55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen

Größe: px
Ab Seite anzeigen:

Download "55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen"

Transkript

1 55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. Alle Rechte vorbehalten Lösung 10 Punkte Wir bezeichnen mit a, b und c die Punkte für einen Rundensieger, einen Rundenzweiten und einen Rundenverlierer in dieser Reihenfolge. Dann gelten a > b > c > 0 (1) und wegen der Ganzzahligkeit daher a+b+c 6. (2) Im Spiel wurden insgesamt ( =) 39 Punkte vergeben, davon a + b + c in jeder Runde. Folglich muss a+b+c ein Teiler von 39 sein. Da mehr als eine Runde gespielt wurde, kann wegen der Primfaktorzerlegung 39 = 3 13 und der Ungleichung (2) nur a+b+c = 13 (3) gelten und es sind genau 3 Runden gespielt worden. Da Birte die zweite Runde gewann, sie für die beiden anderen Runden mindestens 1 Punkt bekam und sie insgesamt 10 Punkte erhielt, muss a+2 10 und daher a 8 gelten. Da Anne 20 Punkte erhielt, je Runde aber höchstens a Punkte gewann, muss 20 3a und daher a 7 gelten. Es kann also nur a {7,8} gelten und nur die folgenden, den Bedingungen (1) und (3) genügenden Konstellationen sind noch möglich: a b c Angenommen, es gilt a = 7. Dann hat Birte für die beiden anderen Runden zusammen (10 7 =) 3 Punkte erhalten. Sie kann keine Rundenzweite geworden sein, da sie hierfür mindestens 4 Punkte bekommen hätte. Also muss sie zweimal Rundenletzte geworden sein, wofür sie aber (2 1 =) 2 oder (2 2 =) 4, aber niemals 3 Punkte bekommen hätte. Folglich kann a = 7 nicht gelten und es verbleibt a = 8. Birte kann nun für die beiden anderen Runden zusammen nur (10 8 =) 2 Punkte erhalten haben, je Runde also 1 Punkt. Dies ist nur mit c = 1 möglich. Folglich muss a = 8, b = 4 und c = 1 gelten. Birte hat daher die erste und dritte Runde verloren und die zweite Runde gewonnen. Da Charlotte nur 9 Punkte hat, es für einen Rundensieg aber 8 Punkte und für die anderen Runden mindestens 1 Punkt gab, kann Charlotte keine Runde gewonnen haben. Folglich hat Anne die erste und dritte Runde gewonnen. 1

2 Da Anne die dritte Runde gewann und Birte die dritte Runde verlor, muss Charlotte in der dritten Runde Zweite gewesen sein, wofür sie 4 Punkte erhielt. Da die dritte Runde auch die letzte Runde war, folgt: Aus den Angaben der Aufgabe kann eindeutig ermittelt werden, wer die erste Runde gewonnen hat, nämlich Anne, und wie viele Punkte Charlotte in der letzten Runde erzielte, nämlich 4. Lösungsvariante: Nach Aufgabenstellung gab es für einen Rundenletzten jeweils mindestens einen Punkt, für einen Rundenzweiten mindestens einen Punkt mehr, also mindestens 2 Punkte, und für einen Rundensieger mindestens einen Punkt mehr als für den Rundenzweiten, also mindestens 3 Punkte. Je Runde sind daher mindestens ( =) 6 Punkte vergeben worden. Da Anne, Birte und Charlotte zusammen ( =) 39 Punkte erhielten, 39 die Primfaktorzerlegung 39 = 3 13 besitzt und je Runde die gleiche Anzahl an Punkten, und zwar mindestens 6, vergeben wurde, können es nur 3 Runden mit insgesamt 13 Punkten je Runde sein. Da Birte die zweite Runde gewann und in den beiden anderen Runden jeweils mindestens einen Punkt bekam, kann es für einen Rundensieg nur höchstens ( =) 8 Punkte gegeben haben. Angenommen, für einen Rundensieg gab es höchstens 7 Punkte. Dann hat Anne höchstens ( =) 20 Punkte erhalten, da sie mindestens die zweite Runde nicht gewann. Da Anne aber 20 Punkte bekam, muss dann ein Rundensieger 7 Punkte und ein Rundenzweiter 6 Punkte bekommen haben. Wegen = 0 bleibt dann jedoch für einen Rundenletzten kein Punkt übrig. Es kann folglich für einen Rundensieg nur 8 Punkte gegeben haben. Da Birte in der zweiten Runde gewann und 10 8 = 2 gilt, muss sie in der ersten und der dritten Runde Letzte mit jeweils einem Punkt für den Rundenletzten geworden sein. Wegen = 4 gab es für einen Rundenzweiten daher 4 Punkte. Charlotte kann keine Runde gewonnen haben, da sie andernfalls mindestens (8+1+1 =) 10 Punkte und daher mehr als 9 Punkte erhalten hätte. Folglich hat Anne die erste und die dritte Runde gewonnen und Charlotte wurde in der ersten und in der dritten Runde Zweite. Da die dritte Runde die letzte Runde war, hat Charlotte in der letzten Runde 4 Punkte erhalten. Aus den Angaben der Aufgabe kann folglich eindeutig ermittelt werden, wer die erste Runde gewonnen hat, nämlich Anne, und wie viele Punkte Charlotte in der letzten Runde erzielte, nämlich Lösung 10 Punkte Teil a) Für die Zeichnung siehe Abbildung L a ohne die nicht verlangten Einträge. Teil b) Durch Teilung der Seiten in drei kongruente Strecken und Verbinden der entsprechenden Punkte wird das Quadrat ABCD in 9 zueinander kongruente Teilquadrate zerlegt, siehe Abbildung L a. Nach Voraussetzung ist der Punkt S dann der auf CD gelegene, zum Punkt C benachbarte Eckpunkt des Teilquadrates mit Eckpunkt C. Da sich die Diagonale AC aus den Diagonalen von drei kongruenten Teilquadraten zusammensetzt, ist nach Voraussetzung der Punkt R Eckpunkt des Teilquadrates mit dem Eckpunkt A. Wir bezeichnen mit V den dem Punkt B gegenüberliegenden Eckpunkt des Teilquadrates mit dem Eckpunkt B und mit U den zu B benachbarten, zwischen B und C gelegenen Eckpunkt dieses Teilquadrates. 2

