Graph der linearen Funktion
|
|
|
- Cathrin Auttenberg
- vor 9 Jahren
- Abrufe
Transkript
1 Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b) Berechne die Nullstelle der Funktion h mit der Gleichung h() = +2 und 7 zeichne den Grafen von h in das Diagramm ein Berechne h(4) y f g Lösung: (a) f() = 2, g() = f = 6 =,2, 0g = 7, (b) 0h = 4 = 4,6, h(4) = 8
2 y f h g 2 Der Graf der Funktion f ist eine Gerade durch die Punkte A( 2,) und B( ), der Graf der Funktion g ist eine Gerade durch den Punkt C(0,) mit der Steigung a g = und der Graf der Funktion h ist eine Gerade durch die Punkte D( 2 ) 4 und B (a) Zeichne die Grafen der Funktionen f, g und h in ein Koordinatensystem mit der Einheit cm Begründe kurz, wie du den Grafen von g zeichnest (b) Ermittle die Gleichungen der Funktionen f, g und h (c) Beweise, dass ( 2 ) g S ist der Schnittpunkt der Grafen von f und g Berechne die Koordinaten von S und den Flächeninhalt des Dreiecks DSB Lösung: (a) g : = 4 = y = a g = (b) Steigung von f: a f = ( 2,) = 8 =,87 g D y C h +4 S B f f() = 2,+ 8 ( ) = 0 6 = = 4,7+,87 2 A g() =, 0,7, h() = (c) g( 2) =, ( 2) =,+, =, 4 S 2 : = 7 2 4
3 2 8 = 6 8 = = = y = = 4 =,2 = S(,2) A = 2 DB (,2) = 7,7 =,2[FE] 2 DerGrafderFunktionf isteinegeradedurchdenpunktea( 2 )mitder Steigung a = 4 7 Die Gleichung der Funktion g ist g() = 4 (a) Zeichne die Grafen der Funktionen f und g in ein Koordinatensystem mit der Einheit cm Begründe kurz, wie du den Grafen von f zeichnest (b) Ermittle die Gleichung der Funktionen f und berechne die Nullstellen von f und von g (c) S ist der Schnittpunkt der Grafen von f und g Berechne die Koordinaten von S und den Flächeninhalt des kleinen Dreiecks, das von den Grafen von f und von g und von der -Achse gebildet wird Lösung: (a) f : = 7 = y = a = 4 y (b) f() = 4 7 +b ( 2 ) f = 4 7 ( 2)+b = A 4 +7 g b = 8 7 = 7 S 4 f() = f() = 0 = = 4 =,2 g() = 0 = 2 = 2 = 2,4 2 f (c) S : = 4 28 = 4 7 = S = 8 = y S = g ( ) 8 = 8 4 = A = 2 ( 2 ) y S = 2 0,8 = 7 20 = 0,46[FE] ( 8 = S ) 4 (a) Steigung der Geraden 4 2y = 0 (b) 7 ( 24) = 0 (c) Die Gerade h : + y = 0 bildet mit der positiven -Achse einen Winkel von (d) Der Stundenzeiger überstreicht in Stunde einen Winkel der Größe (e) y-abschnitt der Geraden g : y 2 = 0 Quelle: Kreuzzahlrätsel von Ulrike Schätz
4 Lösung: (a) 2 (b) = 24 (c) 4 (d) 0 (e) 2 (a) y-achsenabschnitt der Geraden g : y +0 = 0 (b) 6 = 0 2 : 0; = (c) Steigung der Geraden k : y + = 0 (d) 6! 2! (!!) (4! 4) = (e) Größe des Winkels, den die Gerade h : y 6 = 0 mit der positiven -Achse bildet Quelle: Kreuzzahlrätsel von Ulrike Schätz Lösung: (a)6 (b) (c) 0 (d) 20 (e) 4 6 (a) y-abschnitt der Geraden k : 2 0,y+2 = 0 (b) Flächeninhalt des Rechtecks WIEN mit W( ), I(2 ), E(2 7) und N( 7) (c) Steigung jedes Lotes zur Geraden g : 0,0+y = 0 (d) Flächeninhalt des Dreiecks LEA mit L(0 6), E(0 8) und A(8 0) Quelle: Kreuzzahlrätsel von Ulrike Schätz Lösung: (a) 24 (b) (7+) (+2) = 62 (c) 20 (d) 2 (6+8) 8 = 26 7 Gegeben ist die lineare Funktion f() = (a) Zeichnen Sie den Graphen von f in ein Koordinatensystem Zeigen Sie, dass der Punkt P( 9 92) auf dem gegebenen Graphen liegt (b) Beschreiben Sie einen Weg, wie Sie die Gleichung einer weiteren linearen Funktion finden, deren Graph ebenfalls durch den Punkt P( 9 92) geht (c) Gegeben sind lineare Funktionen g m mit g m () = m+2 Unter welchen Bedingungen für m schneiden sich die Fraphen von f und g m im II Quadranten Quelle: Bildungsstandards im Fach Mathematik für den Mittleren Schulabschluss Lösung: (a) f( 9) = ( 9) = 92 (b) Möglichkeit: beliebigen Punkt Q wählen und Geradengleichung durch P und Q aufstellen 2 Möglichkeit: Beliebigen Steigung m wählen und Geradengleichung durch P mit Steigung m aufstellen (c) f() = g m () Schnittpunkt S( ) für m II Quadrant für m+ < 0 und 2 m m+ m+ 2 m m+ > 0 < m < 2 4
