ALP I Rekursive Funktionen
|
|
|
- Ulrike Sternberg
- vor 9 Jahren
- Abrufe
Transkript
1 ALP I Rekursive Funktionen SS 2011
2 Äquivalenz vieler Berechnungsmodelle Effektiv Berechenbare Funktionen Mathematische Modelle Maschinelle Modelle Text λ-kalkül Kombinatorische Logik Allgemein rekursive Funktionen Register Maschinen Turing- Maschine While- Programme µ-rekursive Funktionen ALP II Theoretische Informatik I GOTO- Programme equiv. primitiv-rekursive Funktionen
3 Alle Beispiele, die wir in den letzten zwei Vorlesungen diskutiert haben, sind Beispiele aus der Menge der sogenannten primitiv-rekursiven Funktionen PR. Die primitiv-rekursiven Funktionen sind die einfachste Klasse von rekursiven Funktionen. Die PR-Funktionen sind eine Untermenge der Effektiv Berechenbaren Funktionen. Das bedeutet, es gibt rekursive Funktionen, die berechenbar sind aber nicht primitiv-rekursiv sind.
4 Motiviert von D. Hilbert haben vor allem K. Gödel ( ) und Rózsa Péter ( ) sich mit der Theorie der rekursiven Funktionen auseinandergesetzt sowie diese stark geprägt. Was kann alles mit primitiv-rekursiven Funktionen berechnet werden? Gibt es ein allgemeines Schema zur Definition beliebiger berechenbarer Funktionen?
5 (PR) Das Schema zur Definition beliebiger primitiv-rekursiver Funktionen besteht aus folgenden drei Hauptteilen: 1. Eine Reihe von Grundfunktionen. 2. Ein Ersetzungsmechanismus zur Definition von Funktionen ohne Rekursion (Funktionskomposition). 3. Ein Mechanismus zur Definition von primitivrekursiven Funktionen mit Rekursion (PR).
6 (PR) Die Klasse der PR-Funktionen N m N wird wie folgt induktiv definiert. I Grundfunktionen II Kompositionsschema III Rekursionsschema
7 I Grundfunktionen 1. Die Nullfunktion Z : N m N ist primitiv rekursiv Z(x 1,,x m ) = 0 2. Die Nachfolgerfunktion S : N N ist primitiv rekursiv S(n) = n+1 3. Die Projektionsfunktionen definiert durch π m i : N m N π m i (x 1,,x i,,x m ) = x i, 1 i m sind primitiv-rekursiv Beispiel: π 3 (a, b, c) = b 2
8 II Kompositionsschema Die Funktionskomposition ist primitiv-rekursiv. Das bedeutet, für alle primitiv-rekursiven Funktionen f : N m N und g 1,, g m : N n N ist die Funktion C : N n N, definiert durch C (x 1,...,x n ) = f (g 1 ( x 1,...,x n ),, g m ( x 1,...,x n )) auch primitiv rekursiv.