3 D W S C D Y S C R V U R Z A B A X B L a L b Aus der Eigenschaft dieses Quadratrasters, aus AB = 9 cm und den angegebenen Verhältnissen folgt RUB = SVR = 90, BU = RV = 3 cm, RU = SV = 6 cm. Daher sind die rechtwinkligen Dreiecke BU R und RV S nach dem Kongruenzsatz (sws) kongruent zueinander. Ihr Flächeninhalt ist jeweils (6 3 cm 2 : 2 =) 9 cm 2. Das Viereck BCSR setzt sich zusammen aus dem Rechteck CSV U mit dem Flächeninhalt (3 cm 6 cm =) 18 cm 2 und den beiden rechtwinkligen Dreiecken BUR und RVS. Das Viereck BCSR hat folglich den Flächeninhalt (18 cm cm 2 =) 36 cm 2. Teil c) Analog zu Teil a) folgt, dass auch die Dreiecke BUR und RSW zueinander kongruent sind. Da R, W und U Punkte des Quadratgitters sind, ist die Gerade RW senkrecht zur Geraden RU. Folglich wird das Dreieck BUR durch eine Drehung um den Punkt R um den Winkel 90 in das Dreieck RSW überführt. Bei dieser Drehung wird die Strecke BR in die Strecke SR überführt. Folglich gilt BRS = 90. Lösungsvariante: Teil a) verlangten Einträge. Für die Zeichnung siehe Abbildung L b ohne die nicht Teil b) Im Viereck ABCD wird jede Seite durch zwei Zwischenpunkte in drei gleich lange Teilstrecken geteilt. Je zwei Punkte gegenüberliegender Seiten werden derart verbunden, dass das Quadrat ABCD in 9 kongruente Teilquadrate mit der Seitenlänge 3 cm zerlegt wird. Zwei der Zwischenpunkte werden mit X und Y bezeichnet, siehe Abbildung L b. Nach Voraussetzung ist S der noch nicht bezeichnete Zwischenpunkt auf der Seite CD. Weiter ist R nach Voraussetzung der eingezeichnete Punkt. Das Rechteck BCYX setzt sich aus dem Viereck BCSR und den Dreiecken BRX und RSY zusammen. Das Rechteck BCYX hat den Flächeninhalt (9 cm 6 cm =) 54 cm 2, die beiden Dreiecke BRX und RSY haben jeweils den Flächeninhalt ( cm 3 cm =) 9 cm2. Das Viereck BCSR hat folglich den Flächeninhalt (54 cm cm 2 =) 36 cm 2. 3