5 8 Weise durch Rechnung nach, dass die Punkte A( 4 ), B(4 2) und C(7 4 ) auf einer Geraden liegen Lösung: Die Steigungen der beiden Geraden AB und AC stimmen überein (m = 0,7) 9 Weise durch Rechnung nach, dass die Punkte A( 0/27), B(9/0) und C(47/ 27) ein Dreieck bilden! Lösung: Die Steigungen der Geraden AB und AC stimmen nicht überein die Punkte A, B und C liegen nicht auf einer Geraden die Punkte A, B und C bilden ein Dreieck 0 (a) Zeichne das Viereck ABCD mit A( 4), B(4 ), C( ) und D( 2 2) in ein Koordinatensystem (Platzbedarf: 8, 7 y 7) (b) Zeige mit Hilfe geeigneter Geradengleichungen, daß das Viereck ABCD ein Parallelogramm ist (c) Gib seinen Flächeninhalt an (d) Konstruiere ein flächengleiches Parallelogramm mit a =,cm und b = 8cm Lösung: c) A 8,8cm 2 In einem Koordinatensystem (Längeneinheit cm) sind die Punkte A(7 0) und B( 4) sowie die Gerade g durch die Gleichung 4y +2 = 0 gegeben (a) Zeichne die Punkte A und B sowie (mit Hilfe eines Steigungsdreiecks) die Gerade g in das Koordinatensystem ein! (b) Die Gerade g schneidet die y-achse im Punkt C und die -Achse im Punkt D Berechne die Koordinaten von C und D! (c) Ermittle eine Gleichung der durch die Punkte A und B bestimmten Geraden g 2 in epliziter Form! (d) Berechne ausführlich den Inhalt des Vierecks ABCD! Lösung: (b): C(0 ), D( 4 0); (c) : y = 2+4; (d) : A ABCD = 27,cm 2 2 (a) Zeige, dass der Punkt P( ) auf der Geraden mit der Gleichung y = 2+ liegt (b) Gib die Gleichung irgendeiner weiteren Geraden an, auf welcher der Punkt P( ) liegt Quelle: Bayerischer Mathematik-Test für die Jahrgangsstufe 0 der Gymnasien 2004
6 Lösung: (a) 2 + = P liegt auf der Gerade (b) Z B y = +6 Prüfe durch Rechnung, ob die Punkte A(,), B( 0) und C(0,,) auf einer Geraden liegen (Rechne mit Brüchen) Lösung: Die Gerade AB hat die Gleichung y = 7, C liegt also nicht auf AB Einsetzen von = 0, ergibt y = 24 4 Untersuche rechnerisch, ob die drei Punkte A( 6 4), B( ) C( 7 ) auf einer Geraden liegen Lösung: C / AB Die Punkte A(2 ) und B(7 7) bestimmen den Graphen einer linearen Funktion g (a) Bestimme den Funktionsterm g() (b) Gib den Funktionsterm einer linearen Funktion f an, deren Graph parallel zu dem von g verläuft und durch den Punkt R( 2) geht Lösung: g() = 4 + 7, f() = Wie lautet die Funktionsgleichung der Parallelen zu y = 7 2 P(8 2)? durch den Punkt Lösung: y = Wie lautet die Gleichung der Geraden, die durch P( 2) geht und zu der Geraden durch A(0 ) und B( ) parallel ist? Lösung: y = Weise durch Rechnung nach, dass die Punkte A( 7 6 ), B( ) und C( ) auf einer Geraden liegen Lösung: Die Steigungen der beiden Geraden AB und AC stimmen überein (m = 0,8) 6
7 9 Bestimme das? durch Rechnung so, daß die drei Punkte A( 4), B(? 7) und C( 2 8) auf einer Geraden liegen Lösung:? = 20 Gegeben ist die Funktion f : 2 (a) Begründe ohne Zeichnung, in welchen Quadranten der Graph der Funktion verläuft (b) Bestimme die Schnittpunkte mit den Koordinatenachsen und zeichne den Graphen (c) Zeige durch Rechnung, dass der Punkt P( 9) auf dem Graphen, der Punkt Q( 2 ) jedoch nicht auf dem Graphen liegt (d) Wie lautet die Funktionsvorschrift derjenigen linearen Funktion, auf deren Graphen sowohl P als auch Q liegt Lösung: (b) =,; y = (d) y = 4 9,8 2 Kennzeichne in einem kartesischen Koordinatensystem unter genauer Beachtung der Ränder mit Farbe diejenige Punktmenge, die zugleich alle folgenden Bedingungen erfüllt: 6y +8 > 0 ; 6 0 ; y 4 Lösung: 22 Bestimme durch Zeichnung die Menge aller Punkte (, y), die folgende beide Bedingungen erfüllen: y > und 2y + < 2 Lösung: 7