9 III Rekursionsschema Jede Funktion, die sich durch primitive Rekursion (Induktion) aus primitiv-rekursiven Funktionen definieren lässt, ist auch primitivrekursiv. Das bedeutet: Wenn g : N m N und h : N m+2 N primitiv-rekursive Funktionen sind, dann ist die folgende (induktiv definierte) Funktion R : N m+1 N R (0, x 1,...,x m ) = g(x 1,...,x m ) R (S(n), x 1,...,x m ) = h( R(n, x 1,...,x m ), n, x 1,...,x m ) ebenfalls primitiv rekursiv. S = Nachfolgerfunktion
10 Eine konstante Funktion, die eine beliebige Zahl n in der Konstante 3 abbildet, sieht wie folgt aus: k3 : N N k3 ( m ) = S(S(S(Z(m)))) = 3 Die Identitätsfunktion kann wie folgt definiert werden: id : N N id ( m ) = π 1 1 (m) = m
11 Können wir die Additionsfunktion auf eine Definition, die nur aus primitiv-rekursiven Funktionen besteht, zurückführen? aus I, II und III: add : N 2 N add 0 m add ( 0, m ) = m add (n+1) m = (add n m) +1 = g(m) add ( S(n), m ) = h(add (n, m), n, m) g und h müssen primitivrekursiv sein add ( 0, m ) = add ( S(n), m ) = π 1 (m) 1 S(π 3 (add (n, m), n, m)) 1
12 Vorgänger-Funktion: pred : N N Weil die primitiv-rekursiven Funktionen nur über die natürlichen Zahlen definierbar sind, wird der Vorgänger von 0 als gleich 0 definiert. pred 0 = 0 pred (n+1) = n pred ( 0 ) = g () pred ( S(n) ) = h (pred (n), n) pred ( 0 ) = Z () pred ( S(n) ) = π 2 ( pred (n), n ) 2
13 Die Multiplikation kann rekursiv über die Addition definiert werden. mult 0 m = 0 mult (n+1) m = (mult n m ) + m mult ( 0, m ) = g ( m ) mult ( S(n), m ) = h (mult (n, m), n, m) mult ( 0, m ) = Z ( m ) mult(s(n), m) = add (π 3 (mult(n, m),n,m), π 3 (mult (n,m),n,m)) 1 3
14 Eine mögliche Definition der Subtraktion sieht wie folgt aus: sub m 0 = m sub m n = pred (sub m (pred n)) sub 2 1 => pred (sub 2 (pred 1)) => pred (sub 2 0) => pred 2 => 1 sub 1 2 => pred (sub 1 (pred 2)) => pred (sub 1 1) => pred (pred (sub 1 0)) => pred (pred 1) => pred 0 => 0 Eine primitiv-rekursive Definition der Subtraktion sieht wie folgt aus: sub (0, m ) = π 1 (m) 1 sub (S(n), m) = pred (π 3 (sub(n, m),n,m)) 1
15 weitere Beispiele an der Tafel...
Theorie der Informatik Einleitung. Theorie der Informatik Basisfunktionen und Einsetzung Primitive Rekursion. 14.
Theorie der Informatik 16. April 2014 14. primitive Rekursion und µ-rekursion Theorie der Informatik 14. primitive Rekursion und µ-rekursion 14.1 Einleitung 14.2 Basisfunktionen und Einsetzung Malte Helmert
Funktionale Programmierung ALP I. µ-rekursive Funktionen WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda
ALP I µ-rekursive Funktionen WS 2012/2013 Primitiv-rekursive Funktionen Jede primitiv-rekursive Funktion ist Loop-berechenbar. Das bedeutet, dass jede PR-Funktion in der Loop-Programmiersprache formuliert
Typen von Programmiersprachen
Typen von Programmiersprachen Berechenbarkeitstheorie: Formalisierung des intuitiven Berechenbarkeitsbegriffs man kann vier Typen von Programmiersprachen zum Berechnen von Zahlenfunktionen unterscheiden:
Primitiv rekursive und µ-rekursive Funktionen
Primitiv rekursive und µ-rekursive Funktionen Slide 1 Primitiv rekursive und µ-rekursive Funktionen Hans U. Simon (RUB) Email: [email protected] Homepage: http://www.ruhr-uni-bochum.de/lmi Primitiv rekursive
Theoretische Informatik II
Theoretische Informatik II Einheit 4.2 Rekursive Funktionen 1. Primitiv- und µ-rekursive Funktionen 2. Analyse und Programmierung 3. Äquivalenz zu Turingmaschinen Berechenbarkeit auf N ohne Maschinenmodelle
2. Imperative Programmierung und Berechenbarkeit - Registermaschinen -
