Qualifikationsphase (Q2) Grundkurs
|
|
|
- Lena Bösch
- vor 6 Jahren
- Abrufe
Transkript
1 Qualifikationsphase (Q2) Grundkurs Unterrichtsvorhaben I Thema: Von stochastischen Modellen, Zufallsgrößen, Wahrscheinlichkeitsverteilungen und ihren Kenngrößen (Q2-GK-S1) Inhaltlicher Schwerpunkt: Kenngrößen von Wahrscheinlichkeitsverteilungen Inhaltsbezogene Kompetenzen untersuchen Lage- und Streumaße von Stichproben erläutern den Begriff der Zufallsgröße an geeigneten Beispielen bestimmen den Erwartungswert µ und die Standardabweichung σ von Zufallsgrößen und treffen damit prognostische Aussagen Prozessbezogene Kompetenzen (Schwerpunkte) treffen Annahmen und nehmen begründet Vereinfachungen einer realen Situation vor (Strukturieren) beziehen die erarbeitete Lösung wieder auf die Sachsituation (Validieren)
2 Unterrichtsvorhaben II Thema: Treffer oder nicht? Bernoulliexperimente und Binomialverteilung(Q2-GK-S2), Werkzeuge nutzen Inhaltlicher Schwerpunkt: Binomialverteilung Inhaltsbezogene Kompetenzen verwenden Bernoulliketten zur Beschreibung entsprechender Zufallsexperimente, erklären die Binomialverteilung und berechnen damit Wahrscheinlichkeiten beschreiben den Einfluss der Parameter n und p auf Binomialverteilungen und ihre graphische Darstellung bestimmen den Erwartungswert µ und die Standardabweichung σ von Zufallsgrößen und treffen damit prognostische Aussagen Prozessbezogene Kompetenzen treffen Annahmen und nehmen begründet Vereinfachungen einer realen Situation von beziehen die erarbeiteten Lösungen wieder auf die Sachsituation (Validieren) Werkzeuge nutzen nutzen grafikfähige Taschenrechner und Tabellenkalkulationen verwenden verschiedene digitale Werkzeuge zum - Generieren von Zufallszahlen - Berechnen von Wahrscheinlichkeiten bei binomialverteilten Zufallsgrößen - Erstellen der Histogramme von Binomialverteilungen - Variieren der Parameter von Binomialverteilungen - Berechnen der Kennzahlen von Binomialverteilungen (Erwartungswert, Standardabweichung)
3 Unterrichtsvorhaben III Thema: mit Binomialverteilungen (Q2-GK-S3), Argumentieren Inhaltlicher Schwerpunkt: Binomialverteilung Inhaltsbezogene Kompetenzen: nutzen Binomialverteilungen und ihre Kenngrößen zur Lösung von Problemstellungen schließen anhand einer vorgegebenen Entscheidung aus einem Stichprobenergebnis auf die Grundgesamtheit Prozessbezogene Kompetenzen: treffen Annahmen und nehmen begründet Vereinfachungen einer realen Situation vor (Strukturieren) beziehen die erarbeitete Lösung wieder auf die Sachsituation (Validieren) beurteilen die Angemessenheit aufgestellter [ ] Modelle für die Fragestellung (Validieren) reflektieren die Abhängigkeit einer Lösung von den getroffenen Annahmen (Validieren) Argumentieren stellen Zusammenhänge zwischen Begriffen her (Begründen) nutzen mathematische Regeln bzw. Sätze und sachlogische Argumente für Begründungen (Begründen) verknüpfen Argumente zu Argumentationsketten (Begründen)
