressourcenkompression
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (V) 15.07.2015 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Übersicht 1. Motivation 2. Terminologie
Beispiel: NTM. M = ({q 0,q 1,q 2 }, {0, 1}, {0, 1, #},δ, q 0, #, {q 2 }) q 2
Beispiel: NTM M = ({q 0,q 1,q 2 }, {0, 1}, {0, 1, #},δ, q 0, #, {q 2 }) 0,1,R 0,0,R q0 1,0,R q1 #,#,R q2 0,0,L Zustand 0 1 # q 0 {(1, R, q 0 )} {(0, R, q 1 )} q 1 {(0, R, q 1 ),(0, L, q 0 )} {(1, R, q
Kapitel 7: Kellerautomaten und kontextfreie Sprachen
Kapitel 7: Kellerautomaten und kontextfreie Sprachen Prof.-Dr. Peter Brezany Institut für Softwarewissenschaft Universität Wien, Liechtensteinstraße 22 1090 Wien Tel. : 01/4277 38825 E-mail : [email protected]
Turing-Maschinen. Definition 1. Eine deterministische Turing-Maschine (kurz DTM) ist ein 6- Dem endlichen Alphabet Σ von Eingabesymbolen.
Turing-Maschinen Nachdem wir endliche Automaten und (die mächtigeren) Kellerautomaten kennengelernt haben, werden wir nun ein letztes, noch mächtigeres Automatenmodell kennenlernen: Die Turing-Maschine
Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004
Lösung zur Klausur Grundlagen der Theoretischen Informatik im WiSe 2003/2004 1. Geben Sie einen deterministischen endlichen Automaten an, der die Sprache aller Wörter über dem Alphabet {0, 1} akzeptiert,
Musterlösung Informatik-III-Nachklausur
Musterlösung Informatik-III-Nachklausur Aufgabe 1 (2+2+4+4 Punkte) (a) L = (0 1) 0(0 1) 11(0 1) 0(0 1) (b) Der Automat ist durch folgendes Übergangsdiagramm gegeben: 0, 1 0, 1 0, 1 0, 1 0 s q 1 1 0 0 q
4.2.4 Reguläre Grammatiken
4.2.4 Reguläre Grammatiken Eine reguläre Grammatik ist eine kontextfreie Grammatik, deren Produktionsregeln weiter eingeschränkt sind Linksreguläre Grammatik: A w P gilt: w = ε oder w = Ba mit a T und
Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012
Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Hier Aufkleber mit Name und Matrikelnr. anbringen
Sprachen und Grammatiken
Grundlagen der Theoretischen Informatik Wintersemester 2007 / 2008 Prof. Dr. Heribert Vollmer Institut für Theoretische Informatik 03.12.2007 Sprachen und Grammatiken Alphabete, Zeichen und Symbole Ein
11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P
11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie
Einführung in die Theoretische Informatik I/ Grundlagen der Theoretischen Informatik. SS 2007 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch
Einführung in die Theoretische Informatik I/ Grundlagen der Theoretischen Informatik SS 2007 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch 3. Teilklausur 25. 07. 2007 Persönliche Daten bitte gut leserlich
1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie
1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie WS 11/12 155 Überblick Zunächst einmal definieren wir formal den Begriff
Theoretische Informatik Testvorbereitung Moritz Resl
Theoretische Informatik Testvorbereitung Moritz Resl Bestandteile einer Programmiersprache: a) Syntax (Form): durch kontextfreie Grammatik beschrieben b) Semantik (Bedeutung) 1.) Kontextfreie Sprachen
Beweis: Nach dem Pumping-Lemma für kontextfreie Sprachen ist
CF versus CS Theorem CF ist echt in CS enthalten. Beweis: Nach dem Pumping-Lemma für kontextfreie Sprachen ist L = {a m b m c m m 1} nicht kontextfrei. Andererseits ist L kontextsensitiv, wie die Grammatik
2.4 Kontextsensitive und Typ 0-Sprachen
Definition 2.43 Eine Typ 1 Grammatik ist in Kuroda Normalform, falls alle Regeln eine der folgenden 4 Formen haben: Dabei: A, B, C, D V und a Σ. Satz 2.44 A a, A B, A BC, AB CD. Für jede Typ 1 Grammatik
Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23
1/23 Formale Methoden 1 Gerhard Jäger [email protected] Uni Bielefeld, WS 2007/2008 9. Januar 2008 2/23 Automaten (informell) gedachte Maschine/abstraktes Modell einer Maschine verhält sich
Informatik III. Arne Vater Wintersemester 2006/ Vorlesung
Informatik III Arne Vater Wintersemester 2006/07 11. Vorlesung 30.11.2006 1 Beziehungen zwischen den Sprachen Jede reguläre Sprache ist eine kontextfreie Sprache. Jede kontextfreie Sprache ist eine entscheidbare
4 Kontextsensitive und Typ 0 Sprachen
Hans U. Simon Bochum, den 05.02.2009 Annette Ilgen Beispiele zur Vorlesung Theoretische Informatik WS 08/09 Vorbemerkung: Hier findet sich eine Sammlung von Beispielen und Motivationen zur Vorlesung Theoretische
DKA und dkfs (mit Übungen)
DKA und dkfs (mit Übungen) Prof.Dr.Christian Wagenknecht mit Beiträgen von Herrn Dr.Michael Hielscher Prof.Dr.Chr. Wagenknecht Formale Sprachen und Automaten 1/15 kurz DKA Analog zu endlichen Automaten