2. Imperative Programmierung und Berechenbarkeit - Registermaschinen - 2.1 Definition 2.2 Loop-Programme 2.3 While Programme 2.4 While Programme und rekursive Funktionen Im Wesentlichen: Tafel! Maschinenmodell
Primitiv rekursive Funktionen
Primitiv rekursive Funktionen Primitiv rekursive Funktionen Historisch: Die Einführung der primitiven Rekursivität war ein erster (und erfolgloser) Versuch, den Begriff der Berechenbarkeit (oft synonym
Funktionale Programmierung ALP I. Kombinatorische Logik (CL) SS Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda
ALP I Kombinatorische Logik (CL) SS 2011 Äquivalenz vieler Berechnungsmodelle Alonzo Church λ-kalkül Kombinatorische Logik Alan Turing Turing-Maschine Mathematische Präzisierung µ-rekursive Funktionen
Rekursive Funktionen Basisfunktionen
Rekursive Funktionen Basisfunktionen die nullstellige Funktion Z, die den konstanten Wert 0 liefert, die Funktion S : N N, bei der jeder natürlichen Zahl ihr Nachfolger zugeordnet wird, die Funktion P
Primitiv rekursive und µ-rekursive Funktionen
Primitiv rekursive und µ-rekursive Funktionen Loop-, While- und Goto-Programme sind vereinfachte imperative Programme und stehen für imperative Programmiersprachen, bei denen Programme als Folgen von Befehlen
Theorie der Informatik
Theorie der Informatik 15. Ackermannfunktion Malte Helmert Gabriele Röger Universität Basel 28. April 2014 Überblick: Vorlesung Vorlesungsteile I. Logik II. Automatentheorie und formale Sprachen III. Berechenbarkeitstheorie
Funktionale Programmierung ALP I. λ Kalkül WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda
ALP I λ Kalkül WS 2012/2013 Berechenbarkeit - inspiriert durch Hilbert's Frage - im Jahr 1900, Paris - Internationaler Mathematikerkongress Gibt es ein System von Axiomen, aus denen alle Gesetze der Mathematik
1.3 Primitiv rekursive und µ-rekursive Funktionen
Definition 1.11 Die Klasse der primitiv rekursiven Funktionen (a) Basisfunktionen: (1.) die konstanten Funktionen c (c N) (2.) die Projektionen Π m i (x 1,...,x m ) = x i (1 i m) (3.) die Nachfolgerfunktion
Einführung in die Theoretische Informatik
Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2011 Lösungsblatt 8 18. Juli 2011 Einführung in die Theoretische Informatik
Theoretische Informatik II. WS 2007/2008 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch. 1. Teilklausur Vorname:... Nachname:...
Theoretische Informatik II WS 2007/2008 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch 1. Teilklausur 11. 12. 2007 Persönliche Daten bitte gut leserlich ausfüllen! Vorname:... Nachname:... Matrikelnummer:...
GOTO simuliert Turingmaschinen
GOTO simuliert Turingmaschinen Wir wissen bisher: LOOP ( GOTO = WHILE TM Jetzt zeigen wir, dass auch WHILE = TM gilt: Die Turingmaschine M =(Z,,,,z 1,, E) berechne f. Wir simulieren M mit einem GOTO-Programm
ALP I Turing-Maschine
ALP I Turing-Maschine Teil I WS 2012/2013 Äquivalenz vieler Berechnungsmodelle Alonzo Church λ-kalkül Kombinatorische Logik Alan Turing Turing-Maschine Mathematische Präzisierung Effektiv Berechenbare
Einführung in die Informatik I
Einführung in die Informatik I LOOP Programme, rekursive Funktionen und der Turm von Hanoi Prof. Dr. Nikolaus Wulff Berechenbarkeit Mitte des 20. Jahrhunderts beantworteten Pioniere, wie Alan M. Turing
Mächtigkeit von WHILE-Programmen
Mächtigkeit von WHILE-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 23 Turingmaschine (TM) M = (Q, Σ, Γ, B, q 0, q, δ) Unendliches Band... 0 c
Primitive Rekursion. Alexander Hölzle
Primitive Rekursion Alexander Hölzle 14.01.2007 Inhaltsverzeichnis Motivation i 1 Rekursive Funktionen 1 1.1 Nicht berechenbare Funktionen........................ 1 1.2 Primitiv rekursive Funktionen.........................