8 2 In der nebenstehend abgebildeten Grafik ist das Viereck ABCD ein Quadrat der Seitenlänge und es ist EB =, BF = 2 und DG = 6 D G C 4 H 2 F 0 A E B y (a) Ermittle die Funktionen f und g deren Grafen die Geraden EF und EH sind (b) Formuliere einen algebraischen Zusammenhang zwischen den Zahlen in den Funktionstermen f() und g(), die die Steigung der Grafen wiedergeben (c) Begründe, dass die vier Dreiecke EBF, FCG, GDH und HAE kongruent sind (d) Begründe, dass das Viereck EFGH ein Quadrat ist Welche Aussage kann man daraus für die Lage der Gerade EF bezüglich der Geraden EH ableiten? (e) Formuliere aus den Erkenntnissen der vor stehenden Aufgaben einen mathematischen Satz, der einen Zusammenhang zwischen den Parametern in den Funktionstermen, die die Steigung wiedergeben und der Lagebeziehung der Grafen der zugehörigen Funktionen herstellt 8
9 (a) f : y = f() = 2,g : y = g() = (b) ( 2 2) = (c) Begründung mit dem SWS Satz (alle vier Dreiecke stimmen in den Längen zwei entsprechender Seiten und dem 90 Winkel, den die zugehörigen Seiten einschließen, überein) (d) Wegen der vorigen Teilaufgabe haben sind die vier Seiten des Vierecks EFGH gleich lang Jeder der vier Innenwinkel bildet zusammen mit je zwei (unterschiedlichen) Innenwinkel der benachbarten Dreiecke einen gestreckten Winkel Da die beiden (verschiedenen) Innenwinkel der benachbarten Dreiecke ein Winkelsumme von 90 haben, ist jeder Innenwinkel von EFGH ein 90 Winkel (e) Das Produkt der Steigungen zweier affinder Funktionen, deren Graphen senkrecht zueinander sind, ist - 9
Lineare Funktionen und Funktionenscharen
. Erkläre folgende Begriffe: a) Ursprungsgerade b) Steigung bzw. Steigungsdreieck c) Steigende u. fallende Gerade d) Geradenbüschel, Parallelenschar e) y- Achsenabschnitt f) Lineare Funktion g) Normalform
Lineare Funktion Eigenschaften von linearen Funktionen Übungen Bearbeite zu jeder der gegebenen Funktionen die Fragen:
Lineare Funktion Eigenschaften von linearen Funktionen Übungen - 3 2.0 Bearbeite zu jeder der gegebenen Funktionen die Fragen: steigt oder fällt der Graph der Funktion? schneidet der Graph die y-achse
Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,
Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.
Lineare Funktionen. 6. Zeichne die zu den Funktionen gehörenden Graphen in ein Koordinatensystem und berechne ihren gemeinsamen Schnittpunkt.
FrauOelschlägel Mathematik8 Lineare Funktionen Ü Datum 1. Die Punkte A 0 4 und liegen auf der Geraden h. und Q8,5,5 B10 0 liegen auf der Geraden g, die Punkte P 0,5 11 Bestimme durch Rechnung die Funktionsgleichungen
t = 1 x- und y-werte sind direkt proportional zueinander mit dem Prortionalitätsfaktor m = y. x
Lineare Funktionen und lineare Gleichungen ================================================================== Lineare Funktionen Eine Funktion f : x y = mx + t, D = D max, mit zwei Zahlen m und t heißt
4. Mathematikschulaufgabe
.0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.
11 Üben X Affine Funktionen 1.01
Üben X Aine Funktionen.0 Zeichne die Graphen zu olgenden Funktionsgleichungen! + + d c b a Augabenkarte von MUED Lösung X Aine Funktionen.0 + + d c b a Üben X Aine Funktionen.0 Bestimme die Funktionsgleichung
TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten
. Feststellungsprüfung Nachprüfung 19.0.005 1. Untersuchen Sie die Funktion p ( ) = + 16 auf Monotonie und geben Sie auf Grund dieses Ergebnisses die Lage des Scheitels an. (10. Der Graph einer ganz rationalen
Aufgabe 5: Analytische Geometrie (WTR)
Abitur Mathematik: Nordrhein-Westfalen 203 Aufgabe 5 a) () PARALLELOGRAMMEIGENSCHAFTEN NACHWEISEN Zu zeigen ist, dass die gegenüberliegenden Seiten parallel sind, d. h. und. Zunächst ist 0 0 2 0, 3 2 0
Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.
LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)
2. Mathematikschulaufgabe
1.0 Lineare Funktionen: 1.1 Die Gerade g 1 hat die Steigung m 1 = - 0,5 und verläuft durch den Punkt P 1 (-1/-1,5). Bestimme die Gleichung der Geraden g 1. 1.2 Die Gerade g 2 steht auf der Geraden g 1
7.1.2 Lineare Funktionen Schnittpunkte mit den Achsen - Lösungen
7.. Lineare Funktionen Schnittpunkte mit den Achsen - Lösungen. Bestimme von den nachfolgenden Funktionsgleichungen zunächst die Schnittpunkte mit den Achsen; stelle sie danach im Koordinatensystem dar.
Funktionsgraphen (Aufgaben)
Gymnasium Pegnitz JS 9 August 2007 Funktionsgraphen (Aufgaben) 1. Betrachte die beiden linearen Funktionen f(x) = x + 2 und g(x) = x 3 und die quadratische Funktion p(x) = f(x) g(x) (a) Zeichne die Graphen
Ermitteln Sie die Koordinaten des Schnittpunktes dieser beiden Geraden und erklären Sie Ihre Vorgehensweise!
Aufgabe 2 Lagebeziehungen von Geraden im Raum Gegeben sind zwei Geraden g und h in 3. =( 3 Die Gerade g ist durch eine Parameterdarstellung X 4 2 Die Gerade h verläuft durch die Punkte A = (0 8 0 und B
1. Selbsttest Heron-Verfahren Gleichungen
1. Selbsttest 1.1. Heron-Verfahren Mit dem Heron-Verfahren soll ein Näherungswert für 15 gefunden werden. Führe die ersten drei Schritte des Heron- Verfahrens durch. Gib dann unter Verwendung der Werte
Regel Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind.
Funktionen Station 1 Bestimmung der Steigung einer Geraden durch zwei Punkte Die Steigung einer Funktion kann rechnerisch ermittelt werden, wenn mindestens zwei Punkte gegeben sind. m = f(x 2 ) f(x 1 )
Gegeben ist die Funktion mit 2 4. Bestimme die Punkte des Graphen von, dessen Tangenten durch den Punkt 1 2 verlaufen.
Dokument mit 16 Aufgaben Aufgabe A1 Gegeben ist die Funktion mit 6. a) Bestimme die Gleichung der Tangente an den Graphen von im Punkt 1,21,2. b) Bestimme alle Tangenten an den Graphen, die zu parallel
Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK
Analytische Geometrie Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG Wird erweitert Lösungen nur auf der Mathe CD Datei Nr. 0050 Stand November 005 F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 0050 Dreiecke
1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade
993 III Aufgabe In einem kartesischen Koordinatensystem sind die Gerade = g : X mit R sowie die beiden Punkte A( -) und C(- 2 ) gegeben. A und C bestimmen die Gerade h..a) Begründen Sie, dass der Mittelpunkt
m und schneidet die y-achse im Punkt P(0/3).
Aufgabe (Pflichtbereich 999) Eine Parabel hat die Gleichung y x 6x, 75. Bestimme rechnerisch die Koordinaten ihres Scheitelpunktes. Berechne die Entfernung des Scheitelpunktes vom Ursprung des Koordinatensystems.
Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:
Download Otto Mar Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei
Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.
Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der
Aufgabensammlung zum Üben Blatt 1
Aufgabensammlung zum Üben Blatt 1 Seite 1 Lineare Funktionen ohne Parameter: 1. Die Gerade g ist durch die Punkte A ( 3 4 ) und B( 2 1 ) festgelegt, die Gerade h durch die Punkte C ( 5 3 ) und D ( -2-2
1. Mathematikschulaufgabe
1.0 Gegeben: R = {(x/y) / y = 4 - Ix+1I } Π x Π 1.1 Stelle eine Wertetabelle im Bereich x [-5; 3] Ψ auf, x=1. 1. Zeichne R in ein Koordinatensystem, 1 LE 1cm.0 Lege ein kart. Koordinatensystem (1 LE 1cm)
4.1. Aufgaben zu linearen Funktionen
.. Aufgaben zu linearen Funktionen Aufgabe : Koordinatensystem a) Gib die Koordinaten der Punkte P - P 8 in dem rechts abgebildeten Koordinatensystem an. b) Markiere die Punkte A( ); B( ); C( ); D( );
Abitur 2017 Mathematik Geometrie VI
Seite http://www.abiturloesung.de/ Seite Abitur 7 Mathematik Geometrie VI Gegeben sind die beiden bezüglich der x x 3 -Ebene symmetrisch liegenden Punkte A( 3 ) und B( 3 ) sowie der Punkt C( ). Teilaufgabe
Lineare Funktionen Arbeitsblatt 1
Lineare Funktionen Arbeitsblatt 1 Eine Funktion mit der Gleichung y = m x + b heißt lineare Funktion. Ihr Graph ist eine Gerade mit der Steigung m. Die Gerade schneidet die y-achse im Punkt P(0 b). Man
Vektoren, Skalarprodukt, Ortslinien
.0 Gegeben sind die Punkte A(0/-4), C(0/4), sowie die Pfeile mit α [ 90 ; 90 ]. 4cosα AB = 4sinα+ 4. Zeichne die drei Punkte B, B und B 3 mit α { 30;0;30 } in ein KOS.. Zeige: 4cosα CB =. 4sinα 4.3 Zeige,
20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.
