58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen

Größe: px
Ab Seite anzeigen:

Download "58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen"

Transkript

1 eolympiadeklass8 58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen c 2018 Aufgabenausschuss für die Mathematik-Olympiade in Deutschland Alle Rechte vorbehalten Lösung 10 Punkte Erste Lösung: Wir nehmen zuerst an, dass die Aussage (4) wahr ist. Dann war Leyla zuerst bei der Post, weswegen die Aussagen (1) und (5) falsch sind. Da aber nach Leylas Aussage genau eine Aussage falsch ist, kann dies nicht sein. Folglich ist Aussage (4) die falsche Aussage. Da Aussage (4) die falsche Aussage ist, sind die Aussagen (1), (2), (3) und (5) wahr. Leyla kann nicht zuerst beim Bäcker gewesen sein, da dann Aussage (3) falsch ist. Sie kann auch nicht zuerst im Comicladen gewesen sein, da dann die Aussagen (1) falsch ist. Folglich war sie zuerst im Zoogeschäft. Hieraus und aus Aussage (5) folgt, dass sie anschließend zur Post gegangen war. Da sie daher als zweites zur Post gegangen war, ging sie nach Aussage (2) zuletzt zum Bäcker. An dritter Stelle auf ihrer Einkaufsrunde lag folglich der Comicladen. Von Karims Aussagen ist Aussage (4) falsch. Leyla hat ihre Einkäufe in der Reihenfolge Zoogeschäft, Post, Comicladen, Bäcker gemacht. Zweite Lösung: Wir überlegen, wo Leyla ihre Einkaufsrunde begonnen haben kann. Wenn Leyla zuerst beim Bäcker war, dann sind die Aussagen (2), (3) und (4) falsch. Wenn Leyla zuerst im Comicladen war, dann sind die Aussagen (1) und (4) falsch. Wenn Leyla zuerst bei der Post war, dann sind die Aussagen (1) und (3) falsch. Da in jedem dieser Fälle mehr als eine Aussage falsch ist, muss Leyla zuerst im Zoogeschäft gewesen sein. In diesem Fall ist Aussage (4) falsch, und die Aussagen (1), (2), (3) und (5) sind wahr. Wie oben folgt nun aus Aussage (5), dass Leyla als zweites zur Post gegangen war. Aus Aussage (2) folgt daraus, dass sie zuletzt zum Bäcker ging, und schließlich, dass an dritter Stelle ihrer Einkaufsrunde der Comicladen lag. Von Karims Aussagen ist Aussage (4) falsch. Leyla hat ihre Einkäufe in der Reihenfolge Zoogeschäft, Post, Comicladen, Bäcker gemacht Lösung 10 Punkte Erste Lösung: Teil a) Wir schreiben alle Schrittfolgen für 4 Stufen systematisch auf. Dazu schreiben wir vereinfachend hintereinander die Zahlen 1 oder 2, je nachdem, ob Sofia in einem Schritt nur eine einzelne Stufe oder gleich zwei auf einmal hochsteigt. Es kommen dann alle solchen Folgen von Einsen und Zweien in Frage, bei denen die Summe aller Zahlen 4 ergibt: Sofia kann daher eine Treppe mit 4 Stufen in genau 5 Schrittfolgen hochsteigen. Teil b) Wir schreiben alle Schrittfolgen für 5 Stufen systematisch auf. Dazu schreiben wir wieder vereinfachend hintereinander die Zahlen 1 oder 2, je nachdem, ob Sofia in einem Schritt 34

2 nur eine einzelne Stufe oder gleich zwei auf einmal hochsteigt. Es kommen dann alle solchen Folgen von Einsen und Zweien in Frage, bei denen die Summe aller Zahlen 5 ergibt: Sofia kann daher eine Treppe mit 5 Stufen in genau 8 Schrittfolgen hochsteigen. Teil c) Sofia soll nun eine Treppe mit 7 Stufen hochsteigen. Wenn sie im ersten Schritt gleich 2 Stufen hochsteigt, dann muss sie noch 5 Stufen hochsteigen. Wenn sie im ersten Schritt nur ein Stufe hochsteigt, dann muss sie noch 6 Stufen hochsteigen. Die gesuchte Anzahl der Schrittfolgen für eine Treppe mit 7 Stufen ist also die Summe der Anzahlen der Schrittfolgen für Treppen mit 5 Stufen und für Treppen mit 6 Stufen. Die Anzahl der Schrittfolgen für Treppen mit 5 Stufen ist uns schon aus Teil b) bekannt. Die Anzahl der Schrittfolgen für Treppen mit 6 Stufen ermitteln wir wie in Teil a) und Teil b), indem wir alle Schrittfolgen aufschreiben, bei denen die Summe aller Zahlen 6 ist: Sofia kann daher eine Treppe mit 6 Stufen in genau 13 Schrittfolgen hochsteigen. Folglich gibt es genau (8+13 =) 21 Schrittfolgen für eine Treppe mit 7 Stufen. Teil d) Wir setzen die Lösungsidee aus Teil c) fort: Die Anzahl der Schrittfolgen für eine Treppe mit 8 Stufen ist die Summe der Anzahlen der Schrittfolgen für Treppen mit 6 Stufen und für Treppen mit 7 Stufen, da sie im ersten Schritt genau zwei Stufen oder genau eine Stufe hochsteigen kann und dann nur 6 oder 7 Stufen noch hochzusteigen sind. Ebenso ist die Anzahl der Schrittfolgen für eine Treppe mit 9 Stufen die Summe der Anzahlen der Schrittfolgen für Treppen mit 7 Stufen und für Treppen mit 8 Stufen. Allgemein ist die Anzahl der Schrittfolgen für eine Treppe mit mehr als 2 Stufen die Summe der Anzahlen der Schrittfolgen für Treppen mit 2 Stufen weniger und für Treppen mit einer Stufe weniger. Folglich können wir aus den Anzahlen der Schrittfolgen für Treppen mit 5 und mit 6 Stufen schrittweise die Anzahlen der Schrittfolgen für Treppen mit 7, 8, 9, 10, 11 und 12 Stufen bestimmen, indem wir immer die Summe der beiden vorherigen Anzahlen bilden: Anzahl der Stufen Anzahl der Schrittfolgen Sofia kann eine Treppe mit 12 Stufen in genau 233 Schrittfolgen hochsteigen. Zweite Lösung: Wir bezeichnen mits n die Anzahl der Schrittfolgen, in denen Sofia eine Treppe mit n Stufen hochsteigen kann. Es gilt s 1 = 1, da sie eine Treppe mit genau einer Stufe nur mit einem Schritt über eine Stufe hochsteigen kann. 35