4 Teil c) Bei einer Drehung um den Punkt R um den Winkel 90 wird der Punkt X auf den mit Z bezeichneten Schnittpunkt abgebildet. Da bei einer Drehung Winkel und Abstände erhalten bleiben, wird durch diese Drehung der Punkt B auf den Punkt S abgebildet. Daher gilt BRS = 90. Variante zur Teilaufgabe c) Das Quadrat ABCD wird wie in der Abbildung L c ersichtlich durch ein Rechteck AEFB mit AE = 3 cm ergänzt. Es gelten dann RF = RC, FB = CS, BR = SR und FRC = = 90. Nach dem Kongruenzsatz (sss) folgt die Kongruenz der DreieckeRFB undrcs. Daher gilt D R S C CRS = FRB. (4) Da C im Winkel BRS liegt, gilt BRS = BRC + CRS. (5) A B Da B im Winkel FRC liegt, gilt FRC = FRB + BRC. (6) Aus (4), (5) und (6) folgt BRS = FRC. Wegen FRC = 90 folgt hieraus BRS = 90. E L c F Lösung 10 Punkte Wir bezeichnen die vier Zahlen mit a, b, c und d. In dieser Reihenfolge gelten dann nach Aufgabenstellung a = 3 d 5, b = c+2 a, a+b+c+d = 267. c = 3 a 2 d, (3) Aus (1) und (3) folgt durch Einsetzen c = 3 (3 d 5) 2 d = 9 d 15 2 d, also c = 7 d 15. Aus (1), (2) und (5) folgt b = (7 d 15)+2 (3 d 5) = 7 d 15+6 d 10, also b = 13 d 25. Aus (1), (4), (5) und (6) folgt 267 = a+b+c+d = (3 d 5)+(13 d 25)+(7 d 15)+d = 24 d 45, also 24 d = 312 und daher d = 13. Aus (1), (5), (6) und (7) folgt a = 34, b = 144, c = 76. Die gesuchten vier Zahlen sind folglich eindeutig bestimmt, und zwar sind sie 34, 144, 76 und (1) (2) (4) (5) (6) (7)

5 Lösung 10 Punkte I. Es seien a, b und c ganze Zahlen mit 0 < a b c. (1) derart, dass die Maßzahl des Volumens eines Quaders, dessen Kantenlängen die Maßzahlen a, b und c haben, genauso groß ist wie die Maßzahl der Summe aller Kantenlängen des Quaders. Für die Maßzahl des VolumensV des Quaders und die MaßzahlS der Summe der Kantenlängen gelten V = a b c und S = 4 a+4 b+4 c. Da beide Zahlen übereinstimmen sollen, gilt folglich a b c = 4 a+4 b+4 c. (2) Durch Umformen der Gleichung (2) ergibt sich a b c 4 c = 4 a+4 b und schließlich c (a b 4) = 4 (a+b). (3) Wegen Ungleichung (1) muss a b > 4 (4) gelten. Aus Ungleichung (1) und Gleichung (2) folgt a b c 3 4 c, also a b 12. (5) Wegen der Ungleichungen (1), (4), (5) kann (a,b) nur eines der vierzehn Paare (1,5), (1,6),..., (1,12), (2,3), (2,4), (2,5), (2,6), (3,3), (3,4) (6) sein. Wegen Ungleichung (4) folgt aus Gleichung (3) c = 4 (a+b) a b 4. Wir prüfen nun systematisch, für welche Paare (a,b) aus (6) die Zahl c nach Gleichung (7) ganzzahlig ist: a b (a + b) a b c Von den gefundenen Tripeln (a,b,c) erfüllen nur (1,5,24), (1,6,14), (1,8,9), (2,3,10), (2,4,6) (8) auch die Ungleichung (1). II. Für die Tripel (a,b,c) aus (8) gilt tatsächlich Gleichung (2), d. h. die Maßzahl des Volumens des Quaders ist genauso groß wie die Maßzahl der Summe aller Kantenlängen des Quaders. Wegen Ungleichung (1) und Gleichung (2) sind die in (8) angegebenen Tripel (a,b,c) alle Tripel ganzzahliger Kantenlängen, welche den Forderungen genügen. Aus I. und II. folgt, dass nur die in (8) genannten fünf Tripel den Forderungen genügen. (7) 5