4 Unterrichtsvorhaben IV Thema: Von Übergängen und Prozessen (Q2-GK-S4), Argumentieren Inhaltlicher Schwerpunkt: Stochastische Prozesse Inhaltsbezogene Kompetenzen: beschreiben stochastische Prozesse mithilfe von Zustandsvektoren und stochastischen Übergangsmatrizen verwenden die Matrizenmultiplikation zur Untersuchung stochastischer Prozesse (Vorhersage nachfolgender Zustände, numerisches Bestimmen sich stabilisierender Zustände). Prozessbezogene Kompetenzen : erfassen, strukturieren zunehmend komplexe Sachsituationen mit Blick auf eine konkrete Fragestellung (Strukturieren) übersetzen zunehmend komplexe Sachsituationen in mathematische Modelle (Mathematisieren) beziehen die erarbeitete Lösung wieder auf die Sachsituation (Validieren) Argumentieren: präzisieren Vermutungen mithilfe von Fachbegriffen und unter Berücksichtigung der logischen Struktur (Vermuten) nutzen mathematische Regeln bzw. Sätze und sachlogische Argumente für Begründungen (Begründen) stellen Zusammenhänge zwischen Begriffen her (Begründen) überprüfen, inwiefern Ergebnisse, Begriffe und Regeln verallgemeinert werden können (Beurteilen)
5 Unterrichtsvorhaben V Thema: mit Funktionen (Q2-GK-A6) Inhaltsfeld: Funktionen und Analysis (A) Inhaltliche Schwerpunkte: Fortführung der Differentialrechnung und Integralrechnung in Anwendungszusammenhängen Unterrichtsvorhaben VI Thema: (Q2-GK-G5) Inhaltsfeld: Analytische Geometrie und lineare Algebra (G) Inhaltliche Schwerpunkte: Fortführung der analytischen Geometrie und linearen Algebra in Anwendungszusammenhängen
Qualifikationsphase (Q2) Leistungskurs
Qualifikationsphase (Q2) Leistungskurs Unterrichtsvorhaben I Thema: Von stochastischen Modellen, Zufallsgrößen, Wahrscheinlichkeitsverteilungen und ihren Kenngrößen (Q2-GK-S1) Inhaltlicher Schwerpunkt:
2.1.1 Übersichtsraster Unterrichtsvorhaben
2.1.1 Übersichtsraster Unterrichtsvorhaben Qualifikationsphase (Q1) GRUNDKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II : Thema: Funktionen beschreiben Formen Modellieren von Sachsituationen
Einführungsphase. Grundlegende Eigenschaften von Potenz-, Ganzrationale-, Exponential- und Sinusfunktionen
Einführungsphase Unterrichtsvorhaben I Thema : Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) Zentrale Kompetenzen: Werkzeuge nutzen Inhaltsfeld: Funktionen und Analysis
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik GK 1. Prüfungsteil Name:
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik GK 1. Prüfungsteil Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik GK 1. Prüfungsteil Name:
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik GK 1. Prüfungsteil Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell
untersuchen Lage- und Streumaße von Stichproben
Qualifikationsphase Leistungskurs 1 QII 2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks Buch: Elemente der Mathematik, Qualifikationsphase NRW Leistungskurs, Braunschweig 2015, Westermann
Mathematik-Grundkurs in der Q1/Q2 (Stand: Juni 2016)
Mathematik-Grundkurs in der Q1/Q2 (Stand: Juni 2016) 1. Teil: Übersichtsraster Unterrichtsvorhaben Qualifikationsphase 1 GK Thema (Q1 GK UV1 A1): von Sachsituationen mit Hilfe ganzrationaler Funktionen
prozessbezogene Schwerpunkte Die Schülerinnen und Schüler
Inhaltliche Schwerpunkte Grundkurs in der Qualifikationsphase Inhaltliche Schwerpunkte Analysis I ca. 11 beschreiben das Krümmungsverhalten des Graphen einer Funktion mit Hilfe der 2. Ableitung (Wdh. aus
Schulcurriculum Mathematik für die August-Dicke-Schule Qualifikationsphase Grundkurs
Stand 04.11.2016 Grundlage Kernlehrplan G8 für die Sekundarstufe II (2014) Seite 1 von 6 Die angegebenen Zeiträume sind nur Anhaltswerte. Bei einem Rahmen von 30 Wochen ergeben sich mögliche Freiräume.