3 Es gilt s 2 = 2, da sie eine Treppe mit genau zwei Stufen nur mit zwei Schritten über jeweils nur eine Stufe oder mit einem Schritt gleich über zwei Stufen hochsteigen kann. Wir betrachten nun eine Treppe mit n Stufen, wobei n > 2 gelte. Da sie nur Schritte über genau eine Stufe oder über genau zwei Stufen macht, kann sie eine Treppe mit n Stufen nur hochsteigen, indem sie die ersten n 1 Stufen hochsteigt und dann einen Schritt über eine Stufe macht oder nur die ersten n 2 Stufen hochsteigt und dann einen Schritt über die letzten beiden Stufen macht. Daher gilt s n = s n 1 +s n 2 für n > 2. Mit s 1 = 1 und s 2 = 2 folgen daher schrittweise s 3 = 1+2 = 3, s 4 = 2+3 = 5, s 5 = 3+5 = 8, s 6 = 5+8 = 13, s 7 = 8+13 = 21, s 8 = = 34, s 9 = = 55, s 10 = = 89, s 11 = = 144 und s 12 = = 233. Teil a) Teil b) Teil b) Teil d) Sofia kann 4 Stufen in genau (s 4 =) 5 Schrittfolgen hochsteigen. Sofia kann 5 Stufen in genau (s 5 =) 8 Schrittfolgen hochsteigen. Sofia kann 7 Stufen in genau (s 7 =) 21 Schrittfolgen hochsteigen. Sofia kann 12 Stufen in genau (s 12 =) 233 Schrittfolgen hochsteigen Lösung 10 Punkte Teil a) Da ein Produkt genau dann 0 ist, wenn einer der Faktoren 0 ist, gilt (x 10) (x 9) (x 8) (x 7) = 0 genau dann, wenn x = 10, x = 9, x = 8 oder x = 7 gilt. Da 7, 8, 9 und 10 ganze Zahlen sind, sind sie daher die ganzzahligen Lösungen der Gleichung (x 10) (x 9) (x 8) (x 7) = 0. Teil b) I. Es sei x eine ganze Zahl, für die die Gleichung (x 10) (x 9) (x 8) (x 7) = 24 gilt. Dann ist jeder der Faktoren auf der linken Seite der Gleichung ein ganzzahliger Teiler von 24, also eine der Zahlen 24, 12, 8, 6, 4, 3, 2, 1, 1, 2, 3, 4, 6, 8, 12, 24. Da die Faktoren auf der linken Seite der Gleichung vier aufeinanderfolgende ganze Zahlen sind, können die Faktoren auf der linken Seite der Gleichung nur die Zahlen 1, 2, 3 und 4 mit x = 11 oder die Zahlen 4, 3, 2 und 1 mit x = 6 sein. II. Wir prüfen durch Einsetzen, ob 6 und 11 tatsächlich Lösungen der Gleichung sind. Für x = 6 gilt (x 10) (x 9) (x 8) (x 7) = ( 4) ( 3) ( 2) ( 1) = = 24. Für x = 11 gilt (x 10) (x 9) (x 8) (x 7) = = 24. Aus I. und II. folgt, dass 6 und 11 alle ganzen Zahlen sind, welche die Gleichung erfüllen. Teil c) Ein Produkt aus 4 Faktoren ist genau dann negativ, wenn genau einer der Faktoren negativ ist und die anderen Faktoren positiv sind oder genau drei Faktoren negativ sind und der andere Faktor positiv ist. Für jede rationale Zahl x gilt x 10 < x 9 < x 8 < x 7. Für genau einen negativen Faktor und drei positive Faktoren in (x 10) (x 9) (x 8) (x 7) müssen daher x 10 < 0 und x 9 > 0 und folglich 9 < x < 10 gelten. Für 9 < x < 10 ist der erste Faktor tatsächlich negativ, die anderen Faktoren sind positiv. 36