Rekursive und primitiv rekursive Funktionen. Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen
Rekursive und primitiv rekursive Funktionen Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen IDEE: Definiere eine Klasse von (partiell) berechenbaren Funktionen über N induktiv
Berechenbarkeit und Komplexität Vorlesung 11
Berechenbarkeit und Komplexität Vorlesung 11 Prof. Dr. Wolfgang Thomas Lehrstuhl Informatik 7 RWTH Aachen 7. Dezember 2014 Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 7.
Primitive Rekursion. Basisfunktionen: Konstante Funktion: const 3 3 (1,1, pr 1,3(g,h) (1,1)) Projektion: proj 3 (1,1, pr. Komposition: comp 3,2
Primitive Rekursion Basisfunktionen: Konstante Funktion: const Stelligkeit. Wert des Ergebnisses. Unabhängig von den Parametern. const (,, pr,(g,h) (,)) Stelligkeit. Projektion: proj Gibt die Komponente
LOOP-Programme 1. Def (Meyer/Ritchie). LOOP-Programme werden induktiv aufgebaut aus den (Basis-) Anweisungen. Führe P X-mal aus ) LOOP-Programme 2
LOOP-Programme 1 LOOP-Programme verwenden (jeweils) endlich viele Variablen aus VAR := {X 0,X 1,X 2,...}, oft nur mit X,Y,Z,U,V,W bezeichnet, die als Register fungieren. Slide 1 Def (Meyer/Ritchie). LOOP-Programme
Berechenbarkeit und Komplexität: Mächtigkeit von Programmiersprachen: WHILE- und LOOP-Programme
Berechenbarkeit und Komplexität: Mächtigkeit von Programmiersprachen: WHILE- und LOOP-Programme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 29. November 2007 Turing-mächtige
Berechenbarkeits- und Komplexitätstheorie
Berechenbarkeits- und Komplexitätstheorie Verschiedene Berechenbarkeitsbegriffe, Entscheidbarkeit von Sprachen, Wachstumsordnungen und Komplexitätsklassen Inhaltsübersicht und Literatur Verschiedene Berechenbarkeitsbegriffe:
Rekursive und primitiv-rekursive Funktionen
Rekursive und primitiv-rekursive Funktionen Patrik Lengacher 02. Mai 2012 Dieses Handout richtet sich nach Kapitel 6.1 in [R]. Grundsätzlich wird dieselbe Notation wie in den vorhergehenden Vorträgen verwendet.
Berechenbarkeit und Komplexität Vorlesung 10
Berechenbarkeit und Komplexität Vorlesung 10 Prof. Dr. Wolfgang Thomas Lehrstuhl Informatik 7 RWTH Aachen 27. November 2014 Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 27.
Nachklausur zur Vorlesung
Lehrstuhl für Theoretische Informatik Prof. Dr. Markus Lohrey Grundlagen der Theoretischen Informatik Nachklausur Nachklausur zur Vorlesung Grundlagen der Theoretischen Informatik WS 2016/17 / 27. Februar
Berechenbarkeit und Komplexität: Mächtigkeit von Programmiersprachen: WHILE- und LOOP Programme
Berechenbarkeit und Komplexität: Mächtigkeit von Programmiersprachen: WHILE- und LOOP Programme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 13. November 2006 Turing-mächtige
Theoretische Informatik
Theoretische Informatik Prof. Meer, Dr. Gengler Aufgabenblatt 12 Besprechung in KW 03 / Abgabe in KW 04 Heften Sie unbedingt alle Blätter Ihrer Lösung zusammen und geben Sie oben auf dem ersten Blatt Ihren
Proseminar Theoretische Informatik - WS07/08 - Prof. Helmut Alt. I. Einleitung Berechnungsmodelle LOOP, WHILE, GOTO, rekursive Funktionen
Proseminar Theoretische Informatik - WS07/08 - Prof. Helmut Alt I. Einleitung Berechnungsmodelle LOOP, WHILE, GOTO, rekursive Funktionen Berechenbarkeitsmodelle Welchen Sinn haben diese? Wie kann man effizient
Universität Hannover Fakultät für Elektrotechnik und Informatik Institut für Theoretische Informatik. Thema: von. Paul Krüger
1 Universität Hannover Fakultät für Elektrotechnik und Informatik Institut für Theoretische Informatik Thema: - Kalkül von Paul Krüger Betreuer: Prof. Dr. Heribert Vollmer Das Rahmenthema ist " Berechenbarkeit
Wir suchen Antworten auf die folgenden Fragen: Was ist Berechenbarkeit? Wie kann man das intuitiv Berechenbare formal fassen?