6 Punktverteilungsvorschläge Die nachstehenden Angaben zur Punktverteilung sowohl für die gesamten Aufgaben als auch für die Teillösungen sind Empfehlungen für die Ausrichter des Wettbewerbs und sollen einer einheitlichen Bewertung dienen. Dies vereinfacht für die Schülerinnen und Schüler ein Nachvollziehen der Bewertung und ermöglicht für die Organisatoren Vergleiche zum Zweck der Entscheidung über die Teilnahme an der nächsten Runde. Bei der Vielfalt der Lösungsvarianten ist es nicht möglich, Vorgaben für jede Variante zu machen; das Korrekturteam möge aus den Vorschlägen ableiten, welche Vergabe dem in der Schülerlösung gewählten Ansatz angemessen ist. Dabei können auch Lösungsansätze, die angesichts der Aufgabenstellung sinnvoll erscheinen, aber noch nicht erkennen lassen, ob sie wirklich zu einer Lösung führen, einige Punkte erhalten. Abweichungen von den Vorschlägen müssen von den Ausrichtern des Wettbewerbs ausreichend bekannt gemacht werden. Es wird aber empfohlen, zumindest den prozentualen Anteil der Punkte für Teillösungen beizubehalten. Aufgabe Ermittlung der Rundenzahl... 3 Punkte Weitere Ermittlung der Reihenfolge... 6 Punkte Korrektes Ergebnis... 1 Punkt Aufgabe Teil a)... 2 Punkte Teil b)... 4 Punkte Teil c) Punkte Aufgabe Es ist eine prinzipiell geeignete Lösungsstrategie erkennbar... 2 Punkte Begründete Herleitung... 6 Punkte Korrektes Ergebnis... 1 Punkt Begründete Feststellung der Eindeutigkeit... 1 Punkt Aufgabe Es ist eine prinzipiell geeignete Lösungsstrategie erkennbar... 2 Punkte Begründete Herleitung... 5 Punkte Probe... 1 Punkt Korrektes Ergebnis... 2 Punkte 6

55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 7 Lösungen Lösung 10 Punkte Teil b)

55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 7 Lösungen Lösung 10 Punkte Teil b) 55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 7 Lösungen c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 550721 Lösung

Mehr

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 7 Lösungen

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 7 Lösungen 56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 7 Lösungen c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 560711 Lösung 6

Mehr

L a L b L c

L a L b L c 55. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 10 Lösungen c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 551021 Lösung

Mehr

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklassen 11 und 12 Lösungen

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklassen 11 und 12 Lösungen 56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklassen 11 und 12 Lösungen c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 561211

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklassen 9 und 10 Lösungen

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklassen 9 und 10 Lösungen 56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklassen 9 und 10 Lösungen c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 561011 Lösung

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge

Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge 0 Mathematik-Olympiade Stufe (Schulstufe) Klasse 9 0 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden ev wwwmathematik-olympiadende Alle Rechte vorbehalten 00 Lösung 0 Punkte Teil a) Auch bei

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) In einem regelmäßigen Achteck wird das Dreieck ABC betrachtet, wobei C der Mittelpunkt der Seite ist, die der Seite AB gegenüberliegt Welchen Anteil am Flächeninhalt des Achtecks

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 2006 Runde 1 Aufgabe 1 Die Ziffern von 1 bis 5 sollen so in einer Reihe angeordnet werden, dass jedes Paar benachbarter Ziffern eine Zahl ergibt, die ein Produkt zweier einstelliger Zahlen ist. Bestimme

Mehr

21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen

21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 1 OJM 21. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

Aufgaben für die Klassenstufen 11/12

Aufgaben für die Klassenstufen 11/12 Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) Der fünfstelligen Zahl F = 3ab1 sind die Zehner- und die Tausenderstelle abhanden gekommen Alles, was man von a, b {0, 1,, 9} weiß, sind die beiden folgenden unabhängigen Bedingungen:

Mehr

Beispiel einer Zerlegung in vier Schritten (Zerlegungszahl n = 51)

Beispiel einer Zerlegung in vier Schritten (Zerlegungszahl n = 51) Fachbereich Mathematik Tag der Mathematik 9. November 2013 Klassenstufen 9, 10 Beispiel einer Zerlegung in vier Schritten (Zerlegungszahl n = 51) Aufgabe 1 (6+4+4+3+3 Punkte). In dieser Aufgabe geht es

Mehr

31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen

31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 1 OJM 31. Mathematik-Olympiade 1. Stufe (Schulrunde) Klasse 7 Aufgaben Hinweis: er Lösungsweg mit Begründungen