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell und Typ sind mit
Schulinterner Lehrplan des Friedrich-Spee-Gymnasiums Geldern für das Fach. Mathematik
Schulinterner Lehrplan des Friedrich-Spee-Gymnasiums Geldern für das Fach Mathematik GK Thema Kompetenzen Inhaltliche Schwerpunkte A1 Optimierungsprobleme Funktionen als mathematische Modelle A2 Funktionen
2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks
Qualifikationsphase GRUNDKURS QII 2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks Buch: Elemente der Mathematik, Qualifikationsphase NRW Grundkurs, Braunschweig 2015, Westermann Schroedel
Qualifikationsphase (Q1) GRUNDKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II :
Qualifikationsphase (Q1) GRUNDKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II : Eigenschaften von Funktionen (Höhere Ableitungen, Besondere Punkte von Funktionsgraphen, Funktionen bestimmen, Optimierungsprobleme,
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK 1. Prüfungsteil Name:
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK 1. Prüfungsteil Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell
Schulinterner Lehrplan Mathematik Stufe EF
Schulinterner Lehrplan Mathematik Stufe EF Thema Funktionstypen Inhaltsbezogene Kompetenzen: Die Schülerinnen und Schüler Funktionen und Analysis beschreiben die Eigenschaften einer Funktion und berechnen
Thema: Analysis 2 : Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion)
Curriculum Mathematik für die Qualifikationsphase / Grundkurs Marienschule Bielefeld, Mai 2015 : Buch: Lambacher Schweizer Mathematik, Qualifikationsphase NRW / LK, GK, Ernst Klett Verlag GmbH, Stuttgart
Qualifikationsphase (Q1) LEISTUNGSKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II:
Qualifikationsphase (Q1) LEISTUNGSKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II: Eigenschaften von Funktionen (Höhere Ableitungen, Besondere Punkte von Funktionsgraphen, Funktionen bestimmen,
Verteilung der Unterrichtsvorhaben in der Qualifikationsphase, Mathematik Qualifikationsphase - Grundkurs
Verteilung der Unterrichtsvorhaben in der Qualifikationsphase, Mathematik Qualifikationsphase - Grundkurs Unterrichtsvorhaben Q1- I: Q-GK-A2 Unterrichtsvorhaben Q1- II: Q-GK-A1 Thema: Funktionen beschreiben
Geschwister-Scholl-Gymnasium Unna
Geschwister-Scholl-Gymnasium Unna Schulinterner Lehrplan Mathematik SII (Lehrwerk: Lambacher Schweizer) (Stand: 01.08.2014) Allgemeines zu den Unterrichtsvorhaben Die Darstellung der Unterrichtsvorhaben
Einführungsphase Funktionen und Analysis (A)
Einführungsphase Funktionen und Analysis (A) Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) beschreiben die Eigenschaften von Potenzfunktionen mit ganzzahligen
Stoffverteilungsplan Mathematik Qualifikationsphase auf der Grundlage des Kernlehrplans
Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht
Kompetenzerwartungen und inhaltliche Schwerpunkte. Stochastik Leistungskurs in der Q2 am SG
Kompetenzerwartungen und inhaltliche Schwerpunkte Stochastik Leistungskurs in der Q2 am SG Inhaltliche Schwerpunkte Stochastische Modelle und Kenngrößen von Wahrscheinlichkeitsverteilungen Bedingte Wahrscheinlichkeit
prozessbezogene Schwerpunkte
Inhaltliche Schwerpunkte Leistungskurs in der Qualifikationsphase Inhaltliche Schwerpunkte Analysis I ca. 7 beschreiben das Krümmungsverhalten des Graphen einer Funktion mit Hilfe der 2. Ableitung (Wdh.
Qualifikationsphase Schülerbuch Lösungen zum Schülerbuch Schülerbuch Lehrerfassung
Die Umsetzung der Lehrplaninhalte in Fokus Mathematik Qualifikationsphase auf der Basis des Kernlehrplans Sekundarstufe II Mathematik in Nordrhein-Westfalen. Schulinternes Curriculum Erwartete prozessbezogene
Schulcurriculum Mathematik für die August-Dicke-Schule Qualifikationsphase Leistungskurs
Stand: 19.08.2016 Grundlage Kernlehrplan G8 für die Sekundarstufe II (2014) Seite 1 von 7 Die angegebenen Zeiträume sind nur Anhaltswerte. Bei einem Rahmen von 30 Wochen ergeben sich mögliche Freiräume.
Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen:
Lehrbuch: Lambacher Schweizer, Grundkurs Die hier vereinbarte Reihenfolge der Unterrichtsvorhaben ist verbindlich. Bei besonderen inhaltlichen Schwerpunktsetzungen in den offiziellen Abiturvorgaben kann
Stoffverteilungsplan Mathematik Qualifikationsphase (GK und LK) auf der Grundlage des Kernlehrplans
Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht
Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1)
Schulinternes Curriculum - Mathematik - Einführungsphase Einführungsphase Funktionen und Analysis (A) Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) beschreiben
Schulinternes Curriculum für das Fach Mathematik am Erich Kästner- Gymnasium, Köln Sekundarstufe II
1 Schulinternes Curriculum für das Fach Mathematik am Erich Kästner- Gymnasium, Köln Sekundarstufe II Inhalt 1. Inhalte, Ziele und Kompetenzen (fachdidaktische und fachmethodische Grundsätze) 2. Übergeordnete
Thema: Die Ableitung, ein Schlüsselkonzept (Änderungsrate, Ableitung, Tangente) Zentrale Kompetenzen: Modellieren, Kommunizieren
Unterrichtsvorhaben I: Eigenschaften von (Wiederholung und Symmetrie, Nullstellen, Transformation), Grundlegende Eigenschaften von Potenz-und Sinusfunktionen Zeitbedarf: 23 Std. Unterrichtsvorhaben IV:
Curriculum Schuljahr 2015/16 Fach Mathematik Q1 LK
Gustav-Heinemann-Schule/Gesamtschule der Stadt Mülheim an der Ruhr Curriculum Schuljahr 2015/16 Fach Mathematik Q1 LK 1. Übersicht über die Unterrichtsvorhaben Qualifikationsphase (Q1) LEISTUNGSKURS Unterrichtsvorhaben
Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen:
In den Jahrgangsstufen 11 und 12 arbeitet das SGR mit dem Lehrbuch Lambacher Schweizer Qualifikationsphase LK / GK und dem TI-nspire CX CAS. Die im eingeführten Lehrbuch vorhandenen Hinweise im Hinblick
Sek II Qualifikationsphase
Sek II Qualifikationsphase Bitte beachten: Besonders in den Grundkursen die zeitliche Verteilung auf die Halbjahre einhalten, da für einzelne SuS ein Wechsel des Kurses, auch zwischen Heriburg und Nepomucenum,
Lehrbuch: Lambacher Schweizer Qualifikationsphase Leistungskurs / Grundkurs Bestelln.:
Kernlehrplan Mathematik LFS Bonn (Q1/Q2) (Stand 09/2015) Lehrbuch: Lambacher Schweizer Leistungskurs / Grundkurs Bestelln.: 978-3-12-735441-6 Unterrichtsvorhaben I: Eigenschaften von Funktionen (Höhere
Thema: Analysis 2 : Potenzen in Termen und Funktionen. Zentrale Kompetenzen: Modellieren, Problemlösen Argumentieren, Kommunizieren Werkzeuge nutzen
Curriculum Mathematik für die EF Marienschule Bielefeld, Mai 2014 : Buch: D. Brandt et al., Lambacher Schweizer Mathematik, Einführungsphase NRW, Ernst Klett Verlag GmbH, Stuttgart (2014). Übersichtsraster
Stoffverteilungsplan Mathematik Grundkurs. Lambacher Schweizer Stochastik ISBN Klassenarbeit
Q3.1 Grundlegende Begriffe der Grundlagen der Wahrscheinlichkeitstheorie: Beschreiben von Zufallsexperimenten (Laplace-Experimente) unter Verwendung der Begriffe Ergebnis, Ergebnismenge, Ereignis und Wahrscheinlichkeit
Stoffverteilungsplan Mathematik Qualifikationsphase Grundkurs
Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht
Unterrichtsvorhaben II: Unterrichtsvorhaben IV: Thema: Untersuchung zusammengesetzter Funktionen (Produktregel, Kettenregel)
Q1.1 GK: Unterrichtsvorhaben I: Eigenschaften von Funktionen (Höhere Ableitungen, Besondere Punkte von Funktionsgraphen, Funktionen bestimmen (Steckbriefaufgaben mit Hilfe des Taschenrechners), Extremwertprobleme
Stoffverteilungsplan LK Mathematik Qualifikationsphase auf der Grundlage des Kernlehrplans
Die Kernlehrplane betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht
Thema 1: Eigenschaften von Funktionen