Einige Fragen Ziel: Wir suchen Antworten auf die folgenden Fragen: Wie kann man das intuitiv Berechenbare formal fassen? Was ist ein Algorithmus? Welche Indizien hat man dafür, dass ein formaler Algorithmenbegriff
GTI. Hannes Diener. 18. Juni. ENC B-0123,
GTI Hannes Diener ENC B-0123, [email protected] 18. Juni 1 / 32 Als Literatur zu diesem Thema empfiehlt sich das Buch Theoretische Informatik kurzgefasst von Uwe Schöning (mittlerweile in der 5.
6. Rekursive und primitiv rekursive Funktionen. Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen
6. Rekursive und primitiv rekursive Funktionen Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen IDEE: Definiere eine Klasse von (partiell) berechenbaren Funktionen über N
Einführung in die Theoretische Informatik Tutorium IX
Einführung in die Theoretische Informatik Tutorium IX Michael R. Jung 16. & 17. 12. 2014 EThI - Tutorium IX 1 1 Entscheidbarkeit, Semi-Entscheidbarkeit und Unentscheidbarkeit 2 EThI - Tutorium IX 2 Definitionen
Def.: Die Menge der LOOP-Programme ist induktiv wie folgt definiert:
3. LOOP-, WHILE- und GOTO-Berechenbarkeit 3.1 LOOP-Programme Komponenten: Variablen: x 0, x 1, x 2,, y, z, Konstanten: 0, 1, 2, Trennsymbole: ; := Operationszeichen: +, - Schlüsselwörter: LOOP, DO, END
Grundbegriffe der mathematischen Logik
Grundbegriffe der mathematischen Logik Vorlesung WS 2005/2006 Jakob Kellner http://www.logic.univie.ac.at/ kellner Kurt Gödel Research Center for Mathematical Logic 1. Vorlesung, 2005-10-05 Jakob Kellner
GTI. µ-rekursive Funktionen. Hannes Diener. 20. Juni 2. Juli. ENC B-0123,
GTI µ-rekursive Funktionen Hannes Diener ENC B-0123, [email protected] 20. Juni 2. Juli 1 / 31 µ-rekursive Funktionen Kommen wir als nächstes zu unserem dritten Ansatz zur Berechenbarkeit. Diesmal
Induktive Beweise und rekursive Definitionen
Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1
Dank. Theoretische Informatik II. Teil II. Registermaschinen. Vorlesung
Dank Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von Katrin Erk (gehalten an der Universität
Kapitel III. Aufbau des Zahlensystems
Kapitel III. Aufbau des Zahlensystems 1 Addition und Multiplikation natürlicher Zahlen Wir wollen erklären, wie man natürliche Zahlen addiert und multipliziert und dabei nur den Begriff das Zählens verwenden.