Mehr

Geometrie (4b) Wintersemester 2015/16. Kapitel 3. Dreieck, Viereck, Fünfeck, Kreis. Anwendungen & bekannte Sätze

Geometrie (4b) Wintersemester 2015/16. Kapitel 3. Dreieck, Viereck, Fünfeck, Kreis. Anwendungen & bekannte Sätze Kapitel 3 Dreieck, Viereck, Fünfeck, Kreis Anwendungen & bekannte Sätze 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Im Folgenden werden Maßzahlen für Winkelgrößen

Mehr

55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben

55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben 55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Der Lösungsweg

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60.

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges Dreieck Zwei Seiten stehen normal.

Mehr

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

12 Der Abstand eines Punktes von einer Geraden Seite 1 von Der Abstand eines Punktes von einer Geraden

12 Der Abstand eines Punktes von einer Geraden Seite 1 von Der Abstand eines Punktes von einer Geraden 12 Der Abstand eines Punktes von einer Geraden Seite 1 von 5 12 Der Abstand eines Punktes von einer Geraden Die Bestimmung des Abstands eines Punktes von einer Geraden gehört zu den zentralen Problemen

Mehr

11. Landeswettbewerb Mathematik Bayern

11. Landeswettbewerb Mathematik Bayern 11 Landeswettbewerb Mathematik Bayern Aufgaben und Lösungsbeispiele 1 Runde 008 Aufgabe 1 Das abgebildete Viereck soll durch einen einzigen geraden Schnitt so zerlegt werden, dass zwei Teile gleicher Form

Mehr

Graph der linearen Funktion

Graph der linearen Funktion Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)

Mehr

Tag der Mathematik 2010

Tag der Mathematik 2010 Zentrum für Mathematik Tag der Mathematik 2010 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt

Mehr

Städtewettbewerb Frühjahr 2009

Städtewettbewerb Frühjahr 2009 Städtewettbewerb Frühjahr 2009 Lösungsvorschläge Hamburg 4. März 2009 [Version 1. April 2009] M Mittelstufe Aufgabe M.1 (3 P.). In ein konvexes 2009-Eck werden sämtliche Diagonalen eingezeichnet. (Diagonalen

Mehr

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 10. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 10. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seite 1 von 10 Unterlagen für die Lehrkraft Abiturprüfung 2010 Mathematik, Leistungskurs 1. Aufgabenart Lineare Algebra/Geometrie ohne Alternative 2. Aufgabenstellung siehe Prüfungsaufgabe. Materialgrundlage

Mehr

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus Kantonsschule Solothurn Geometrie: Zentrische Streckung und Ähnlichkeit RYS Zentrische Streckung und Ähnlichkeit Einleitung Aufgaben: Vergrössern / Verkleinern 1. Die Geo-Maus a) Zeichne die Geo-Maus noch

Mehr

20. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1980/1981 Aufgaben und Lösungen

20. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1980/1981 Aufgaben und Lösungen 20. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1980/1981 Aufgaben und Lösungen 1 OJM 20. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA

Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA Satz des Pythagoras Aufgabe 1.1.1 Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA a ) Die Katheten in einem rechtwinkligen Dreieck sind 8 cm bzw. 15 cm lang. Berechne die Länge der Hypotenuse.

Mehr

1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen 1. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen 1 OJM 1. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

MATHEMATIK WETTBEWERB RHEINLAND-PFALZ

MATHEMATIK WETTBEWERB RHEINLAND-PFALZ . Runde 015 Die Lösungswege müssen mathematisch begründet und übersichtlich dargestellt werden. Nachmessen oder Nachrechnen einiger Beispiele genügt als Lösung nicht. Aufgabe 1: Auf einer Boule-Kugel mit

Mehr

a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche Aussagen auf eine Raute zutreffen.

a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche Aussagen auf eine Raute zutreffen. und Klausuren: P.. 0 Raute und Pyramide Gegeben sind die Punkte A( 8 4 ), B(7 8 7) und C(7 6 5). a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche

Mehr

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Konstruktion Dreiecke und Vierecke PRÜFUNG 09 Name: Klasse: Datum: : Note: Ausgabe:. September 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2006

Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2006 Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2006 Aufgabe 1 Die Ziffern von 1 bis 5 sollen so in einer Reihe angeordnet werden, dass jedes Paar benachbarter Ziffern eine Zahl ergibt, die