4 Für genau drei negative Faktoren und einen positiven Faktor in (x 10) (x 9) (x 8) (x 7) müssen daher x 8 < 0 und x 7 > 0 und folglich 7 < x < 8 gelten. Für 7 < x < 8 ist der vierte Faktor tatsächlich positiv, die anderen Faktoren sind negativ. Das Produkt (x 10) (x 9) (x 8) (x 7) ist daher nur für diejenigen rationalen Zahlen x negativ, für die 7 < x < 8 oder 9 < x < 10 gilt Lösung 10 Punkte Da das Dreieck ABC gleichschenklig mit AC = BC ist, gilt α = β nach dem Basiswinkelsatz. Insbesondere gilt β < 90, weswegen der Höhenfußpunkt H auf der Geraden BC auf derselben Seite bezüglich der Geraden AB wie der Punkt C liegt. Der Punkt W liegt stets im Inneren der Seite BC, siehe Abbildung L a. C Teil a) Nach Voraussetzung gilt γ = ACB = 48. Nach dem Basiswinkelsatz und dem Innenwinkelsatz folgt α = β = 180 γ = = 66. (1) 2 2 Da die Gerade AW die Winkelhalbierende des Winkels BAC ist, folgt hieraus BAW = α 2 = 33. A γ L a Da die Höhe AH auf der Geraden BC senkrecht steht, ist das Dreieck ABH rechtwinklig, und aus (1) und nach dem Innenwinkelsatz folgt BAH = β = = 24. Weil die Punkte H und W auf der Geraden BC auf derselben Seite bezüglich der Geraden AB liegen wie der Punkt C, ist die Größe ϕ des spitzen Schnittwinkels zwischen den Geraden AH und AW die nichtnegative Differenz der Winkelgrößen BAH und BAW. Es gilt also ϕ = BAW BAH = = 9. Teil b) I. Angenommen, ein Dreieck ABC mit den geforderten Eigenschaften existiert. Da ϕ die Größe des spitzen Schnittwinkels zwischen den Geraden AH und AW ist und ϕ = 48 gilt, sind H und W verschiedene Punkte auf der Geraden BC. Daher kann nur entweder der Punkt H zwischen den Punkten B und W oder der Punkt W zwischen den Punkten B und H liegen. Angenommen, der Punkt H liegt zwischen den Punkten B und W. Dann gilt ϕ = HAW = BAW BAH, woraus BAW > ϕ = 48 folgt. Da AW die Winkelhalbierende des Winkels BAC ist, folgt BAC > 2 ϕ = 96. Da ein Basiswinkel eines gleichschenkligen Dreiecks nach Basiswinkelsatz und Innenwinkelsatz stets ein spitzer Winkel ist, kann das nicht gelten. Folglich liegt der Punkt W zwischen den Punkten B und H, siehe Abbildung L b. Dann gilt BAH = BAW + WAH = α 2 +ϕ. W H B 37

5 C H W A α ϕ L b B Hieraus, aus der Gleichschenkligkeit des Dreiecks ABC und nach dem Innenwinkelsatz angewandt auf das Dreieck ABH folgt BAH +β + AHB = α 2 +ϕ+α+90 = 180, woraus sich durch Umformen 3 2 α = 90 ϕ ergibt. Wegen ϕ = 48 gilt folglich α = 28. II. Zu untersuchen ist noch, ob für ϕ = 48 und α = 28 tatsächlich Dreiecke mit den geforderten Eigenschaften existieren. Zu α = 28 gibt es bis auf Ähnlichkeit genau ein Dreieck ABC mit BAC = α und AC = BC. Es seien H und W die nach Aufgabenstellung bezeichneten Punkte. Dann gilt BAW = α 2 = 14. Nach dem Innenwinkelsatz angewandt auf das inh rechtwinklige Dreieck ABH folgt BAH = β = 62. Wegen BAW < BAH liegt der Punkt W zwischen den PunktenB undh und es gilt tatsächlichϕ = WAH = BAH BAW = 48. Aus I. und II. folgt: Für ϕ = 48 existieren nur für α = 28 Dreiecke mit den geforderten Eigenschaften. 38