Flächeninhalte von Vielecken Parallelogramm Übungen - 9 20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.
Klasse 9 (Pluszweig) Lösungen
. Beschreibe den Term : unter Verwendung der mathematischen Fachbegriffe. Berechne den Termwert nachvollziehbar ohne Taschenrechner und erkläre dabei, was man unter Erweitern und Kürzen eines Bruches versteht.
Analytische Geometrie
Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u
Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.
Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten
Übungsaufgabe z. Th. lineare Funktionen und Parabeln
Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen
m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen.
2. Klausur 12/I B Thema: Lagebeziehung Gerade, Ebene 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 5 6 s 3 0 11 10, g BC : x = 3 u 5 1 2. Gegeben
Mathematik - 1. Semester. folgenden Zahlenpaare die gegebene Gleichung erfüllen:
Mathematik -. Semester Wi. Ein Beispiel Lineare Funktionen Gegeben sei die Gleichung y x + 3. Anhand einer Wertetabelle sehen wir; daß die folgenden Zahlenpaare die gegebene Gleichung erfüllen: x 0 6 8
Lineare Funktion. Wolfgang Kippels 21. März 2011
Lineare Funktion Wolfgang Kippels. März 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................
Kapitel 3 Mathematik. Kapitel 3.9 Algebra Grafische Darstellungen und Lösungen REPETITIONEN
Seite Kapitel Mathematik Kapitel.9 Algebra Grafische Darstellungen und Lösungen REPETITIONEN Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut, 877 Nidfurn Telefon 55 54 87 Telefa 55
Neue Aufgaben, Oktober
Neue Aufgaben, Oktober 2006 2 1. Auf wie viele Nullen endet 10! und 20!? Lösung: Die Nullen ergeben sich durch Faktorenpaare, die jeweils 10 ergeben. In 10! kommt der Faktor 5 zweimal vor, der Faktor 2
Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN:
GRUNDWISSENTEST 06 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 9 DER REALSCHULE HINWEISE: Beim Kopieren der Aufgabenblätter ist auf die Maßhaltigkeit zu achten, um Verzerrungen zu vermeiden. Nicht zugelassen
Ü b u n g s a r b e i t
Ü b u n g s a r b e i t Aufgabe. a) Die Querschnittsfläche eines Abwasserkanals ist im unteren Teil von einer Parabel k begrenzt, an die sich nach oben die beiden Geraden g und h anschließen. Bestimmen
Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen
Das rechtwinklige (kartesische) Koordinatensystem Funktionen Funktion: Eine Funktion ist eine eindeutige Zuordnung. Jedem x D wird genau eine reelle Zahl zugeordnet. Schreibweise: Funktion: f: x f (x)
4. Mathematikschulaufgabe
1. a) Zeichne mit Hilfe des y-abschnittes und eines Steigungsdreiecks die Geraden mit folgenden Gleichungen in ein Koordinatensystem! (Kennzeichne die Geraden mit I, II, III) I) y = 4-1,4 x II) 2x 3y 6
Arbeitsblätter Förderplan EF
Arbeitsblätter Förderplan EF I.1 Nullstellen bestimmen Lösungen I.2 Parabeln: Nullstellen, Scheitelpunkte,Transformationen Lösungen I.3 Graphen und Funktionsterme zuordnen Lösungen II.1 Transformationen
Bestimme dazu die Nullstellen, Scheitelpunkt und Schnittpunkt mit der y-achse und ergänze evtl. einige Punkte durch eine Wertetabelle.
Klasse Art Schwierigkeit Mathematisches Schema Nr. 9 Üben xx Quadratische Funktion 1 Skizziere den Graphen der durch y = 0,5 x 2 + x - 4 gegebenen quadratischen Funktion. Bestimme dazu die Nullstellen,
MATHEMATIK G10. (1) Bestimme die Gleichung der Geraden durch die beiden Punkte
(c) A( 1 1 ) geht. 1 MATHEMATIK G10 GERADEN (1) Bestimme die Gleichung der Geraden durch die beiden Punkte P und Q: a) P ( 5), Q(4 7) b) P (3 11), Q(3, 1) c) P (3 5), Q( 1 7) d) P ( 0), Q(0 3) e) P (3
1. Mathematikschulaufgabe
. Mathematikschulaufgabe. Stelle die folgende Produktmenge im Koordinatensystem dar: M = [ -2; +2 ] Q x [ -2; + ] Q 2.0 Gegeben ist die Funktion f: y = 2 + x G= Q x Q 2. Zeichne die Funktion in ein Koordinatensystem.
Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis
Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................
Aufgabe W2a/2005 Eine Parabel hat die Gleichung 4 1. Durch den Scheitelpunkt der Parabel und durch den Punkt %6 5 geht die Gerade. Berechnen Sie die G
Dokument mit 10 Aufgaben Aufgabe W3a/2003 Die Normalparabel hat die Gleichung 4 6. Die Normalparabel ist nach unten geöffnet und hat den Scheitel 0 6. Durch die Schnittpunkte beider Parabeln verläuft die
und schneidet die -Achse im Punkt 0 3. Berechnen Sie die Koordinaten der Schnittpunkte von und. Lösung: 4 1;2 4
7 Aufgaben im Dokument Aufgabe P5/2010 Die nach unten geöffnete Parabel hat die Gleichung 5. Zeichnen Sie die Parabel in ein Koordinatensystem. Die Gerade hat die Steigung und schneidet die -Achse im Punkt
Klasse Dozent. Musteraufgaben. Gegeben sind die folgenden Graphen. Gib jeweils die zugehörige Funktionsgleichung an! f(x) = g(x) = h(x) = k(x) =
Musteraufgaben Fach: Mathematik - Lineare Funktionen Anzahl Aufgaben: 50 Diese Aufgabensammlung wurde mit KlasseDozent erstellt. Sie haben diese Aufgaben zusätzlich als KlasseDozent-Importdatei (.xml)
Mathematik - Arbeitsblatt Lineare Funktionen
Mathematik - Arbeitsblatt Lineare Funktionen 1.(a) Welche der drei roten Graphen gehört zur Funktion == +5? Wie lautet die Funktionsgleichung des blauen Graphen? Bestimme rechnerisch die Nullstelle des
7 Aufgaben im Dokument. Aufgabe P5/2010
Aufgabe P5/2010 7 Aufgaben im Dokument Die nach unten geöffnete Parabel hat die Gleichung 5. Zeichnen Sie die Parabel in ein Koordinatensystem. Die Gerade hat die Steigung und schneidet die -Achse im Punkt
Aufgaben zu Anwendungen zur Vektorrechnung
Aufgaben zu Anwendungen zur Vektorrechnung 1. Von einer Strecke AB mit dem Mittelpunkt M sind bekannt: A(/5) und M(-4/3). Berechnen Sie B.. Die Punkte A(3/7) und B(11/-1) sind gegenüberliegende Ecken eines
Abschlussprüfung 2011 an den Realschulen in Bayern
Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das
Themenerläuterung. Die wichtigsten benötigten Formeln 1. Der Umgang mit der Mitternachtsformel
Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene
Quadratische Funktionen Arbeitsblatt 1
Quadratische Funktionen Arbeitsblatt 1 Spezielle quadratische Funktion Die Funktionsgleichung einer speziellen quadratischen Funktion hat die Form y = 3 x 2. Der dazugehörige Graph heißt Parabel. Bei einer
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Klausuren Jahrgangsstufe 11, 1. Halbjahr
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Klausuren Jahrgangsstufe 11, 1. Halbjahr Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Klausuren Jahrgangsstufe
1. Mathematikschulaufgabe
1.0 Gegeben ist die Funktion f: y = 1 ( ) 1 x + in G= x. 1.1 Tabellarisiere f für x = [ -1; 7 ] mit x = 1 sowie für x =,5 und x =,5. 1. Zeichne den Graphen von f. Für die Zeichnung: 1 LE = 1 cm - 1 x 8-1
Demo für
Aufgabensammlung Mit ausführlichen Lösungen Geradengleichungen und lineare Funktionen Zeichnen von Geraden in vorgefertigte Koordinatensysteme Aufstellen von Geradengleichungen Schnitt von Geraden Die
f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5
11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =
Aufgaben zu Anwendungen zur Vektorrechnung
Aufgaben zu Anwendungen zur Vektorrechnung. Von einer Strecke AB mit dem Mittelpunkt M sind bekannt: A(/5) und M(-4/3). Berechnen Sie B.. Die Punkte A(3/7) und B(/-) sind gegenüberliegende Ecken eines
Übungsaufgaben zu linearen Gleichungen und Funktionen117
Übungsaufgaben zu linearen Gleichungen und Funktionen117 Anmerkung: Die Funktionsgraphen sollen den Zusammenhang nur noch einmal veranschaulichen. Sie sind zur Lösung der Aufgabe nicht erforderlich. Die
3. Mathematikschulaufgabe
Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;
Geometrie. in 15 Minuten. Geometrie. Klasse
Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,
(Tip zu g): Die Ziffern bestehen aus aufeinanderfolgenden Quadratzahlen).