HARDTBERG-GYMNASIUM DER STADT BONN Stand: Juni 2015 Schulinternes Curriculum Mathematik für die Qualifikationsphase (Q1 und Q2) Lehrbuch: Lambacher Schweizer: Mathematik Qualifikationsphase, Klett Verlag
2 Die Bedeutung der zweiten Ableitung. 3 Kriterien für Extremstellen. 4 Kriterien für Wendestellen. Problemlösen
Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Version 2015/2016 Q1/2 Inhaltsfeld Funktionen und Analysis Zeitraum Inhaltsbezogene Aspekte/Kompetenzen Lambacher Schweizer Kapitel
Curriculum Mathematik Einführungsphase an der Gesamtschule Marienheide (abgestimmt auf das Lehrwerk Lambacher Schweizer Einführungsphase)
Unterrichtsvorhaben I: Eigenschaften von (Wiederholung und Symmetrie, Nullstellen, Transformation), Inhaltsfeld: (A) Grundlegende Eigenschaften von Potenz-und Sinusfunktionen Zeitbedarf: 23 Std. Unterrichtsvorhaben
Mathematik (Leistungskurs)
Schulinterner Lehrplan für die Qualifikationsphase am St.-Ursula-Gymnasium Attendorn im Fach Stand: 2016 Mathematik (Leistungskurs) Die Kernlehrplane betonen, dass eine umfassende mathematische Grundbildung
Schulinterner Lehrplan Mathematik für die Q-Phase (3. 6. Semester)
Schulinterner Lehrplan Mathematik für die Q-Phase (3. 6. Semester) in der überarbeiteten Fassung vom 27.6.2017 (FaKo-Beschluss) gültig für das 3.+4. Semester ab dem Schuljahr 2015/16 gültig für das 5.+6.
Kurzfassung des schulinternen Lehrplans Mathematik (Erstellt im Sommersemester 2019)
Kurzfassung des schulinternen Lehrplans Mathematik (Erstellt im Sommersemester 2019) Vorkurs Termumformungen - Anwendung der Rechengesetze, insbesondere des Distributivgesetzes - binomische Formeln Lineare
Lösen ausgewählte Routineverfahren auch hilfsmittelfrei zur Potenzfunktionen mit ganzzahligen
Einführungsphase: Funktionen und Analysis Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Vorhabenbezogene Absprache Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext
Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans
Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht
Gymnasium der Stadt Menden Stoffverteilung Mathematik Q1/Q2, LK und GK, Stand August 2015 (vorläufig)
Stoffverteilung Mathematik Q1/Q2, LK und GK, Stand August 2015 (vorläufig) Vorbemerkung: Der folgende Lehrplan wird erstmalig im Schuljahr 2015/16 umgesetzt. Nach einem erstmaligen Durchlauf zur Erprobung
2. 2 Unterrichtsvorhaben in der Qualifikationsphase
2. 2 Unterrichtsvorhaben in der Funktionen und Analysis Funktionen als mathematische Modelle Fortführung der Differentialrechnung Kapitel I Eigenschaften von Funktionen Check-in S. 376/377 1 Wiederholung:
Geschwister Scholl Gymnasium Unna Schulinterner Lehrplan Mathematik Einführungsphase
Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht
Vorlage für das Schulcurriculum Qualifikationsphase
Vorlage für das Schulcurriculum Qualifikationsphase Grundkurs/grundlegendes Anforderungsniveau Kompetenzen/ Fähigkeiten L1 Leitidee: Algorithmus und Zahl - lösen lineare Gleichungssysteme mithilfe digitaler
Mathematik Schulinterner Lehrplan Qualifikationsphase (GK/LK) Geschwister-Scholl-Gymnasium Pulheim. gültig ab 2015/16
Mathematik Schulinterner Lehrplan (GK/LK) Geschwister-Scholl-Gymnasium Pulheim gültig ab 2015/16 Unterrichtsvorhaben I: Eigenschaften von Funktionen (Höhere Ableitungen, besondere Punkte von Funktionsgraphen,
Lehrwerk: Lambacher Schweizer, Klett Verlag. Grundkurs, Leistungskurs
Jahrgangsstufe Q1 Analysis Lerninhalte Q1 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Hilfsmittel und Methoden 1 Funktionen und Analysis Funktionen als mathematische Modelle Fortführung der
St.-Ursula-Gymnasium Attendorn. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Qualifikationsphase. im Fach.