6 Punktverteilungsvorschläge Die nachstehenden Angaben zur Punktverteilung sowohl für die gesamten Aufgaben als auch für die Teillösungen sind Empfehlungen für die Ausrichter des Wettbewerbs und sollen einer einheitlichen Bewertung dienen. Dies vereinfacht für die Schülerinnen und Schüler ein Nachvollziehen der Bewertung und ermöglicht für die Organisatoren Vergleiche zum Zweck der Entscheidung über die Teilnahme an der nächsten Runde. Bei der Vielfalt der Lösungsvarianten ist es nicht möglich, Vorgaben für jede Variante zu machen; das Korrekturteam möge aus den Vorschlägen ableiten, welche Vergabe dem in der Schülerlösung gewählten Ansatz angemessen ist. Dabei können auch Lösungsansätze, die angesichts der Aufgabenstellung sinnvoll erscheinen, aber noch nicht erkennen lassen, ob sie wirklich zu einer Lösung führen, einige Punkte erhalten. Abweichungen von den Vorschlägen müssen von den Ausrichtern des Wettbewerbs ausreichend bekannt gemacht werden. Es wird aber empfohlen, zumindest den prozentualen Anteil der Punkte für Teillösungen beizubehalten. Aufgabe Erkennen der falschen Aussage mit vollständiger Begründung... 4 Punkte Vollständige Herleitung der Reihenfolge der Einkäufe... 6 Punkte Aufgabe Teil a)... 2 Punkte Teil b)... 2 Punkte Teil c) Punkte Teil d)... 3 Punkte Aufgabe Teil a)... 2 Punkte Teil b)... 4 Punkte Teil c) Punkte Aufgabe Teil a)... 3 Punkte Teil b) Herleitung der Werte für α... 4 Punkte Nachweis der Existenz des Dreiecks... 3 Punkte 39

56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 8 Lösungen 2. Tag

56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 8 Lösungen 2. Tag 56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 8 Lösungen 2. Tag c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 56083 Lösung

Mehr

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen eolympiadeklass7 58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen c 208 Aufgabenausschuss für die Mathematik-Olympiade in Deutschland www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 58072

Mehr

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 6 Lösungen

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 6 Lösungen 56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 6 Lösungen c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 560621 Lösung

Mehr

L a L b L c

L a L b L c 55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 10 Lösungen c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 551021 Lösung

Mehr

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen eolympiadeklass5 58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen c 2018 Aufgabenausschuss für die Mathematik-Olympiade in Deutschland www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 580521

Mehr

55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklassen 11 und 12 Lösungen

55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklassen 11 und 12 Lösungen 55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklassen 11 und 12 Lösungen c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 551221

Mehr

55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 7 Lösungen Lösung 10 Punkte Teil b)

55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 7 Lösungen Lösung 10 Punkte Teil b) 55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 7 Lösungen c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 550721 Lösung

Mehr

55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen

55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen 55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 550821 Lösung

Mehr

57. Mathematik-Olympiade 1. Runde (Schulrunde) Lösungen

57. Mathematik-Olympiade 1. Runde (Schulrunde) Lösungen nolympiadeklasse 11 1 57. Mathematik-Olympiade 1. Runde (Schulrunde) Lösungen c 017 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 57111 Lösung

Mehr

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 7 Lösungen

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 7 Lösungen 56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 7 Lösungen c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 560711 Lösung 6

Mehr

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen eolympiadeklass6 58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen c 2018 Aufgabenausschuss für die Mathematik-Olympiade in Deutschland www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 580621

Mehr

57. Mathematik-Olympiade 2. Runde (Regionalrunde) Lösungen

57. Mathematik-Olympiade 2. Runde (Regionalrunde) Lösungen eolympiadeklass6 57. Mathematik-Olympiade. Runde (Regionalrunde) Lösungen c 017 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 57061 Lösung 10 Punkte

Mehr

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklassen 11 und 12 Lösungen

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklassen 11 und 12 Lösungen 56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklassen 11 und 12 Lösungen c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 561221

Mehr

56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 6 Lösungen 2. Tag

56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 6 Lösungen 2. Tag 56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 6 Lösungen 2. Tag c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 560634 Lösung

Mehr

56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 3 Lösungen

56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 3 Lösungen 56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 3 Lösungen c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 560331 Lösung 10

Mehr

1000m = 310 3,6 km/h = 310 0,4km/h = 124km/h

1000m = 310 3,6 km/h = 310 0,4km/h = 124km/h 56. Mathematik-Olympiade 3. Stufe (Landesrunde) Olympiadeklasse 8 Lösungen 1. Tag c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 560831 Lösung

Mehr

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen eolympiadeklass10 58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen c 2018 Aufgabenausschuss für die Mathematik-Olympiade in Deutschland www.mathematik-olympiaden.de. Alle Rechte vorbehalten.

Mehr

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen

58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen eolympiadeklass9 58. Mathematik Olympiade 2. Runde (Regionalrunde) Lösungen c 2018 Aufgabenausschuss für die Mathematik-Olympiade in Deutschland www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 580921

Mehr

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 10 Lösungen

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 10 Lösungen 6. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 0 Lösungen c 206 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 602 Lösung 0 Punkte

Mehr

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge 0 Mathematik-Olympiade Stufe (Schulstufe) Klasse 9 0 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden ev wwwmathematik-olympiadende Alle Rechte vorbehalten 00 Lösung 0 Punkte Teil a) Auch bei

Mehr

Alfons und Bertram spielen mit einer 5-Cent-Münze und einem Würfel. Als zufällig die 5

Alfons und Bertram spielen mit einer 5-Cent-Münze und einem Würfel. Als zufällig die 5 5. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 8 Aufgaben c 005 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Der Lösungsweg mit

Mehr

26. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1986/1987 Aufgaben und Lösungen

26. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1986/1987 Aufgaben und Lösungen 26. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1986/1987 Aufgaben und Lösungen 1 OJM 26. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Aufgaben Hinweis: Der Lösungsweg

Mehr

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklassen 11 und 12 Lösungen

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklassen 11 und 12 Lösungen 56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklassen 11 und 12 Lösungen c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 561211

Mehr

45. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 7 Aufgaben

45. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 7 Aufgaben 45. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 7 Aufgaben c 2005 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Der Lösungsweg

Mehr

22. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1982/1983 Aufgaben und Lösungen

22. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1982/1983 Aufgaben und Lösungen 22. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1982/1983 Aufgaben und Lösungen 1 OJM 22. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

20. Landeswettbewerb Mathematik Bayern

20. Landeswettbewerb Mathematik Bayern 20. Landeswettbewerb Mathematik Bayern Lösungsbeispiele für die Aufgaben der 2. Runde 2017/2018 Aufgabe 1 Eine Folge a0,a1,... natürlicher Zahlen ist durch einen Startwert a 0 1 und die folgende Vorschrift

Mehr

Übungsaufgaben Einführung in die Geometrie, mathematische Grundlagen II, Serie 3 SoSe 2013

Übungsaufgaben Einführung in die Geometrie, mathematische Grundlagen II, Serie 3 SoSe 2013 Übungsaufgaben Einführung in die Geometrie, mathematische Grundlagen II, Serie 3 SoSe 2013 Gieding 06.05.2013-12.05.2013 Definitionen und Definieren Aufgabe 3.01 SoSe 2013 S Die Begriffe Winkel, Schenkel

Mehr

Abitur 2011 G8 Abitur Mathematik Geometrie VI

Abitur 2011 G8 Abitur Mathematik Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur 0 G8 Abitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem sind die Punkte A( 7 ), B(6 7 ) und C( ) gegeben. Teilaufgabe a (4 BE) Weisen

Mehr

3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1963/1964 Aufgaben und Lösungen

3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1963/1964 Aufgaben und Lösungen 3. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1963/1964 Aufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen

21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 1 OJM 21. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen

12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen 12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen 1 OJM 12. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

21. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen

21. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 21. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 1 OJM 21. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

30. Mathematik Olympiade 2. Stufe (Regionalrunde) Klasse 7 Saison 1990/1991 Aufgaben und Lösungen

30. Mathematik Olympiade 2. Stufe (Regionalrunde) Klasse 7 Saison 1990/1991 Aufgaben und Lösungen 30. Mathematik Olympiade. Stufe (Regionalrunde) Klasse 7 Saison 1990/1991 Aufgaben und Lösungen 1 OJM 30. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Drei Kreise im Dreieck

Drei Kreise im Dreieck Ein Problem von, 171-1807 9. Juli 006 Gegeben sei das Dreieck ABC. Zeichne drei Kreise k 1, k, k im nneren von ABC, von denen jeder zwei Dreieckseiten und mindestens einen der übrigen zwei Kreise berührt

Mehr

MATHEMATIK-WETTBEWERB 2018/2019 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2018/2019 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2018/2019 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a 8 b 24 c z. B. 4 1 2 P2. a 20 % b 28 % 22 + 20 110 + 40 = 22 110 oder = 42 150 2 3 2, 2 1 1 2

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Blatt 7 1.06.017 Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag 5. a) Um ein rechtwinkliges Dreieck in seiner

Mehr

27. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1987/1988 Aufgaben und Lösungen

27. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1987/1988 Aufgaben und Lösungen 27. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1987/1988 Aufgaben und Lösungen 1 OJM 27. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

56. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 2. Tag

56. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 2. Tag 56. Mathematik-Olympiade 4. Stufe Bundesrunde) Olympiadeklasse 10 Lösungen. Tag c 017 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 561044 Lösung

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 01 Blatt 7 0.06.01 Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag 5. a Um ein rechtwinkliges Dreieck in seiner Gestalt

Mehr

34. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1994/1995 Aufgaben und Lösungen

34. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1994/1995 Aufgaben und Lösungen 34. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1994/1995 Aufgaben und Lösungen 1 OJM 34. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn!

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn! Berechnungen in Dreiecken Allgemeines zu Dreiecken Innenwinkelsatz α + β + γ = 180 Besondere Dreiecke Gleichschenkliges Dreieck Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher

Mehr

20. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1980/1981 Aufgaben und Lösungen

20. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1980/1981 Aufgaben und Lösungen 20. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1980/1981 Aufgaben und Lösungen 1 OJM 20. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

6. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1966/1967 Aufgaben und Lösungen

6. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1966/1967 Aufgaben und Lösungen 6. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1966/1967 Aufgaben und Lösungen 1 OJM 6. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Lösungen der Serie 2, Schuljahr 2007/08, Klasse 11/13

Lösungen der Serie 2, Schuljahr 2007/08, Klasse 11/13 Lösungen der Serie 2, Schuljahr 2007/08, Klasse 11/13 Lösung 110706. Das Produkt einer endlichen Anzahl reeller Zahlen ist genau dann größer oder gleich 0, wenn die Anzahl der negativen Faktoren gerade