LOOP-Programme: Syntaktische Komponenten
LOOP-Programme: Syntaktische Komponenten LOOP-Programme bestehen aus folgenden Zeichen (syntaktischen Komponenten): Variablen: x 0 x 1 x 2... Konstanten: 0 1 2... Operationssymbole: + Trennsymbole: ; :=
Theoretische Informatik SS 03 Übung 5
Theoretische Informatik SS 03 Übung 5 Aufgabe 1 Im Buch von Schöning ist auf S. 106-108 beschrieben, wie eine Turing-Maschine durch ein GOTO-Programm simuliert werden kann. Zeigen Sie, wie dabei die Anweisungen
Induktive Beweise und rekursive Definitionen
Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1
Informatik Rechnerinterne Vorgänge: Programmstrukt. (Lsg.) Gierhardt
Informatik Rechnerinterne Vorgänge: Programmstrukt. (Lsg.) Gierhardt 1. Die Zahlen von 1 bis 10 sollen ausgegeben werden (a) absteigend mit einer do while-schleife 3 zehn DEF 10 ; int zehn = 10 4 Anfang
Funktionale Programmierung ALP I. Funktionen höherer Ordnung SS Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda
ALP I SS 2011 Funktionstypen Funktionen haben einen Datentyp, der folgende allgemeine Form hat: functionname :: T 1 -> T 2, wobei T 1, T 2 wiederum beliebige Datentypen sind Beispiel: T 1 T 2 Der Datentyp
Grundlagen der Theoretischen Informatik II
1 Grundlagen der Theoretischen Informatik II Till Mossakowski Fakultät für Informatik Otto-von-Guericke-Universität Magdeburg Sommersemester 2015 2 Prädikate Eine Funktion, die nur die Werte 0 und 1 annimmt,
Wiederholung. Organisatorisches. VL-11: LOOP und WHILE Programme I. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger
Organisatorisches VL-11: LOOP und WHILE Programme I (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger Nächste Vorlesung: Mittwoch, November 29, 14:15 15:45 Uhr, Roter Hörsaal Webseite: http://algo.rwth-aachen.de/lehre/ws1718/buk.php
VL-11: LOOP und WHILE Programme I. (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger
VL-11: LOOP und WHILE Programme I (Berechenbarkeit und Komplexität, WS 2017) Gerhard Woeginger WS 2017, RWTH BuK/WS 2017 VL-11: LOOP und WHILE Programme I 1/46 Organisatorisches Nächste Vorlesung: Mittwoch,
Theoretische Informatik SS 03 Übung 4
Fakten aus Übung 3 Theoretische Informatik SS 03 Übung 4 In Übung 3 wurden einigen Fakten bewiesen, die für diese Übung benötigt werden. Folgende Konstrukte können mit LOOP-Programmen simuliert werden:
THEORETISCHE INFORMATIK UND LOGIK
Was bisher geschah... Grundbegriffe, die wir verstehen und erklären können: DTM, NTM, Entscheider, Aufzähler, berechenbar/entscheidbar, semi-entscheidbar, unentscheidbar, Church-Turing-These THEORETISCHE
Turing-Maschinen: Ein abstrakes Maschinenmodell
Wann ist eine Funktion (über den natürlichen Zahlen) berechenbar? Intuitiv: Wenn es einen Algorithmus gibt, der sie berechnet! Was heißt, eine Elementaroperation ist maschinell ausführbar? Was verstehen
Ausgewählte Kapitel Diskreter Mathematik mit Anwendungen
Wahlpflichtfach Bachelor Informatik 4. Semester Ausgewählte Kapitel Diskreter Mathematik mit Anwendungen Lektion 6: utm- und Kurt-Ulrich Witt Sommersemester 2011 Kurt-Ulrich Witt Diskrete Mathematik Lektion
Syntax von LOOP-Programmen
LOOP-Berechenbarkeit Syntax von LOOP-Programmen Definition LOOP-Programme bestehen aus: Variablen: x 0, x 1, x 2, x 3,... Konstanten: 0, 1, 2, 3,... Trennsymbolen:; und := Operationen: + und Befehlen:
Die Church-Turing-These
Die Church-Turing-These Elmar Eder () Die Church-Turing-These 1 / 12 Formale Systeme Formale Systeme µ-partiellrekursive Funktionen Logikkalküle SLD-Resolution (Prolog) Chomsky-Grammatiken Turing-Maschinen