St.-Ursula-Gymnasium Attendorn Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Qualifikationsphase im Fach Mathematik (Leistungskurs) Stand: 2016 Die Kernlehrplane betonen, dass eine
Stoffverteilungsplan Mathematik Qualifikationsphase (gemäß Kernlehrplan gültig für die Q1/2 ab 2015/16)
Das zugrunde liegende Unterrichtsbuch ist der. [Zeitangaben in 60-Minuten-Stunden] Unterrichtsvorhaben I: Eigenschaften von Funktionen (Höhere Ableitungen, Besondere Punkte von Funktionsgraphen, Funktionen
Stoffverteilungsplan Mathematik Einführungsphase (gemäß Kernlehrplan gültig ab EF 2014/15)
Das zugrundeliegende Buch ist der. [Zeitangaben in 60-Minuten-Stunden] Unterrichtsvorhaben I: Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen, Transformation), Inhaltsfeld: Funktionen
Schulinterner Lehrplan Mathematik: Einführungsphase
Schulinterner Lehrplan Mathematik: Einführungsphase Schulinterner Lehrplan Mathematik: Qualifikationsphase Unterrichtsvorhaben I: Eigenschaften von Funktionen (Höhere Ableitungen, besondere Punkte
Kinga Szűcs
Kinga Szűcs 25.10.2011 Die Schülerinnen und Schüler werten graphische Darstellungen und Tabellen von statistischen Erhebungen aus, planen statistische Erhebungen, sammeln systematisch Daten, erfassen sie
Thema: Analysis 2 : Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion)
Curriculum Mathematik für die Qualifikationsphase / Leistungskurs Marienschule Bielefeld, Mai 2015 : Buch: Lambacher Schweizer Mathematik, Qualifikationsphase NRW / LK, GK, Ernst Klett Verlag GmbH, Stuttgart
Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik
Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Mathematik 2.1.1 ÜBERSICHTSRASTER UNTERRICHTSVORHABEN EINFÜHRUNGSPHASE Unterrichtsvorhaben I: Unterrichtsvorhaben II: Beschreibung
Lerninhalte EF Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Hilfsmittel und Methoden. Problemlösen. Argumentieren.
Thema 1: Funktionen und Analysis Grundlegende Eigenschaften von Potenzund Sinusfunktionen (17 UE) 1 Funktionen (1 UE) 2 Lineare und quadratische Funktionen (3 UE) 3 Potenzfunktionen (1 UE) 4 Ganzrationale
Schulinternes Curriculum Mathematik Gymnasium an der Gartenstraße Stufe Q1/Q2
Schulinternes Curriculum Mathematik Gymnasium an der Gartenstraße Stufe Q1/Q2 Unterrichtsvorhaben Unterthemen Vereinbarungen Eigenschaften von Funktionen Integralrechnung bei ganzrationalen Funktionen
Stoffverteilungsplan Mathematik Leistungskurs. Lambacher Schweizer Stochastik ISBN Klassenarbeit
Lambacher Schweizer Q3.1 Grundlegende Begriffe der Grundlagen der Wahrscheinlichkeitstheorie: Beschreiben von Zufallsexperimenten (Laplace-Experimente) unter Verwendung der Begriffe Ergebnis, Ergebnismenge,
Schulinternes Curriculum Mathematik Qualifikationsphase Leistungskurs / Grundkurs
Unterrichtsvorhaben I: Eigenschaften von Funktionen (Höhere Ableitungen, Besondere Punkte von Funktionsgraphen, Funktionen bestimmen, Parameter) Modellieren, Problemlösen Inhaltsfeld: Funktionen und Analysis
Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer Einführungsphase Klettbuch
Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht
Thema: Die Ableitung, ein Schlüsselkonzept (Änderungsrate, Ableitung, Tangente) Zentrale Kompetenzen: Modellieren, Kommunizieren
In der Jahrgangsstufe 10 arbeitet das SGR mit dem Lehrbuch Lambacher Schweizer Einführungsphase und dem TI-nspire CX CAS. Die im eingeführten Lehrbuch vorhandenen Hinweise im Hinblick auf den Einsatz bzw.