Mehr

32. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1992/1993 Aufgaben und Lösungen

32. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1992/1993 Aufgaben und Lösungen 3. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 199/1993 Aufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben

55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben 55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Der Lösungsweg

Mehr

5. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen

5. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen 5. Mathematik Olympiade Saison 1965/1966 Aufgaben und Lösungen 1 OJM 5. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

Inhalt der Lösungen zur Prüfung 2015:

Inhalt der Lösungen zur Prüfung 2015: Inhalt der Lösungen zur Prüfung : Pflichtteil... Wahlteil Analysis... 8 Wahlteil Analysis... Wahlteil Analytische Geometrie/Stochastik... Wahlteil Analytische Geometrie/Stochastik... 9 Pflichtteil Lösungen

Mehr

Juni 2016 Aufgabe 1: Kann die Menschheit die Ostsee mit einem Schluck leertrinken?

Juni 2016 Aufgabe 1: Kann die Menschheit die Ostsee mit einem Schluck leertrinken? Juni 2016 Aufgabe 1: Kann die Menschheit die Ostsee mit einem Schluck leertrinken? Annika geht mit ihrem Großvater auf die Seebrücke am Schönberger Strand und staunt über die Größe des Meeres. "Opa, wenn

Mehr

Elementare Geometrie Vorlesung 4

Elementare Geometrie Vorlesung 4 Elementare Geometrie Vorlesung 4 Thomas Zink 3.5.2017 1. Der Drehwinkel zwischen zwei Strahlen Es seien s und t zwei Strahlen in der Ebene mit dem gleichen Anfangspunkt A. Man legt ein Ziffernblatt um

Mehr

33. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1993/1994 Aufgaben und Lösungen

33. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1993/1994 Aufgaben und Lösungen 33. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 7 Saison 1993/1994 Aufgaben und Lösungen 1 OJM 33. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Lösungen zu den Aufgaben 7. Klasse

Lösungen zu den Aufgaben 7. Klasse Lösungen zu den Aufgaben 7. Klasse Beachte: Einheit bei allen Geometrieaufgaben: 1 Kästchenlänge 1 cm 1. Achsen- und Punktsymmetrie Achsenspiegelung: Punktspiegelung: 1 Lösungen zu den Aufgaben 7. Klasse

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

Aufgaben Fibonacci-Folgen 7. April 2006 B. Werner SoSe 06

Aufgaben Fibonacci-Folgen 7. April 2006 B. Werner SoSe 06 19. April 2006 Aufgaben Fibonacci-Folgen 7. April 2006 B. Werner SoSe 06 Präsenzaufgaben: Aufgabe P1: Eine spezielle Lucasfolge (L n ) ist durch L n = L n 1 + L n 2, L 0 = 2, L 1 = 1 definiert. Berechnen

Mehr

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen 4. athematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen 1 OJ 4. athematik-olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Trigonometrische Berechnungen

Trigonometrische Berechnungen Trigonometrische Berechnungen Aufgabe 1 Berechnen Sie im rechtwinkligen Dreieck die fehlenden Seiten und Winkel: a) p = 4,93, β = 70,3 b) p = 28, q = 63 c) a = 12,5, p = 4,4 d) h = 9,1, q = 6,0 e) a =

Mehr

24. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1984/1985 Aufgaben und Lösungen

24. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1984/1985 Aufgaben und Lösungen 24. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1984/1985 Aufgaben und Lösungen 1 OJM 24. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

Übungsblatt 3 (Vektorgeometrie)

Übungsblatt 3 (Vektorgeometrie) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik- und Naturwissenschaft Übungsblatt (Vektorgeometrie Roger Burkhardt 08 Mathematik. Aufgabe Gegeben seien die Vektoren

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) Der fünfstelligen Zahl F = 3ab1 sind die Zehner- und die Tausenderstelle abhanden gekommen Alles, was man von a, b {0, 1,, 9} weiß, sind die beiden folgenden unabhängigen Bedingungen:

Mehr

Übungen. Konstruiere ein Dreieck ABC und dessen Inkreismittelpunkt aus den folgenden. Angaben. Angaben.

Übungen. Konstruiere ein Dreieck ABC und dessen Inkreismittelpunkt aus den folgenden. Angaben. Angaben. Übungen A1 Konstruiere ein Dreieck ABC und dessen Umkreismittelpunkt aus den folgenden Angaben. a) A( 4 2), B(2 2), C(2 4) b) a = 5cm, b = 4cm und c = 8cm A2 Konstruiere ein Dreieck ABC und dessen Inkreismittelpunkt

Mehr

Kompetenztest. 1 Im rechtwinkligen Dreieck. Satz des Pythagoras. Kompetenztest. Testen und Fördern. Satz des Pythagoras. Name: Klasse: Datum:

Kompetenztest. 1 Im rechtwinkligen Dreieck. Satz des Pythagoras. Kompetenztest. Testen und Fördern. Satz des Pythagoras. Name: Klasse: Datum: Testen und Fördern Name: Klasse: Datum: 1) Bringe die Satzteile in die richtige Reihenfolge. (Es sind zwei Sätze.) den rechten Winkel einschließen heißen die Seiten, die Katheten, 1 Im rechtwinkligen Dreieck