Mächtigkeit von LOOP-Programmen. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen
Mächtigkeit von LOOP-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 23 Die Programmiersprache LOOP Syntax Elemente eines LOOP-Programms Variablen
Mitschrift BFS WS 13/14
Mitschrift BFS WS 13/14 Stand: 4. Juni 2014 Dieses Skript zum Teil Primitive und µ-rekursion der Vorlesung Berechenbarkeit und Formale Sprachen im Wintersemester 2013/14 bei Prof. Wanka wurde von untenstehenden
Theoretische Informatik für Wirtschaftsinformatik und Lehramt
Theoretische Informatik für Wirtschaftsinformatik und Lehramt Universelle Turingmaschinen und Church sche These Priv.-Doz. Dr. Stefan Milius [email protected] Theoretische Informatik Friedrich-Alexander
Kapitel 3: Berechnungstheorie Gliederung
Gliederung 0. Einführung und Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 3.1. Algorithmische Probleme und Berechnungsmodelle 3.2. Das Berechnungsmodell
Theoretische Informatik 1
Theoretische Informatik 1 Registermaschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Registermaschinen Algorithmusbegriff konkretisiert formale Beschreibung
Aufbau der natürlichen, ganzen, rationalen und surrealen Zahlen
Natürliche Zahlen Ganze Zahlen Fragen Aufbau der natürlichen, ganzen, rationalen und surrealen Zahlen 26. April 2007 Natürliche Zahlen Ganze Zahlen Fragen Natürliche Zahlen Ganze Zahlen Fragen 1 Natürliche
Logik und Beweisbarkeit
Logik und Beweisbarkeit VL 10 Martin Mundhenk Univ. Jena, Institut für Informatik 22. Januar 2019 Vorlesung 11: Beweissysteme 3. Berechenbarkeitstheorie VL08: URM-berechenbare Funktionen und die These
Grundlagen der Theoretischen Informatik: Übung 10
Grundlagen der Theoretischen Informatik: Übung 10 Joachim Selke Fachgebiet Theoretische Informatik Universität Hannover 20. Januar 2005 Turing-Maschinen als Rechenmaschinen gegeben sei eine Funktion f
Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Definition Algorithmus. Wie beschreibt man Algorithmen?
Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2015 1 Einführung Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München 2 Grundlagen von Algorithmen
Algorithmen und Datenstrukturen (für ET/IT)
Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2016 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 1 Einführung 2 Grundlagen von Algorithmen
Einführung in die mathematische Logik
Prof. Dr. H. Brenner Osnabrück SS 2016 Einführung in die mathematische Logik Vorlesung 12 Wir haben bisher nur von Axiomensystemen im Sinne einer beliebigen Ausdrucksmenge Γ L S gesprochen, die im Allgemeinen
Satz von Rice. Lemma 39
Unentscheidbarkeit Satz von Rice Das nächste Resultat zeigt, dass jede Eigenschaft der von einer Turing-Maschine berechneten Funktion unentscheidbar ist. Das bedeutet, es gibt keine Methode, mit der man
6.4 Entscheidbarkeit. nein sein müssen, ist klar. THEO 6.4 Entscheidbarkeit 205/307 c Ernst W. Mayr
6.4 Entscheidbarkeit Wortproblem Leerheit Äquivalenz Schnittproblem Typ 3 ja ja ja ja DCFL ja ja ja nein (*) Typ 2 ja ja nein (*) nein Typ 1 ja nein (*) nein nein Typ 0 nein (*) nein nein nein (*) Diese
Grundlagen der Programmierung (Vorlesung 24)
Grundlagen der Programmierung (Vorlesung 24) Ralf Möller, FH-Wedel Vorige Vorlesung Anwendung im Bereich Compilerbau Inhalt dieser Vorlesung Turing-Maschinen Berechenbarkeitstheorie, Halteproblem Lernziele