Mehr

Übungsaufgabe z. Th. lineare Funktionen und Parabeln

Übungsaufgabe z. Th. lineare Funktionen und Parabeln Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2012

Sekundarschulabschluss für Erwachsene. Geometrie A 2012 SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Satz des Pythagoras Lösung von Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA

Satz des Pythagoras Lösung von Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA Satz des Pythagoras Lösung von Aufgabe 1.1.1 Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA a ) Länge x der Hypotenuse: Ansatz: x² = 8² + 15² x = 17 cm b ) Beispiel für den Nachweis der Rechtwinkligkeit:

Mehr

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,

Mehr

40. Österreichische Mathematik-Olympiade Kurswettbewerb Lösungen

40. Österreichische Mathematik-Olympiade Kurswettbewerb Lösungen 40. Österreichische Mathematik-Olympiade Kurswettbewerb Lösungen TU Graz, 29. Mai 2009 1. Für welche Primzahlen p ist 2p + 1 die dritte Potenz einer natürlichen Zahl? Lösung. Es soll also gelten 2p + 1

Mehr

43. Mathematik-Olympiade 1. Stufe (Schulrunde) Klasse 11-13

43. Mathematik-Olympiade 1. Stufe (Schulrunde) Klasse 11-13 43. Mathematik-Olympiade 1. Stufe (Schulrunde) Klasse 11-13 Lösungen von Marcel Schmittfull Oktober 2003 Name Marcel Schmittfull Adresse Salierstr. 10 97505 Geldersheim Telefon (0 97 21) 8 27 27 e-mail

Mehr

12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen

12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen 12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen 1 OJM 12. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg

Mehr

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren

Mehr

55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 1. Tag

55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 1. Tag 55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 1. Tag c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 551041

Mehr

26. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen

26. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen 26. Mathematik Olympiade Saison 1986/1987 Aufgaben und Lösungen 1 OJM 26. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

Raumgeometrie - gerade Pyramide

Raumgeometrie - gerade Pyramide 1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne

Mehr

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN:

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN: GRUNDWISSENTEST 06 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 9 DER REALSCHULE HINWEISE: Beim Kopieren der Aufgabenblätter ist auf die Maßhaltigkeit zu achten, um Verzerrungen zu vermeiden. Nicht zugelassen

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 LK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Oktaeder. Bernhard Möller. 22. Dezember 2010

Oktaeder. Bernhard Möller. 22. Dezember 2010 Oktaeder Bernhard Möller. Dezember 00 Ein Oktaeder ist ein regelmäßiges Polyeder, dessen Oberfläche aus acht kongruenten, gleichseitigen Dreiecken besteht. Jedes Oktaeder kann einem Würfel so einbeschrieben

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 12 Lösungen 1. Tag

55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 12 Lösungen 1. Tag 55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 12 Lösungen 1. Tag c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 551241

Mehr

Klausur zur Akademischen Teilprüfung, Modul 2,

Klausur zur Akademischen Teilprüfung, Modul 2, PH Heidelberg, Fach Mathematik Klausur zur Akademischen Teilprüfung, Modul, GHPO I vom.7.003, RPO vom 4.08.003 Einführung in die Geometrie Wintersemester 1/13, 1. Februar 013 Klausur zur ATP, Modul, Einführung

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $ $Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken

Mehr

LEMAMOP. Lerngelegenheiten für Mathematisches Argumentieren, Modellieren und Problem lösen. Kompetenztraining Mathematisch argumentieren.

LEMAMOP. Lerngelegenheiten für Mathematisches Argumentieren, Modellieren und Problem lösen. Kompetenztraining Mathematisch argumentieren. LEMAMOP Lerngelegenheiten für Mathematisches Argumentieren, Modellieren und Problem lösen Kompetenztraining Mathematisch argumentieren Jahrgang 8 Schülermaterial Klasse Argumente vereinbaren Blatt: 1 Datum:

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 GK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade. Stufe (Bezirksolympiade) Klasse 9 Saison 967/968 Aufgaben und Lösungen OJM 7. Mathematik-Olympiade. Stufe (Bezirksolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen. Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende

Mehr

Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern:

Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern: Department Mathematik Tag der Mathematik 31. Oktober 2009 Klassenstufen 7, 8 Aufgabe 1 (6+6+8 Punkte). Magischer Stern: e a 11 9 13 12 10 b c d Die Summe S der natürlichen Zahlen entlang jeder der fünf

Mehr

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 3 Aufgaben

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 3 Aufgaben 56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 3 Aufgaben c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Lies den

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1999/ Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss

Mehr

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6)

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6) (Aufgabe 6) 0. Klasse Abschlussprüfungen Jahrgänge 970 99 Fach Mathematik Material für Fachberater, gedacht als Beispiele für die Aufgabe der neuen brandenburger Prüfungsaufgaben 970 6 a) Ermitteln Sie

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie

Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Einführung in das Thema Parallelogramm Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Lehrplanaussagen MS, RS Lehrplanaussage MS: Jahrgangsstufe

Mehr

Klassenstufen 7, 8. Fachbereich Mathematik Tag der Mathematik 9. November 2013

Klassenstufen 7, 8. Fachbereich Mathematik Tag der Mathematik 9. November 2013 Fachbereich Mathematik Tag der Mathematik 9. November 2013 Klassenstufen 7, 8 12 Aufgabe 1 (5+++5+2 Punkte). Meister Hora hat eine kuriose Uhr: Bei dieser springt der Stundenzeiger nicht wie üblich jede

Mehr

Das Skalarprodukt und seine Anwendungen

Das Skalarprodukt und seine Anwendungen Das Skalarprodukt und seine Anwendungen Axel Schüler, Mathematisches Institut, Univ. Leipzig mailto:schueler@mathematik.uni-leipzig.de Schmalzgrube, März 999 Das Skalarprodukt Das Skalarprodukt von Vektoren

Mehr

Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgabe A1 A 1.0 Gegeben ist das rechtwinklige Dreieck ABC mit der Hypotenuse [AC]. Punkte P n liegen auf der Kathete [AB] und legen zusammen mit den Punkten B und C Dreiecke

Mehr

16. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 5 Saison 1976/1977 Aufgaben und Lösungen

16. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 5 Saison 1976/1977 Aufgaben und Lösungen 16. Mathematik Olympiade Saison 1976/1977 Aufgaben und Lösungen 1 OJM 16. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

Trainingsaufgaben für die Mathematik-Olympiade

Trainingsaufgaben für die Mathematik-Olympiade Aufgabe 450936 (36%) Gegeben sei ein Dreieck ABC. Außerdem seien P ein innerer Punkt der Strecke AB, U der Mittelpunkt der Strecke AC und V der Mittelpunkt der Strecke BC. Der Bildpunkt von P bei der Spiegelung

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 14 cm; f = 10 cm;

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen

Mehr

MATHEMATIK-STAFFEL Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500

MATHEMATIK-STAFFEL Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500 MATHEMATIK-STAFFEL 2013 60 Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500 1 (20 Punkte) Eine lange Zahl Es werden die Jahreszahlen von 1 bis 2013 hintereinander (ohne Leerzeichen,

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 5.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 5.2 Inhaltsverzeichnis Geometrie 0 Geometrie!? 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile Geometrie I (Sommersemester 006, Dr. Christian Werge, chwerge@web.de) Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile (Die Lösungen liegen in einer anderen Datei vor, bitte erst

Mehr

Abitur Mathematik Bayern G Musterlösung. Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Geometrie II. a) ZEICHNUNG

Abitur Mathematik Bayern G Musterlösung. Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Geometrie II. a) ZEICHNUNG Abitur Mathematik: Musterlösung Bayern 212 Aufgabe 1 a) ZEICHNUNG LAGE DER GRUNDFLÄCHE ABC Man kann anhand der gleichen x 1 -Koordinate 1 bei allen drei Punkten erkennen, dass die Grundfläche ABC parallel

Mehr

Beweisen mithilfe von Vektoren

Beweisen mithilfe von Vektoren 330 9 Abstände und Winkel zwischen Geraden und Ebenen Beweisen mithilfe von Vektoren In den vorherigen Abschnitten sind Vektoren dazu benutzt worden, Geraden und Ebenen im Raum zu beschreiben und ihre

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.

Mehr

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie) Klasse 11 2. Schulaufgabe Mathematik (Thema: Raumgeometrie) Aufgabe 1 Gegeben sind die Punkte A ( 2 12 4 ); B ( 4 22 6 ); C ( 6 20 8 ); S ( 0 14 14 ) a) Zeigen Sie, dass das Dreieck ABC gleichschenklig

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:

Mehr

Aufgabe 1: Das Stanzblech: Gewicht

Aufgabe 1: Das Stanzblech: Gewicht Aufgabe 1: Das Stanzblech: Gewicht Aus einem Blech werden kreisförmige Löcher im abgebildeten hexagonalen Muster ausgestanzt (d.h. die Mittelpunkte benachbarter Kreise bilden gleichseitige Dreiecke). Der

Mehr

Mecklenburg - Vorpommern

Mecklenburg - Vorpommern Mecklenburg - Vorpommern Realschulabschlussprüfung 2002 Prüfungsarbeit Mathematik Realschulabschlussprüfung 2002 Mathematik Seite 1 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht

Mehr

MATHEMATIK 7. Schulstufe Schularbeiten

MATHEMATIK 7. Schulstufe Schularbeiten MATHEMATIK 7. Schulstufe Schularbeiten 1. S c h u l a r b e i t Grundrechnungsarten mit ganzen Zahlen Koordinatensystem rationale Zahlen Prozentrechnung a) Berechne: [( 26) : (+ 2) ( 91) : ( 7)] + ( 12)

Mehr

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 2008

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 2008 Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 8 Zusammenfassung IC Il Corso Advanzato I. Besondere Punkte, Geraden und Ebenen 1. Besondere Ebenen Koordinatenebenen: Wie in dem konkretes

Mehr

Aufgabe 3: In einem gleichschenkligen Dreieck ist die Basis 8,7 cm lang und die Schenkel jeweils 4,8 cm. Wie lang ist die Höhe auf die Basis?

Aufgabe 3: In einem gleichschenkligen Dreieck ist die Basis 8,7 cm lang und die Schenkel jeweils 4,8 cm. Wie lang ist die Höhe auf die Basis? Aufgabe 1: Berechne die Länge der fehlenden Seite. Aufgabe : Peter hat sich eine Leiter gekauft, die er beim Anstreichen seiner Hauswand benötigt. Diese Leiter ist 5,60 m lang. Damit sie nicht umkippt,

Mehr

MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN 3. RUNDE LÖSUNGEN 1. a) L { 1; 0; 1} b) L {... ; 1; 0; 1; 2} c) L {2; 3; 4}, denn: x 4 0 oder falls x 4 > 0 dann x + 3 5 oder falls x 4 < 0 dann x + 3

Mehr

Bayern Aufgabe a. Abitur Mathematik: Musterlösung. Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist

Bayern Aufgabe a. Abitur Mathematik: Musterlösung. Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist Abitur Mathematik Bayern 201 Abitur Mathematik: Bayern 201 Aufgabe a 1. SCHRITT: VORÜBERLEGUNG Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist der Ursprung). Dabei ist PC = PB + BC

Mehr

3 Geometrisches Beweisen

3 Geometrisches Beweisen 22 3 Geometrisches Beweisen 3.1 Axiome Durch empirische Untersuchungen werden immer wieder Gesetzmäßigkeiten gefunden, die man versucht durch logische Schlüsse zu begründen. Irgendwann am Ende einer Schlusskette

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16

Mehr

1. Runde Aufgaben und Lösungen. Bundeswettbewerb Mathematik

1. Runde Aufgaben und Lösungen. Bundeswettbewerb Mathematik Bundeswettbewerb Mathematik Wissenschaftszentrum Postfach 0 14 48 53144 Bonn Fon: 08-9 59 15-0 Fax: 08-9 59 15-9 e-mail: info@bundeswettbewerb-mathematik.de www.bundeswettbewerb-mathematik.de Korrekturkommission

Mehr

2.2C. Das allgemeine Dreieck

2.2C. Das allgemeine Dreieck .C. Das allgemeine Dreieck Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = ( 0, z ) (x, y, z > 0) transformieren. Die

Mehr

Karoline Grandy und Renate Schöfer

Karoline Grandy und Renate Schöfer Karoline Grandy und Renate Schöfer 1 Lemma 1 (Haruki) In einem Kreis seien zwei sich nicht schneidende Sehnen AB und CD gegeben. Außerdem wähle einen beliebiger Punkt P auf dem Kreisbogen zwischen A und

Mehr

Berechnungen am Dreieck

Berechnungen am Dreieck Berechnungen am Dreieck 1 ImDreieck OBAmitO(0 0),B(b 0)undA(0 a) ist H(x y) der Fußpunkt der Höhe von O auf AB Weitere Bezeichnungen: y a A h = OH, p = AH, q = HB und c = AB y p H(x y) Drücke c, h, p,

Mehr