Mehr

25. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1985/1986 Aufgaben und Lösungen

25. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1985/1986 Aufgaben und Lösungen 25. Mathematik Olympiade 3. Stufe (ezirksolympiade) Klasse 7 Saison 1985/1986 Aufgaben und Lösungen 1 OJM 25. Mathematik-Olympiade 3. Stufe (ezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am

zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am Nachklausur zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am 12.7.17 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Punkte Bearbeiten Sie bitte drei der vier folgenden

Mehr

Mathecamp Kaiserlautern 2017

Mathecamp Kaiserlautern 2017 Mathecamp Kaiserlautern 2017 Beweisstrategien Beweisstrategie 1: Vollständige Fallunterscheidung Bei dieser Beweisstrategie teilt man ein komplexes Problem (eine komplexe Aussage) in endliche viele Fälle

Mehr

14. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1974/1975 Aufgaben und Lösungen

14. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1974/1975 Aufgaben und Lösungen 14. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1974/1975 Aufgaben und Lösungen 1 OJM 14. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

MATHEMATIK-WETTBEWERB 2013/2014 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2013/2014 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2013/2014 DES LANDES HESSEN 2. RUNDE LÖSUNGEN 1. a) L = { 9; 7; 7}, denn: x 2 49 = 0 oder x + 9 = 0 x 2 = 49 oder x = 9 b) L = {... ; 9; 8; 6; 5;... ; 5; 6; 8;...}, denn: x 2 49 >

Mehr

47. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen

47. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen 47. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen 31. März 016 Aufgabe 1. Man bestimme alle positiven ganzen Zahlen k und n, die die Gleichung erfüllen. k 016 = 3

Mehr

6. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 10 Saison 1966/1967 Aufgaben und Lösungen

6. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 10 Saison 1966/1967 Aufgaben und Lösungen 6. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 10 Saison 1966/1967 Aufgaben und Lösungen 1 OJM 6. Mathematik-Olympiade 4. Stufe (DDR-Olympiade) Klasse 10 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

6. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 10 Saison 1966/1967 Aufgaben und Lösungen

6. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 10 Saison 1966/1967 Aufgaben und Lösungen 6. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 10 Saison 1966/1967 Aufgaben und Lösungen 1 OJM 6. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 10 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

(Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.)

(Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.) Fachbereich Mathematik Tag der Mathematik 12. November 2011 Klassenstufen 9, 10 (Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.) Aufgabe 1 (5+5+10 Punkte). Wir betrachten sechzehn Punkte

Mehr

17. Landeswettbewerb Mathematik Bayern

17. Landeswettbewerb Mathematik Bayern 17. Landeswettbewerb Mathematik Bayern Lösungsbeispiele für die Aufgaben der 1. Runde 014/015 Aufgabe 1 Die Zahlen 1,, 3,, 1 werden auf die markierten Punkte des nebenstehenden Dreiecks verteilt. Dabei

Mehr

Beispiellösungen zu Blatt 96

Beispiellösungen zu Blatt 96 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 96 Gegeben sei ein Oktaeder. Auf dessen Kanten suchen wir Wege von einer

Mehr

28. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1988/1989 Aufgaben und Lösungen

28. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1988/1989 Aufgaben und Lösungen 28. Mathematik Olympiade Saison 988/989 Aufgaben und Lösungen OJM 28. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und grammatikalisch

Mehr

Übungen. Löse folgende Aufgaben mit GeoGebra

Übungen. Löse folgende Aufgaben mit GeoGebra Übungen Löse folgende Aufgaben mit GeoGebra A1 Die Fachbegriffe in den Kästchen sollen den untenstehenden Aussagen bezüglich eines Dreiecks ABC zugeordnet werden. Du darfst die Kärtchen mehrfach verwenden

Mehr

Einige grundsätzliche Überlegungen:

Einige grundsätzliche Überlegungen: Einige grundsätzliche Überlegungen: 1) Die Wahl der Unbekannten, x, y, z, oder a, b, c oder α, β, γ oder m, n, o. etc. richten sich nach den Beispielen und sind so zu wählen, dass sie am besten zu jenen

Mehr

30. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1990/1991 Aufgaben und Lösungen

30. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1990/1991 Aufgaben und Lösungen 30. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1990/1991 Aufgaben und Lösungen 1 OJM 30. Mathematik-Olympiade 1. Stufe (Schulrunde) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Satz des Pythagoras Lösungen. 1) Bringe die Satzteile in die richtige Reihenfolge. (Es sind zwei Sätze.)