Aufgabenblatt Funktionen. Entscheide für die folgenden Zahlen, zu welcher der Mengen N, Z, Q, R sie gehören? a), b).87, c) 8, d) π, e) 0..., f) 8 g) 0.4965649648... (Tip zu g): Die Ziffern bestehen aus
Grundwissen Jahrgangsstufe 9. Lösungen. 144c 6 + = ( d)² 144c6 + = ( d)². Berechne ohne Taschenrechner: a) 2,
Grundwissen Jahrgangsstufe 9 Lösungen Berechne ohne Taschenrechner: a) 2,25 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) x² = 5 c) 2x² + 50 = 0 Sind
Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen
Abiturprüfung Mathematik 202 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen [email protected] www.elearning-freiburg.de Pflichtteil 202 2 Aufgabe : Bilden Sie die erste Ableitung
Abitur 2016 Mathematik Geometrie V
Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen
Aufgaben e-funktion. Gegeben sind die Funktionen f k (x) = x+k e x. a) Leite g(x) = 1 x k e x. ab.
Aufgaben e-funktion 7 6 5 4 3-3 - - 3 u 4 - Gegeben sind die Funktionen f k () = +k e. a) Leite g() = k e ab. b) Die Graphen von f und f 3, die -Achse und die Gerade = u (u > 0) begrenzen die Fläche A(u).
E : y=0. g : x= ) +s ( 1 1. d = 17. Partnerquiz Punkte, Geraden und Ebenen im Raum Ausschneidebogen
Partnerquiz Aufgabe A Partnerquiz Aufgabe B Gib eine Ebenengleichung in Parameterform für die xz-ebene an. Gib eine Ebenengleichung in Koordinatenform für die xz-ebene an. E : y= E : x=r +s Partnerquiz
Mathematik I Nachtermin Aufgabe P 1. Name: Vorname: Klasse: Platzziffer: Punkte: O 1
Prüfungsdauer: Abschlussprüfung 007 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben ist die Funktion f 1 mit
f(x) 1,71 1,92 0,33-0,96 3,75
Abschlussprüfung Fachoberschule 07 Aufgabenvorschlag A Funktionsuntersuchung /4 Gegeben ist die Funktion f mit der Funktionsgleichung f(x) 0,0x 0,x + x; x IR.. Beschreiben Sie das Verhalten des Graphen
Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:
Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x
Bin ich in Mathe fit für die Oberstufe? Lösungen der Checkliste der Kompetenzen der Sekundarstufe I
Gymnasium St. Wolfhelm Bin ich in Mathe fit für die Oberstufe? Lösungen der Checkliste der Kompetenzen der Sekundarstufe I Mit ihrer Hilfe kannst du selbstständig kontrollieren, ob du die abgefragten Kompetenzen
Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)
Klasse 11 2. Schulaufgabe Mathematik (Thema: Raumgeometrie) Aufgabe 1 Gegeben sind die Punkte A ( 2 12 4 ); B ( 4 22 6 ); C ( 6 20 8 ); S ( 0 14 14 ) a) Zeigen Sie, dass das Dreieck ABC gleichschenklig
Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000
Grundwissen Jahrgangsstufe 9 Berechne ohne Taschenrechner: a),5 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) -x² = -5 c) x² + 50 = 0 Sind folgende
Lösungen zum Arbeitsblatt: y = mx + b Alles klar???
I. Zeichnen von Funktionen a) Wertetabelle x -4-3 - -1 0 1 3 4 y =,5x -10-7,5-5 -,5 0,5 5 7,5 10 y = - x,7 1,3 0,7 0-0,7-1,3 - -,7 3 y = x 1,5-9,5-7,5-5,5-3,5-1,5 0,5,5 4,5 6,5 y = - 1 x + 4 3,5 3,5 1,5
3. Mathematikschulaufgabe
1. Bestimme m so, dass die quadratische Gleichung nur 1 Lösung hat: 4x² - mx + 5m = 0 2.0 Von einer zentrischen Streckung sind A (-3/3), A (2/-2), B (-5/-1), B (2,5/-1) und C(-5/3) bekannt. 2.1 Konstruiere
Zusammengesetzte Übungsaufgaben lineare Funktionen
Zusammengesetzte Übungsaufgaben lineare Funktionen Nr Aufgabe Lösung 1 Gegeben ist die Funktion g mit g ( x ) = 3 x + 9 a) Geben Sie die Steigung und den y- Achsenabschnitt an. (Begründung) c) Bestimmen
Abitur 2013 Mathematik Geometrie V
Seite 1 http://www.abiturloesung.de/ Seite Abitur 1 Mathematik Geometrie V Teilaufgabe b ( BE) Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massiven Beton, der die
a, b und c aus. Linearkombination der Vektoren b) Für einen Punkt P gilt: AP = a
Aufgabe Die drei linear unabhängigen Vektoren a = OA, b = OB,c = OC spannen ein dreiseitiges Prisma auf. Dabei ist S der Schwerpunkt des Dreiecks OAB, M der Schnittpunkt der Diagonalen in der Seitenfläche
4. Mathematikschulaufgabe
1. Wie weit kann man vom Chordach auf dem Mont-Saint-Michel (120 m) auf das Meer hinausschauen? (Erdradius 6370 km) 2. Konstruiere ein Quadrat, das den doppelten Flächeninhalt hat wie das Quadrat mit der
P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.
Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion
ABITURPRÜFUNG 2001 GRUNDFACH MATHEMATIK
ABITURPRÜFUNG 2001 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 210 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk Der Prüfungsteilnehmer wählt von den Aufgaben
Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.
Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m
Abitur 2011 G8 Musterabitur Mathematik Geometrie V
Seite http://www.abiturloesung.de/ Seite Abitur G Musterabitur Mathematik Geometrie V In einem kartesischen Koordinatensystem beschreibt die x x -Ebene eine flache Landschaft, in der sich ein Flughafen
Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)
Ergänzungsprüfung zum Erwerb der Fachhochschulreife 004 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 4. Juni 004 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,
Algebra Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale
Algebra 1 www.schulmathe.npage.de Aufgaben 1. Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale Lösung? x + y + mz = 0 mx y + z = 0 x + y + z = 0. Welche Punkte P z der z-achse
Lernkontrolle Relationen, Funktionen, lineare Funktionen
Lernkontrolle Relationen, Funktionen, lineare Funktionen A 1) Im folgenden Diagramm bedeuten A, B, C, D jeweils die Kinder einer Familie; die Pfeile drücken die Relation "hat als Schwester" aus. a) Wie
Die nach oben geöffnete Normalparabel verläuft durch die Punkte 1 5 und Die Parabel hat die Gleichung 2. Besitzen die beiden Parabeln
Dokument mit 11 Aufgaben Aufgabe W3a/2010 Im Schaubild sind die Geraden und dargestellt. Entnehmen Sie zur Bestimmung ihrer Gleichungen geeignete Werte. Berechnen Sie die Koordinaten des Schnittpunkts
Mathematik 9/E1 oder 10/E1 Test zu den Übungsaufgaben Übergang in die Einführungsphase E1
Mathematik 9/E1 oder 10/E1 Test zu den Übungsaufgaben Übergang in die Einführungsphase E1 Freitag,. Oktober 015 Zeit : 90 Minuten Name :!!! Dokumentieren Sie alle Ansätze und Zwischenrechnungen!!! Teil
Lk Mathematik 12 Analytische Geometrie Arbeitsblatt A.1
Lk Mathematik 2 Analytische Geometrie Arbeitsblatt A.. Die Grundäche eines Spielplatzes liegt in der x - -Ebene. Auf ihm steht eine innen begehbare, senkrechte, quadratische Pyramide aus Holz mit den Eckpunkten
Abitur 2011 G8 Musterabitur Mathematik Geometrie VI
Seite http://www.abiturloesung.de/ Seite Abitur G8 Musterabitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem ist ein Würfel W der Kantenlänge gegeben. Die Eckpunkte G ( ) und D ( ) legen
Alle zu orthogonalen Tangenten müssen die Steigung 4,32 1 haben. 0, ,2723* 1,2** 6 Punktprobe mit %&1,2'1,2( 2* 3,6* 64,272 4,272 2* 3,6* 1,7280
Lösung A1 6 3 a) 1,21,2 64,272 1,23 1,2 4,32 1,2 1,21,2 4,32 1,24,2724,329,456 b) Alle Tangenten zu parallel müssen die Steigung 4,32 haben. 4,323 :3 1,44, 1,2 Für 1,2 siehe Aufgabenteil a). 1,21,2 67,728
1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13
Pflichtteil Aufgabe BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit 4 f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ()) an das Schaubild der Funktion
m= und schneidet die y-achse im Punkt P(0/3).
Aufgae (Pflichtereich 999) Eine Parael hat die Gleichung y = x 6x+, 75. Bestimme rechnerisch die Koordinaten ihres Scheitelpunktes. Berechne die Entfernung des Scheitelpunktes vom Ursprung des Koordinatensystems.
Zentrale schriftliche Abiturprüfung Mathematik. Leistungskurs
Ministerium für Bildung, Jugend und Sport Zentrale schriftliche Abiturprüfung 009 Mathematik Aufgabenstellung A und A (Wahl für Prüflinge) Aufgabenstellung A3 (siehe Extrablatt) (wird durch die Lehrkraft
Geraden. Somit scheiden die Gerade im Punkt N(-b/m; 0) die x-achse.
Geraden Eine Gerade wird durch eine Gleichung der Form y = mÿx + b bzw. f(x) = mÿx + b beschrieben. Die Schreibweise f(x) = wird teils erst in der Oberstufe verwendet. b ist der y- Achsenabschnitt, d.h.