Die oben aufgelisteten Sprachfamilien werden von oben nach unten echt mächtiger, d.h. die Familie der regulären Sprachen ist eine echte Teilfamilie
Zusammenfassung Im Automatenteil der FGI1 Vorlesung haben wir uns mit der Charakterisierung von Sprachfamilien durch immer mächtigere Automatenmodelle und Grammatiken beschäftigt. Folgende Familien haben
(Prüfungs-)Aufgaben zu formale Sprachen
(Prüfungs-)Aufgaben zu formale Sprachen (siehe auch bei den Aufgaben zu endlichen Automaten) 1) Eine Grammatik G sei gegeben durch: N = {S, A}, T = {a, b, c, d}, P = { (S, Sa), (S, ba), (A, ba), (A, c),
1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie
1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 139 Unentscheidbarkeit Überblick Zunächst einmal definieren wir formal
Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie
Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 07.02.2006 28. und letzte Vorlesung 1 Die Chomsky-Klassifizierung Chomsky-Hierachien 3: Reguläre Grammatiken
Theoretische Informatik. Berechenbarkeit
Theoretische Informatik Berechenbarkeit 1 Turing Maschine Endlicher Automat mit unendlichem Speicher Ein Modell eines realen Computers Was ein Computer berechnen kann, kann auch eine TM berechnen. Was
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (V) 7.07.2016 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Übersicht 1. Motivation 2. Terminologie
Mehrdeutige Grammatiken
Mehrdeutige Grammatiken Wir haben gesehen, dass es auch mehr als eine Linksableitung, d.h. mehr als einen Syntaxbaum geben kann, um das selbe Terminalwort zu erzeugen. Eine Grammatik, die für mindestens
Automaten und Formale Sprachen SoSe 2013 in Trier
Automaten und Formale Sprachen SoSe 2013 in Trier Henning Fernau Universität Trier [email protected] 2. Juni 2013 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche
Die mathematische Seite
Kellerautomaten In der ersten Vorlesung haben wir den endlichen Automaten kennengelernt. Mit diesem werden wir uns in der zweiten Vorlesung noch etwas eingängiger beschäftigen und bspw. Ansätze zur Konstruktion
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik 3. Endliche Automaten 30.04.2015 Viorica Sofronie-Stokkermans Matthias Horbach e-mail: [email protected], [email protected] 1 Bis jetzt 1. Motivation
Berechenbarkeit/Entscheidbarkeit
Berechenbarkeit/Entscheidbarkeit Frage: Ist eine algorithmische Problemstellung lösbar? was ist eine algorithmische Problemstellung? formale Sprachen benötigen einen Berechenbarkeitsbegriff Maschinenmodelle
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (V) 16.07.2015 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Übersicht 1. Motivation 2. Terminologie
Turing-Maschine. Berechenbarkeit und Komplexität Turing-Maschinen. Turing-Maschine. Beispiel
Berechenbarkeit und Komplexität Turing-Maschinen Wolfgang Schreiner [email protected] Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.jku.at
Fragen 1. Muss eine DTM ein Wort zu Ende gelesen haben, um es zu akzeptieren? a) Ja! b) Nein!
4 Turingmaschinen Eingabeband nicht nur lesen, sondern auch schreiben kann und die zudem mit ihrem Lese-Schreib-Kopf (LSK) nach links und rechts gehen kann. Das Eingabeband ist zudem in beide Richtungen
a b b a Vom DFA zur TM Formale Grundlagen der Informatik 1 Kapitel 9 Turing-Maschinen Der Lese-/Schreibkopf Bedeutung der TM
Vom DFA zur TM Formale der Informatik 1 Kapitel 9 Frank Heitmann [email protected] a b b a z 0 a z 1 a z 2 b 2. Mai 2016 Wir wollen auf dem Band nach rechts und links gehen können und
Berechenbarkeit. Script, Kapitel 2
Berechenbarkeit Script, Kapitel 2 Intuitiver Berechenbarkeitsbegriff Turing-Berechenbarkeit WHILE-Berechenbarkeit Church sche These Entscheidungsprobleme Unentscheidbarkeit des Halteproblems für Turingmaschinen
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik Wintersemester 2007 / 2008 Prof. Dr. Heribert Vollmer Institut für Theoretische Informatik 29.10.2007 Reguläre Sprachen Ein (deterministischer) endlicher Automat
Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,
Reguläre Sprachen Reguläre Sprachen (Typ-3-Sprachen) haben große Bedeutung in Textverarbeitung und Programmierung (z.b. lexikalische Analyse) besitzen für viele Entscheidungsprobleme effiziente Algorithmen
Berechenbarkeit und Komplexität
Berechenbarkeit und Komplexität Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2010/11 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien und Übungsblätter
Einführung in die Computerlinguistik
Einführung in die Computerlinguistik Kontextfreie Sprachen und Pushdown-Automaten Dozentin: Wiebke Petersen WS 2004/2005 Wiebke Petersen Formale Komplexität natürlicher Sprachen WS 03/04 Wiederholung c