Satz des Pythagoras Lösungen. 1) Bringe die Satzteile in die richtige Reihenfolge. (Es sind zwei Sätze.) 1) Bringe die Satzteile in die richtige Reihenfolge. (Es sind zwei Sätze.) 3 den rechten Winkel einschließen 2 heißen die Seiten, die 4 Katheten, 1 Im rechtwinkligen Dreieck 7 Hypotenuse. 9 gilt nur im

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (2) - Planimetrie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (2) - Planimetrie Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Geometrie (2) - Planimetrie Das komplette Material finden Sie hier: School-Scout.de Hinweise zur Arbeit mit den Kopiervorlagen

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 2016 Prof Dr Matthias Lesch, Regula Krapf Übungsblatt 7 Aufgabe 23 9 Punkte In der folgenden Aufgabe sei mit baryzentrischen Koordinaten immer die baryzentrischen Koordinaten

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2006

Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2006 Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2006 Aufgabe 1 Die Ziffern von 1 bis 5 sollen so in einer Reihe angeordnet werden, dass jedes Paar benachbarter Ziffern eine Zahl ergibt, die

Mehr

57. Mathematik-Olympiade 1. Runde (Schulrunde) Aufgaben

57. Mathematik-Olympiade 1. Runde (Schulrunde) Aufgaben eolympiadeklass7 57. Mathematik-Olympiade 1. Runde (Schulrunde) Aufgaben c 2017 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Der Lösungsweg

Mehr

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07 Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C - 6/7. Gegenseitige Lage von Geraden Gesucht ist die gegenseitige Lage der Geraden g durch die beiden Punkte A( ) und B( 5 9 ) und der Geraden

Mehr

2. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1962/1963 Aufgaben und Lösungen

2. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg

Mehr

3. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1963/1964 Aufgaben und Lösungen

3. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1963/1964 Aufgaben und Lösungen 3. Mathematik Olympiade Saison 1963/1964 Aufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

1. LESEPROBE KAPITEL GEOMETRIE

1. LESEPROBE KAPITEL GEOMETRIE LESEPROBE KAPITEL GEOMETRIE 1. LESEPROBE KAPITEL GEOMETRIE Beispiel G4.06 Der Kreis k hat den Mittelpunkt M und einen Durchmesser AB (= 2r). Der Halbierungspunkt der Strecke MB heißt C. D ( A, B) sei ein

Mehr

49. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 11 Lösungen 1. Tag

49. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 11 Lösungen 1. Tag 49. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 11 Lösungen 1. Tag c 010 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 491131 Lösung 6 Punkte

Mehr

Studienmaterial Einführung in das Rechnen mit Resten

Studienmaterial Einführung in das Rechnen mit Resten Studienmaterial Einführung in das Rechnen mit Resten H.-G. Gräbe, Institut für Informatik, http://www.informatik.uni-leipzig.de/~graebe 12. April 2000 Die folgenden Ausführungen sind aus Arbeitsmaterialien

Mehr

Download Jens Conrad, Hardy Seifert

Download Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Konstruktion von Vielecken Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Konstruktion von Vielecken Dieser Download

Mehr

1.1 Geradenspiegelungen

1.1 Geradenspiegelungen 1.1 Geradenspiegelungen 1.1.1 Eigenschaften Definition 1.1 Eine Abbildung der Ebene ist eine Vorschrift, die jedem Punkt P der Ebene einen Bildpunkt P zuordnet. Beispiel 1.1 Zentrische Streckung mit Zentrum

Mehr

Prüfungsteil 2, Aufgabe 5 Analytische Geometrie

Prüfungsteil 2, Aufgabe 5 Analytische Geometrie Abitur Mathematik Nordrhein-Westfalen 1GK Abitur Mathematik: Prüfungsteil, Aufgabe 5 Analytische Geometrie Nordrhein-Westfalen 1 GK Aufgabe a (1) 1. SCHRITT: DIE VEKTOREN, UND BERECHNEN 1 3 5 3 5 1. SCHRITT:

Mehr

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade 993 III Aufgabe In einem kartesischen Koordinatensystem sind die Gerade = g : X mit R sowie die beiden Punkte A( -) und C(- 2 ) gegeben. A und C bestimmen die Gerade h..a) Begründen Sie, dass der Mittelpunkt

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 06 Prof. Dr. Matthias Lesch, Regula Krapf Übungsblatt 8 Aufgabe 7 (8 Punkte). Ein Parallelogramm ist ein Rechteck ABCD mit Seiten a, b, c, d wie unten dargestellt, mit

Mehr

7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 10 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

18. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1978/1979 Aufgaben und Lösungen

18. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1978/1979 Aufgaben und Lösungen 18. Mathematik Olympiade Saison 1978/1979 Aufgaben und Lösungen 1 OJM 18. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

Klausur zur Akademischen Teilprüfung, Modul 2,

Klausur zur Akademischen Teilprüfung, Modul 2, PH Heidelberg, Fach Mathematik Klausur zur Akademischen Teilprüfung, Modul, GHPO I vom.7.00, RPO vom 4.08.00 Einführung in die Geometrie Wintersemester 1/1, 1. Februar 01 Klausur zur ATP, Modul, Einführung

Mehr

LOGO Runde 1: Wanderfreuden (Teil A)

LOGO Runde 1: Wanderfreuden (Teil A) Vergleiche deine Lösungen mit den folgenden Hinweisen! LOGO Runde 1: Wanderfreuden (Teil A) Aufgabe 1. Antwortsatz. Familie Geometrie wanderte am 1. Tag 10 km. Probe: Tag 1: 10 km, Tag 2: (10 + 3 =) 13

Mehr