Geschwister-Scholl-Gymnasium Unna Schulinterner Lehrplan Qualifikationsphase Leistungskurs / Grundkurs
Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht
Schulinterner Lehrplan des Friedrich-Spee-Gymnasiums Geldern für das Fach. Mathematik
Schulinterner Lehrplan des Friedrich-Spee-Gymnasiums Geldern für das Fach Mathematik Vorbemerkungen Es sind bislang noch keine Stunden zum Wiederholen Vertiefen - Vernetzen angesetzt. Dann kommt man auf
Thema: Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen, Transformation)
1. Halbjahr EF 2. Halbjahr EF Einführungsphase (EF) Vektoren, ein Schlüsselkonzept (Punkte, Vektoren, Rechnen mit Vektoren, Betrag) Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen,
Städt. Gesamtschule Am Lauerhaas Wesel
Städt. Gesamtschule Am Lauerhaas Wesel Schulinterner Lehrplan für die im Fach Mathematik (Stand 02.05.2014) en und Analysis Kapitel I 2 UE Einführung des neuen graphikfähigen Taschenrechners TInspire CX
Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans
Stoffverteilungsplan Mathematik auf der Grundlage des Kernlehrplans Unterrichtsvorhaben I: Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen, Transformation), Inhaltsfeld: Funktionen
Stoffverteilungsplan Mathematik auf Grundlage des Kernlehrplans Qualifikationsphase (Klassen 11 und 12) Leistungskurs und Grundkurs
Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht
Schulinterner Lehrplan Mathematik: Q1 und Q2
Schulinterner Lehrplan Mathematik: Q1 und Q2 Übersichtsraster Unterrichtsvorhaben Qualifikationsphase (Q1) GRUNDKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II : Thema: Optimierungsprobleme (Q-GK-A1)
Schulinternes Curriculum Mathematik Einführungsphase
Schulinternes Curriculum Mathematik Einführungsphase Inhaltsverzeichnis Abfolge der Unterrichtsvorhaben... 2 Unterrichtsvorhaben und... 3 Kompetenzerwartungen in den prozessbezogenen Kompetenzbereichen...
Schulinternes Curriculum für das Fach Mathematik am Erich Kästner- Gymnasium, Köln Sekundarstufe II
1 Schulinternes Curriculum für das Fach Mathematik am Erich Kästner- Gymnasium, Köln Sekundarstufe II Inhalt 1. Inhalte, Ziele und Kompetenzen (fachdidaktische und fachmethodische Grundsätze) 2. Übergeordnete
Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen:
Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht
Stoffverteilungsplan Mathematik Qualifikationsphase auf der Grundlage des Kernlehrplans
Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht
2.1.1 Übersichtsraster Unterrichtsvorhaben
2.1.1 Übersichtsraster Unterrichtsvorhaben Einführungsphase Methodenschwerpunkt: Einführung in die kooperativen Lernformen Medienschwerpunkt: Einführung und Umgang mit dem GTR Unterrichtsvorhaben I: Unterrichtsvorhaben
Stoffverteilungsplan Mathematik Qualifikationsphase auf der Grundlage des Kernlehrplans Gymnasium Lechenich Leistungskurs / Grundkurs
Unterrichtsvorhaben I: Eigenschaften von Funktionen (Höhere Ableitungen, Besondere Punkte von Funktionsgraphen, Funktionen bestimmen, Parameter) Modellieren, Inhaltsfeld: Funktionen und Analysis (A) Fortführung
Abdeckung der inhaltlichen Schwerpunkte im Fach Mathematik für die Abiturprüfung 2009 in Nordrhein- Westfalen
Abdeckung der inhaltlichen Schwerpunkte im Fach Mathematik für die Abiturprüfung 2009 in Nordrhein- durch die Schülerbücher Lambacher-Schweizer - Analysis Grundkurs Ausgabe Nordrhein- (ISBN 978-3-12-732220-0)
Kernlehrplan Mathematik: Einführungsphase
Eine umfassende mathematische Grundbildung im Mathematikunterricht kann erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht werden. Entsprechend dieser
Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans
Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht
Schulinternes Curriculum Mathematik für die Qualifikationsphase (GK und LK) auf Grundlage des Kernlehrplans für NRW
Übersicht über die einzelnen Unterrichtsvorhaben: Unterrichtsvorhaben I: Eigenschaften von Funktionen (höhere Ableitungen, besondere Punkte von Funktionsgraphen, Funktionen bestimmen, Parameter) Inhaltsfeld:
