Mathematik (Leistungskurs)
|
|
|
- Erna Brahms
- vor 7 Jahren
- Abrufe
Transkript
1 Schulinterner Lehrplan für die Qualifikationsphase am St.-Ursula-Gymnasium Attendorn im Fach Stand: 2016 Mathematik (Leistungskurs)
2 Die Kernlehrplane betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht werden kann. Entsprechend dieser Forderung sind die inhalts- und die prozessbezogenen Kompetenzen innerhalb aller Unterrichtsvorhaben eng miteinander verwoben. So werden in den Aufgaben immer wieder Fähigkeiten der vier prozessbezogenen Kompetenzbereiche Argumentieren und, Problemlosen, Modellieren und Werkzeugnutzung aufgegriffen und geübt. Zusätzlich werden größere Aufgabenkontexte angeboten, die es den Schülerinnen und Schülern ermöglichen, sich intensiv mit einem Thema zu beschäftigen und einzelne prozessbezogene Fähigkeiten zu entwickeln. Auch wenn die prozessbezogenen Kompetenzen sich in allen Unterrichtvorhaben wiederfinden, werden in der folgenden Tabelle diejenigen Kompetenzbereiche und Kompetenzen aufgeführt, auf die in dem jeweiligen Unterrichtsvorhaben ein Schwerpunkt gelegt wurde. Unterrichtsvorhaben I: Eigenschaften von Funktionen (Höhere Ableitungen, Besondere Punkte von Funktionsgraphen, Funktionen bestimmen, Parameter) Modellieren, Inhaltsfeld: Funktionen und Analysis (A) Fortführung der Differentialrechnung Funktionen als mathematische Modelle Zeitbedarf: 46 Std. Unterrichtsvorhaben IV: Untersuchung zusammengesetzter Funktionen (Produktregel, Kettenregel) Argumentieren Modellieren, Inhaltsfeld: Funktionen und Analysis (A) Unterrichtsvorhaben II: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion), Argumentieren Inhaltsfeld: Funktionen und Analysis (A) Inhaltliche Schwerpunkte: Grundverständnis des Integralbegriffs Integralrechnung Zeitbedarf: 30 Std. Unterrichtsvorhaben V: Wahrscheinlichkeit Statistik: Ein Schlüsselkonzept Modellieren Inhaltsfeld: Stochastik (S) Unterrichtsvorhaben III: Exponentialfunktion (natürlicher Logarithmus, Ableitungen) Modellieren Inhaltsfeld: Funktionen und Analysis (A) Fortführung der Differentialrechnung Zeitbedarf: 20 Std. Unterrichtsvorhaben VI: Signifikant und relevant? Testen von Hypothesen Modellieren Inhaltsfeld: Stochastik (S) Inhaltliche Schwerpunkte: Funktionen als mathematische Modelle Fortführung der Differentialrechnung Integralrechnung Zeitbedarf: 28 Std. Kenngrößen von Wahrscheinlichkeitsverteilungen Binomialverteilung Zeitbedarf:: 28 Std. Testen von Hypothesen Zeitbedarf: 16 Std. (Summe Q1: 168 Stunden) Ende Q1 - Seite 2 von 15 -
3 Beginn Q2 Unterrichtsvorhaben VII: Geraden und Skalarprodukt (Bewegungen und Schattenwurf) Modellieren Inhaltsfeld: Analytische Geometrie und Lineare Algebra (G) Darstellung und Untersuchung geometrischer Objekte (Geraden) Skalarprodukt Zeitbedarf:: 20 Std. Unterrichtsvorhaben X:: Von Übergängen und Prozessen Modellieren Argumentieren Inhaltsfeld: Stochastik (S) Stochastische Prozesse Zeitbedarf: 14 Std. Unterrichtsvorhaben VIII: Ebenen als Lösungsmengen linearer Gleichungen (Untersuchung geometrischer Objekte) Argumentieren Inhaltsfeld: Analytische Geometrie und Lineare Algebra (G) Darstellung und Untersuchung geometrischer Objekte Lineare Gleichungssysteme Zeitbedarf: 19 Std. Unterrichtsvorhaben XI: Ist die Glocke normal? Modellieren Inhaltsfeld: Stochastik (S) Normalverteilung Zeitbedarf: 15 Std. Unterrichtsvorhaben IX: Abstände und Winkel Inhaltsfeld Analytische Geometrie und Lineare Algebra (G) Lagebeziehungen und Abstände Lineare Gleichungssysteme Zeitbedarf: 25 Std. Unterrichtsvorhaben XII: Strukturierte Wiederholung und Vertiefung sämtlicher Inhaltsfelder der Qualifikationsphase Argumentieren Modellieren Inhaltsfeld: Analysis (A), Analytische Geometrie und Lineare Algebra (G), Stochastik (S) Abiturvorbereitung Zeitbedarf: 18 Std. (Summe Q2: 111 Stunden) Gesamt: 279 Stunden - Seite 3 von 15 -
4 Funktionen und Analysis Funktionen als mathematische Modelle Fortführung der Differentialrechnung Eigenschaften von Funktionen 6 UE 1 Wiederholung: Ableitung 4 UE Exkursion Stetigkeit und Differenzierbarkeit 2 UE das Krümmungsverhalten des Graphen einer Funktion mit Hilfe der 2. Ableitung beschreiben 6 UE notwendige Kriterien und Vorzeichenwechselkriterien sowie weitere hinreichende Kriterien zur Bestimmung von Extrem- und Wendepunkten verwenden 2 UE lineare Gleichungssysteme in Matrix-Vektor-Schreibweise darstellen den Gauß-Algorithmus als Lösungsverfahren für lineare Gleichungssysteme beschreiben den Gauß-Algorithmus ohne digitale Werkzeuge auf Gleichungssysteme mit maximal drei Unbekannten, die mit geringem Rechenaufwand lösbar sind, anwenden 6 UE Parameter einer Funktion mithilfe von Bedingungen, die sich aus dem Kontext ergeben, bestimmen ( Steckbriefaufgaben ) 8 UE Parameter von Funktionen im Anwendungszusammenhang interpretieren Parameter von Funktionen im Kontext interpretieren und ihren Einfluss auf Eigenschaften von Funktionenscharen untersuchen 8 UE Extremalprobleme durch Kombination mit Nebenbedingungen auf Funktionen einer Variablen zurückführen und diese lösen 2 Die Bedeutung der zweiten Ableitung 3 Kriterien für Extremstellen 4 Kriterien für Wendestellen 1 Das Gauß-Verfahren 6 Ganzrationale Funktionen bestimmen 7 Funktionen mit Parametern Funktionenscharen untersuchen 5 Extremwertprobleme mit Nebenbedingungen Modellieren Strukturieren Annahmen treffen und begründet Vereinfachungen einer realen Situation vornehmen, Mathematisieren zunehmend komplexe Sachsituationen in mathematische Modelle übersetzen, mithilfe mathematischer Kenntnisse und Fertigkeiten eine Lösung innerhalb des mathematischen Modells erarbeiten, Validieren die erarbeitete Lösung wieder auf die Sachsituation beziehen die Angemessenheit aufgestellter (ggf. konkurrierender) Modelle für die Fragestellung beurteilen. Lösen Argumentieren Begründen Fragen zu einer gegebenen Problemsituation finden und stellen einfache und komplexe mathematische Probleme, analysieren und strukturieren die Problemsituation erkennen und formulieren, Ideen für mögliche Lösungswege entwickeln, ausgewählte Routineverfahren auch hilfsmittelfrei zur Lösung einsetzen, einschränkende Bedingungen berücksichtigen einen Lösungsplan zielgerichtet ausführen mathematische Regeln bzw. Sätze und sachlogische Argumente für Begründungen nutzen, vermehrt logische Strukturen berücksichtigen (notwendige / hinreichende Bedingung, Folgerungen / Äquivalenz, Und- / Oder- Verknüpfungen, Negation, All- und Existenzaussagen), Digitale zum Lösen von Gleichungen und Gleichungssystemen Darstellen von Funktionen (grafisch und als Wertetabelle); zielgerichtetes Variieren der Parameter von Funktionen, grafisches Messen von Steigungen; Berechnen der Ableitung einer Funktion an einer Stelle 4 UE Wiederholen Vertiefen Vernetzen - Seite 4 von 15 -
5 Funktionen und Analysis Grundverständnis des Integralbegriffs Integralrechnung 4 UE Produktsummen im Kontext als Rekonstruktion des Gesamtbestandes oder Gesamteffektes einer Größe interpretieren, die Inhalte von orientierten Flächen im Kontext deuten, zu einer gegebenen Randfunktion die zugehörige Flächeninhaltsfunktion skizzieren 4 UE an geeigneten Beispielen den Übergang von der Produktsumme zum Integral auf der Grundlage eines propädeutischen Grenzwertbegriffs erläutern und vollziehen 4 UE geometrisch-anschaulich den Zusammenhang zwischen 2 Änderungsrate und Integralfunktion erläutern den Hauptsatz der Differential- und Integralrechnung U unter Verwendung eines anschaulichen Stetigkeitsbegriffs E begründen 2 UE Stammfunktionen ganzrationaler Funktionen bestimmen, die Intervalladditivität und Linearität von Integralen nutzen 2 UE den Gesamtbestand oder Gesamteffekt einer Größe aus der Änderungsrate und der Randfunktion ermitteln, Flächeninhalte mit Hilfe von bestimmten und uneigentlichen Integralen ermitteln Integrale mithilfe von gegebenen oder von Nachschlagewerken entnommenen Stammfunktionen oder numerisch bestimmen Schlüsselkonzept: Integral 1 Rekonstruieren einer Größe 2 Das Integral 3 Der Hauptsatz der Differenzial- und Integralrechnung 4 Bestimmung von Stammfunktionen 5 Integral und Flächeninhalt Argumentieren Vermuten Begründen Rezipieren Produzieren Vermutungen aufstellen, Vermutungen beispielgebunden unterstützen, Vermutungen mithilfe von Fachbegriffen und unter Berücksichtigung der logischen Struktur präzisieren, Zusammenhänge zwischen Begriffen herstellen (Ober- / Unterbegriff) vorgegebene Argumentationen und mathematische Beweise erklären Informationen aus zunehmend komplexen mathematikhaltigen Texten und Darstellungen, aus authentischen Texten, mathematischen Fachtexten sowie aus Unterrichtsbeiträgen erfassen, strukturieren und formalisieren, Beobachtungen, bekannte Lösungswege und Verfahren beschreiben, mathematische Begriffe in theoretischen und in Sachzusammenhängen erläutern. eigene Überlegungen formulieren und eigene Lösungswege beschreiben, begründet eine geeignete Darstellungsform auswählen, flexibel zwischen mathematischen Darstellungsformen wechseln, Arbeitsschritte nachvollziehbar dokumentieren, Ausarbeitungen erstellen und präsentieren Digitale zum Messen von Flächeninhalten zwischen Funktionsgraph und Abszisse, Ermitteln des Wertes eines bestimmten Integrales, mathematische Hilfsmittel und digitale Werkzeuge zum und Recherchieren, Berechnen und Darstellen nutzen, - Seite 5 von 15 -
6 Funktionen und Analysis Grundverständnis des Integralbegriffs Integralrechnung 2 UE den Zusammenhang zwischen Änderungsrate und Integralfunktion erläutern 4 UE Flächeninhalte mithilfe von bestimmten und uneigentlichen Integralen bestimmen. 2 UE Mittelwerte von Funktionen mit Hilfe der Integralrechnung bestimmen 4 UE Volumina von Körpern, die durch die Rotation um die Abszisse entstehen, mit Hilfe von bestimmten und uneigentlichen Integralen bestimmen Schlüsselkonzept: Integral (Fortsetzung) 6 Integralfunktion 7 Unbegrenzte Flächen - Uneigentliche Integrale 8 Mittelwerte von Funktionen 9 Integral und Rauminhalt 2 UE Wiederholen Vertiefen Vernetzen Argumentieren Vermuten Begründen Rezipieren Produzieren Vermutungen aufstellen, Vermutungen beispielgebunden unterstützen, Vermutungen mithilfe von Fachbegriffen und unter Berücksichtigung der logischen Struktur präzisieren, Zusammenhänge zwischen Begriffen herstellen (Ober- / Unterbegriff) vorgegebene Argumentationen und mathematische Beweise erklären Informationen aus zunehmend komplexen mathematikhaltigen Texten und Darstellungen, aus authentischen Texten, mathematischen Fachtexten sowie aus Unterrichtsbeiträgen erfassen, strukturieren und formalisieren, Beobachtungen, bekannte Lösungswege und Verfahren beschreiben, mathematische Begriffe in theoretischen und in Sachzusammenhängen erläutern. eigene Überlegungen formulieren und eigene Lösungswege beschreiben, begründet eine geeignete Darstellungsform auswählen, flexibel zwischen mathematischen Darstellungsformen wechseln, Arbeitsschritte nachvollziehbar dokumentieren, Ausarbeitungen erstellen und präsentieren Digitale zum Messen von Flächeninhalten zwischen Funktionsgraph und Abszisse, Ermitteln des Wertes eines bestimmten Integrales, mathematische Hilfsmittel und digitale Werkzeuge zum und Recherchieren, Berechnen und Darstellen nutzen, - Seite 6 von 15 -
7 Funktionen und Analysis Funktionen als mathematische Modelle Fortführung der Differentialrechnung Exponentialfunktion 2 UE Eigenschaften von Exponentialfunktionen beschreiben 1 Wiederholung 2 UE die Ableitung der natürlichen Exponentialfunktion bilden die besondere Eigenschaft der natürlichen Exponentialfunktion beschreiben und begründen die Ableitung mithilfe der Approximation durch lineare Funktionen deuten 2 UE die Ableitung von Exponentialfunktionen mit beliebiger Basis bilden in einfachen Fällen zusammengesetzte Funktionen und deren Ableitung bilden 4 UE Wachstums- und Zerfallsvorgänge mit Hilfe funktionaler Ansätze untersuchen 4 UE Exponentialfunktionen zur Beschreibung von Wachstumsund Zerfallsvorgängen verwenden und die Qualität der Modellierung exemplarisch mit begrenztem Wachstum vergleichen 4 UE die natürliche Logarithmusfunktion als Umkehrfunktion der natürlichen Exponentialfunktion nutzen die Ableitung der natürlichen Logarithmusfunktion bilden 2 Die natürliche Exponentialfunktion und ihre Ableitung 3 Natürlicher Logarithmus Ableitung von Exponentialfunktionen 4 Exponentialfunktionen und exponentielles Wachstum 5 Beschränktes Wachstum 6 Logarithmusfunktion und Umkehrfunktion 2 UE Anwendung von Exponential- und Logarithmusfunktionen Wiederholen Vertiefen Vernetzen Modellieren Strukturieren Validieren Lösen Argumentieren Vermuten Begründen Beurteilen Annahmen treffen und begründet Vereinfachungen einer realen Situation vornehmen die erarbeitete Lösung wieder auf die Sachsituation beziehen, die Angemessenheit aufgestellter (ggf. konkurrierender) Modelle für die Fragestellung beurteilen, aufgestellte Modelle mit Blick auf die Fragestellung verbessern, die Abhängigkeit einer Lösung von den getroffenen An-nahmen reflektieren Muster und Beziehungen erkennen, Informationen recherchieren ausgewählte Routineverfahren auch hilfsmittelfrei zur Lösung einsetzen, Werkzeuge auswählen, die den Lösungsweg unterstützen, geeignete Begriffe, Zusammenhänge und Verfahren zur Problemlösung auswählen einschränkende Bedingungen berücksichtigen Vermutungen aufstellen und mithilfe von Fachbegriffen präzisieren math. Regeln und Sätze für Begründungen nutzen überprüfen, inwiefern Ergebnisse, Begriffe und Regeln verallgemeinert werden können, Argumentationsketten hinsichtlich ihrer Reichweite und Übertragbarkeit beurteilen Digitale zum Darstellen von Funktionen (graphisch und als Wertetabelle), grafischen Messen von Steigungen, Berechnen der Ableitung einer Funktion an einer Stelle Die Möglichkeiten und Grenzen mathematischer Hilfsmittel und digitaler Werkzeuge reflektieren und begründen - Seite 7 von 15 -
8 Funktionen und Analysis Funktionen als mathematische Modelle Fortführung der Differentialrechnung 2 UE in einfachen Fällen zusammengesetzte Funktionen bilden (Summe, Produkt, Verkettung) Zusammengesetzte Funktionen 1 Neue Funktionen aus alten Funktionen: Summe, Produkt, Verkettung Lösen heuristische Strategien und Prinzipien nutzen, Werkzeuge auswählen, die den Lösungsweg unterstützen, geeignete Begriffe, Zusammenhänge und Verfahren zur Problemlösung auswählen 2 UE die Produktregel auf Verknüpfungen von ganzrationalen Funktionen und Exponentialfunktionen anwenden die Produktregel zum Ableiten von Funktionen anwenden 4 UE die Kettenregel auf Verknüpfungen der natürlichen Exponentialfunktion mit linearen Funktionen anwenden, die Ableitungen von Potenzfunktionen mit ganzzahligen Exponenten bilden die Ableitungen von Potenzfunktionen mit rationalen Exponenten bilden, die Produkt- und Kettenregel zum Ableiten von Funktionen anwenden 6 UE verwenden notwendiger Kriterien und hinreichender Kriterien zur Bestimmung von Extrem- und Wendepunkten Den Einfluss von Parametern auf Eigenschaften von Funktionenscharen untersuchen Parameter von Funktionen im Kontext interpretieren 2 UE Eigenschaften von zusammengesetzten Funktionen (Summe, Produkt, Verkettung) argumentativ auf deren Bestandteile zurückführen die natürliche Logarithmusfunktion als Stammfunktion der Funktion f(x) = 1/x nutzen 2 Produktregel 3 Kettenregel 4 Zusammengesetzte Funktionen untersuchen, auch im Sachzusammenhang 7 Untersuchung von zusammengesetzten Logarithmusfunktionen 8 UE Integration durch Substitution und partielle Integration Integrationsverfahren 4 UE Anwendung der Integralrechnung Wiederholen Vertiefen Vernetzen Argumentieren Vermuten Begründen Beurteilen Vermutungen aufstellen, beispielgebunden unterstützen und mithilfe von Fachbegriffen präzisieren, math. Regeln und Sätze für Begründungen nutzen sowie Argumente zu Argumentationsketten verknüpfen, verschiedene Argumentationsstrategien nutzen lückenhafte Argumentationsketten erkennen und vervollständigen, fehlerhafte Argumentationsketten erkennen und korrigieren Produzieren eigene Überlegungen formulieren und eigene Lösungswege beschreiben, Fachsprache und fachspezifische Notation verwenden, Digitale zum zielgerichteten Variieren der Parameter von Funktionen, grafischen Messen von Steigungen Berechnen der Ableitung einer Funktion an einer Stelle Möglichkeiten und Grenzen mathematischer Hilfsmittel und digitaler Werkzeuge reflektieren und begründen. - Seite 8 von 15 -
9 Stochastik Kenngrößen von Wahrscheinlichkeitsverteilungen Binomialverteilung Testen von Hypothesen Wahrscheinlichkeit Statistik 3 UE untersuchen der Lage- und Streumaße von Stichproben 1 Daten darstellen und durch Kenngrößen beschreiben 3 UE den Begriff der Zufallsgröße an geeigneten Beispielen erläutern den Erwartungswert μ und die Standardabweichung σ von Zufallsgrößen bestimmen und damit prognostische Aussagen treffen 6 UE Bernoulliketten zur Beschreibung entsprechender Zufallsexperimente verwenden die Binomialverteilung erklären und damit Wahrscheinlichkeiten berechnen die kombinatorische Bedeutung der Binomialkoeffizienten erklären 6 UE den Einfluss der Parameter n und p auf Binomialverteilungen und ihre graphische Darstellung beschreiben die Sigma-Regeln für prognostische Aussagen nutzen 4 UE Binomialverteilungen und ihre Kenngrößen zur Lösung von Problemstellungen nutzen 6 UE anhand einer vorgegebenen Entscheidungsregel aus einem Stichprobenergebnis auf die Grundgesamtheit schließen 2 Erwartungswert und Standardabweichung von Zufallsgrößen 3 Bernoulli-Experimente, Binomialverteilung 4 Praxis der Binomialverteilung 5 mit der Binomialverteilung 6. Von der Stichprobe auf die Grundgesamtheit schließen Modellieren Strukturieren zunehmend komplexe Sachsituationen mit Blick auf konkrete Fragestellungen erfassen und strukturieren, Annahmen treffen und begründet Vereinfachungen einer realen Situation vornehmen, Mathematisieren zunehmend komplexe Sachsituationen in mathematische Modelle übersetzen, mithilfe mathematischer Kenntnisse und Fertigkeiten eine Lösung innerhalb des mathematischen Modells erarbeiten, Validieren die erarbeitete Lösung wieder auf die Sachsituation beziehen, die Angemessenheit aufgestellter [ ] Modelle für die Fragestellung beurteilen, die Abhängigkeit einer Lösung von den getroffenen Annahmen reflektieren. Reflektieren Diskutieren Fragen zu einer gegebenen Problemsituation finden und stellen, die Plausibilität von Ergebnissen überprüfen, Ergebnisse vor dem Hintergrund der Fragestellung interpretieren Ursachen von Fehlern analysieren und reflektieren zu mathematikhaltigen, auch fehlerbehafteten Aussagen und Darstellungen begründet und konstruktiv Stellung nehmen, Entscheidungen auf der Grundlage fachbezogener Diskussionen herbeiführen Digitale zum Generieren von Zufallszahlen, Ermitteln der Kennzahlen statistischer Daten, Variieren der Parameter von Wahrscheinlichkeitsverteilungen Erstellen der Histogramme von Wahrscheinlichkeitsverteilungen Berechnen der Kennzahlen von Wahrscheinlichkeitsverteilungen Berechnen von Wahrscheinlichkeiten bei binomialverteilten Zufallsgrößen. - Seite 9 von 15 -
10 Stochastik Kenngrößen von Wahrscheinlichkeitsverteilungen Binomialverteilung Testen von Hypothesen 4 UE Hypothesentests bezogen auf den Sachkontext und das Erkenntnisinteresse interpretieren Wahrscheinlichkeit Statistik (Fortsetzung) 7. Zweiseitiger Signifikanztest Modellieren Strukturieren zunehmend komplexe Sachsituationen mit Blick auf konkrete Fragestellungen erfassen und strukturieren Mathematisieren zunehmend komplexe Sachsituationen in mathematische Modelle übersetzen, mithilfe mathematischer Kenntnisse und Fertigkeiten eine Lösung innerhalb des mathematischen Modells erarbeiten. 3 UE Hypothesentests bezogen auf den Sachkontext und das Erkenntnisinteresse interpretieren 8. Einseitiger Signifikanztest 3 UE Fehler 1. und 2. Art beschreiben und beurteilen 9. Fehler beim Testen von Hypothesen 2 UE Interpretation der Ergebnisse beim Testen von Hypothesen 10. Signifikanz und Relevanz Reflektieren Fragen zu einer gegebenen Problemsituation finden und stellen, die Plausibilität von Ergebnissen überprüfen, Ergebnisse vor dem Hintergrund der Fragestellung interpretieren verschiedene Lösungswege bezüglich Unterschieden und Gemeinsamkeiten vergleichen Ursachen von Fehlern analysieren und reflektieren Fragestellungen auf dem Hintergrund einer Lösung variieren 4 UE vermischte Anwendungsaufgaben zur Stochastik Wiederholen Vertiefen Vernetzen Argumentieren Beurteilen lückenhafte Argumentationsketten erkennen und vervollständigen, fehlerhafte Argumentationsketten erkennen und korrigieren, überprüfen, inwiefern Ergebnisse, Begriffe und Regeln verallgemeinert werden können, Argumentationsketten hinsichtlich ihrer Reichweite und Übertragbarkeit beurteilen Diskutieren zu mathematikhaltigen, auch fehlerbehafteten Aussagen und Darstellungen begründet und konstruktiv Stellung nehmen, Entscheidungen auf der Grundlage fachbezogener Diskussionen herbeiführen - Seite 10 von 15 -
11 Analytische Geometrie und lineare Algebra Darstellung und Untersuchung geometrischer Objekte Skalarprodukt Kapitel V Geraden* 3 UE Wiederholung der Grundbegriffe 1 Wiederholung: Punkte im Raum, Vektoren, Rechnen mit Vektoren 4 UE Geraden in Parameterform darstellen den Parameter von Geradengleichungen im Sachkontext interpretieren Strecken in Parameterform darstellen 4 UE die Lösungsmenge von linearen Gleichungssystemen interpretieren Lagebeziehungen zwischen Geraden untersuchen Schnittpunkte von Geraden berechnen und sie im Sachkontext deuten 2 Geraden 3 Gegenseitige Lage von Geraden 4 UE das Skalarprodukt geometrisch deuten und es berechnen 4 Zueinander orthogonale Vektoren - Skalarprodukt Modellieren Strukturieren zunehmend komplexe Sachsituationen mit Blick auf eine konkrete Fragestellung erfassen und strukturieren, Annahmen treffen und begründet Vereinfachungen einer realen Situation vornehmen, Mathematisieren zunehmend komplexe Sachsituationen in mathematische Modelle übersetzen, mithilfe math. Kenntnisse und Fertigkeiten eine Lösung innerhalb des math. Modells erarbeiten, Validieren die erarbeitete Lösung wieder auf die Sachsituation beziehen, die Angemessenheit aufgestellter (ggf. konkurrierender) Modelle für die Fragestellung beurteilen, aufgestellte Modelle mit Blick auf die Fragestellung verbessern Geodreiecke, geometrische Modelle und dynamische Geometrie- Software nutzen; Digitale zum grafischen Darstellen von Ortsvektoren, Vektorsummen und Geraden, Darstellen von Objekten im Raum 3 UE mit Hilfe des Skalarprodukts geometrische Objekte und Situationen im Raum untersuchen (Orthogonalität, Winkelund Längenberechnung) 5 Winkel zwischen Vektoren - Skalarprodukt 2 UE Wiederholen Vertiefen Vernetzen - Seite 11 von 15 -
12 Analytische Geometrie und lineare Algebra lineare Gleichungssysteme Darstellung und Untersuchung geometrischer Objekte Lagebeziehungen 3 UE die Lösungsmenge von linearen Gleichungssystemen interpretieren Ebenen 2 Lösungsmengen linearer Gleichungssysteme 3 UE Ebenen in Parameterform darstellen 3 Ebenen im Raum - Parameterform 4 UE Lagebeziehungen zwischen Geraden und Ebenen untersuchen Durchstoßpunkte von Geraden mit Ebenen berechnen und sie im Sachkontext deuten 4 UE Durchstoßpunkte von Geraden mit Ebenen berechnen und sie im Sachkontext deuten geradlinig begrenzte Punktmengen in Parameterform darstellen 4 Lagebeziehungen 5 Geometrische Objekte und Situationen im Raum 2 UE Wiederholen Vertiefen Vernetzen Lösen Reflektieren Produzieren Diskutieren wählen heuristische Hilfsmittel (z. B. Skizze, informative Figur, Tabelle, experimentelle Verfahren) aus, um die Situation zu erfassen Ideen für mögliche Lösungswege entwickeln Werkzeuge auswählen, die den Lösungsweg unterstützen, heuristische Strategien und Prinzipien (z. B. [...]Darstellungswechsel, Zerlegen und Ergänzen, Symmetrien verwenden, Invarianten finden, Zurückführen auf Bekanntes, Zerlegen in Teilprobleme, Fallunterscheidungen, Vorwärts- und Rückwärtsarbeiten, [ ])nutzen, einen Lösungsplan zielgerichtet ausführen, verschiedene Lösungswege bezüglich Unterschieden und Gemeinsamkeiten vergleichen, Lösungswege mit Blick auf Richtigkeit und Effizienz beurteilen und optimieren, Ursachen von Fehlern analysieren und reflektieren. die Fachsprache und fachspezifische Notation in angemessenem Umfang verwenden, begründet eine geeignete Darstellungsform auswählen, Arbeitsschritte nachvollziehbar dokumentieren, Ausarbeitungen erstellen und präsentieren ausgearbeitete Lösungen hinsichtlich ihrer Verständlichkeit und fachsprachlichen Qualität vergleichen und beurteilen. Digitale zum Lösen von Gleichungen und Gleichungssystemen Darstellen von Objekten im Raum - Seite 12 von 15 -
13 (1 UE entspricht Analytische Geometrie und lineare Algebra lineare Gleichungssysteme Darstellung und Untersuchung geometrischer Objekte Lagebeziehungen und Abstände 4 UE Ebenen in Koordinatenform darstellen Ebenen in Normalenform darstellen und diese zur Orientierung im Raum nutzen 3 UE Ebenen in Normalenform darstellen und diese zur Orientierung im Raum nutzen 2 UE Abstände zwischen Punkten, Geraden und Ebenen bestimmen 2 UE Abstände zwischen Punkten, Geraden und Ebenen bestimmen 4 UE Abstände zwischen Punkten, Geraden und Ebenen bestimmen 4 UE mit Hilfe des Skalarprodukts geometrische Objekte und Situationen im Raum untersuchen (Orthogonalität, Winkel- und Längenberechnung) 4 UE das Vektorprodukt zur Berechnung von orthogonalen Vektoren, zur Flächenberechnung und zur Berechnung von Volumina nutzen Abstände und Winkel 1. Normalengleichung und Koordinatengleichung 2. Lagebeziehungen 3. Abstand zu einer Ebene 4. Abstand eines Punktes von einer Geraden 5. Abstand windschiefer Geraden 6. Schnittwinkel 7. Vektorprodukt 2 UE Wiederholen Vertiefen Vernetzen Lösen Reflektieren Produzieren Diskutieren wählen heuristische Hilfsmittel (z. B. Skizze, informative Figur, Tabelle, experimentelle Verfahren) aus, um die Situation zu erfassen Ideen für mögliche Lösungswege entwickeln Werkzeuge auswählen, die den Lösungsweg unterstützen, heuristische Strategien und Prinzipien (z. B. [...]Darstellungswechsel, Zerlegen und Ergänzen, Symmetrien verwenden, Invarianten finden, Zurückführen auf Bekanntes, Zerlegen in Teilprobleme, Fallunterscheidungen, Vorwärts- und Rückwärtsarbeiten, [ ])nutzen, einen Lösungsplan zielgerichtet ausführen, verschiedene Lösungswege bezüglich Unterschieden und Gemeinsamkeiten vergleichen, Lösungswege mit Blick auf Richtigkeit und Effizienz beurteilen und optimieren, Ursachen von Fehlern analysieren und reflektieren. die Fachsprache und fachspezifische Notation in angemessenem Umfang verwenden, begründet eine geeignete Darstellungsform auswählen, Arbeitsschritte nachvollziehbar dokumentieren, Ausarbeitungen erstellen und präsentieren ausgearbeitete Lösungen hinsichtlich ihrer Verständlichkeit und fachsprachlichen Qualität vergleichen und beurteilen. Digitale zum Lösen von Gleichungen und Gleichungssystemen Darstellen von Objekten im Raum - Seite 13 von 15 -
14 Stochastik Stochastische Prozesse 2 UE stochastische Prozesse mithilfe von Zustandsvektoren und stochastischen Übergangsmatrizen beschreiben Kapitel X Stochastische Prozesse 1 Stochastische Prozesse 4 UE 2 Stochastische Matrizen 2 UE die Matrizenmultiplikation zur Untersuchung stochastischer 3 Matrizen multiplizieren 5 UE Prozesse verwenden (Vorhersage nachfolgender Zustände, numerisches Bestimmen sich stabilisierender Zustände). 4 Potenzen von Matrizen - Grenzverhalten 5 UE Wiederholen Vertiefen Vernetzen Modellieren Strukturieren Annahmen treffen und begründet Vereinfachungen einer realen Situation vornehmen, Mathematisieren einem mathematischen Modell verschiedene passende Sachsituationen zuordnen eine gegebene Problemsituation analysieren und strukturieren, heuristische Hilfsmittel auswählen, um die Situation zu erfassen, Muster und Beziehungen erkennen Digitale zum Durchführen von Operationen mit Vektoren und Matrizen Die Möglichkeiten und Grenzen mathematischer Hilfsmittel und digitaler Werkzeuge reflektieren und begründen. - Seite 14 von 15 -
15 Stochastik Kenngrößen von Wahrscheinlichkeitsverteilungen Normalverteilung Testen von Hypothesen 4 UE diskrete und stetige Zufallsgrößen unterscheiden und die Verteilungsfunktion als Integralfunktion deuten Kapitel IX Stetige Zufallsgrößen Normalverteilung 1. Stetige Zufallsgrößen: Integrale besuchen die Stochastik Modellieren Strukturieren zunehmend komplexe Sachsituationen mit Blick auf konkrete Fragestellungen erfassen und strukturieren Mathematisieren zunehmend komplexe Sachsituationen in mathematische Modelle übersetzen, mithilfe mathematischer Kenntnisse und Fertigkeiten eine Lösung innerhalb des mathematischen Modells erarbeiten. 2 UE den Einfluss der Parameter μ und σ auf die Normalverteilung beschreiben und die graphische Darstellung ihrer Dichtefunktion (Gauß sche Glockenkurve) 4 UE stochastische Situationen untersuchen, die zu annähernd normalverteilten Zufallsgrößen führen 2. Die Analysis der Gauß'schen Glockenfunktion 3. Normalverteilung, Satz von de Moivre-Laplace Reflektieren Fragen zu einer gegebenen Problemsituation finden und stellen die Plausibilität von Ergebnissen überprüfen, Ergebnisse vor dem Hintergrund der Fragestellung interpretieren Ursachen von Fehlern analysieren und reflektieren 2 UE Hypothesentests mit Hilfe der Normalverteilung 4. Testen bei der Normalverteilung 3 UE vermischte Anwendungsaufgaben zur Stochastik mit Hilfe der Normalverteilung 5. Wiederholen Vertiefen Vernetzen Diskutieren zu mathematikhaltigen, auch fehlerbehafteten Aussagen und Darstellungen begründet und konstruktiv Stellung nehmen, Entscheidungen auf der Grundlage fachbezogener Diskussionen herbeiführen Digitale zum Berechnen von Wahrscheinlichkeiten bei normalverteilten Zufallsgrößen. - Seite 15 von 15 -
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell und Typ sind mit
Stoffverteilungsplan Mathematik Qualifikationsphase (GK und LK) auf der Grundlage des Kernlehrplans
Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht
Qualifikationsphase (Q1) LEISTUNGSKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II:
Qualifikationsphase (Q1) LEISTUNGSKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II: Eigenschaften von Funktionen (Höhere Ableitungen, Besondere Punkte von Funktionsgraphen, Funktionen bestimmen,
Mathematik Schulinterner Lehrplan Qualifikationsphase (GK/LK) Geschwister-Scholl-Gymnasium Pulheim. gültig ab 2015/16
Mathematik Schulinterner Lehrplan (GK/LK) Geschwister-Scholl-Gymnasium Pulheim gültig ab 2015/16 Unterrichtsvorhaben I: Eigenschaften von Funktionen (Höhere Ableitungen, besondere Punkte von Funktionsgraphen,
Qualifikationsphase (Q1) GRUNDKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II :
Qualifikationsphase (Q1) GRUNDKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II : Eigenschaften von Funktionen (Höhere Ableitungen, Besondere Punkte von Funktionsgraphen, Funktionen bestimmen, Optimierungsprobleme,
Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen:
In den Jahrgangsstufen 11 und 12 arbeitet das SGR mit dem Lehrbuch Lambacher Schweizer Qualifikationsphase LK / GK und dem TI-nspire CX CAS. Die im eingeführten Lehrbuch vorhandenen Hinweise im Hinblick
Stoffverteilungsplan Mathematik Qualifikationsphase Grundkurs
Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht
Schulinternes Curriculum Mathematik Qualifikationsphase Leistungskurs / Grundkurs
Unterrichtsvorhaben I: Eigenschaften von Funktionen (Höhere Ableitungen, Besondere Punkte von Funktionsgraphen, Funktionen bestimmen, Parameter) Modellieren, Problemlösen Inhaltsfeld: Funktionen und Analysis
Gymnasium der Stadt Menden Stoffverteilung Mathematik Q1/Q2, LK und GK, Stand August 2015 (vorläufig)
Stoffverteilung Mathematik Q1/Q2, LK und GK, Stand August 2015 (vorläufig) Vorbemerkung: Der folgende Lehrplan wird erstmalig im Schuljahr 2015/16 umgesetzt. Nach einem erstmaligen Durchlauf zur Erprobung
Lehrwerk: Lambacher Schweizer, Klett Verlag. Grundkurs, Leistungskurs
Jahrgangsstufe Q1 Analysis Lerninhalte Q1 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Hilfsmittel und Methoden 1 Funktionen und Analysis Funktionen als mathematische Modelle Fortführung der
Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen:
Lehrbuch: Lambacher Schweizer, Grundkurs Die hier vereinbarte Reihenfolge der Unterrichtsvorhaben ist verbindlich. Bei besonderen inhaltlichen Schwerpunktsetzungen in den offiziellen Abiturvorgaben kann
Schulcurriculum Mathematik für die August-Dicke-Schule Qualifikationsphase Leistungskurs
Stand: 19.08.2016 Grundlage Kernlehrplan G8 für die Sekundarstufe II (2014) Seite 1 von 7 Die angegebenen Zeiträume sind nur Anhaltswerte. Bei einem Rahmen von 30 Wochen ergeben sich mögliche Freiräume.
Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen:
Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht
Schulinterner Lehrplan Mathematik Stufe EF
Schulinterner Lehrplan Mathematik Stufe EF Thema Funktionstypen Inhaltsbezogene Kompetenzen: Die Schülerinnen und Schüler Funktionen und Analysis beschreiben die Eigenschaften einer Funktion und berechnen
Schulinternes Curriculum Mathematik für die Qualifikationsphase (GK und LK) auf Grundlage des Kernlehrplans für NRW
Übersicht über die einzelnen Unterrichtsvorhaben: Unterrichtsvorhaben I: Eigenschaften von Funktionen (höhere Ableitungen, besondere Punkte von Funktionsgraphen, Funktionen bestimmen, Parameter) Inhaltsfeld:
Fach Mathematik Jahrgangsstufe Q1 / Q2
Gymnasium Herkenrath Schulinternes Curriculum Fach Mathematik Jahrgangsstufe Q1 / Q2 Stand: November 2014 Unterrichtsvorhaben I: (Q1.1) Unterrichtsvorhaben II: (Q1.1 / Q1.2) Unterrichtsvorhaben III: (Q1.1)
Thema: Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen, Transformation)
1. Halbjahr EF 2. Halbjahr EF Einführungsphase (EF) Vektoren, ein Schlüsselkonzept (Punkte, Vektoren, Rechnen mit Vektoren, Betrag) Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen,
Thema: Die Ableitung, ein Schlüsselkonzept (Änderungsrate, Ableitung, Tangente) Zentrale Kompetenzen: Modellieren, Kommunizieren
Unterrichtsvorhaben I: Eigenschaften von (Wiederholung und Symmetrie, Nullstellen, Transformation), Grundlegende Eigenschaften von Potenz-und Sinusfunktionen Zeitbedarf: 23 Std. Unterrichtsvorhaben IV:
Curriculum Mathematik Einführungsphase an der Gesamtschule Marienheide (abgestimmt auf das Lehrwerk Lambacher Schweizer Einführungsphase)
Unterrichtsvorhaben I: Eigenschaften von (Wiederholung und Symmetrie, Nullstellen, Transformation), Inhaltsfeld: (A) Grundlegende Eigenschaften von Potenz-und Sinusfunktionen Zeitbedarf: 23 Std. Unterrichtsvorhaben
Kern- und Schulcurriculum Mathematik Klasse 11/12. Stand Schuljahr 2012/13
Kern- und Schulcurriculum Mathematik Klasse 11/12 Stand Schuljahr 2012/13 UE 1 Wiederholung Funktionen Änderungsrate Ableitung Ableitung berechnen Ableitungsfunktion Ableitungsregeln für Potenz, Summe
Mathematik-Leistungskurs in der Q1/Q2 (Stand: Juni 2016)
Mathematik-Leistungskurs in der Q1/Q2 (Stand: Juni 2016) 1. Teil: Übersichtsraster Unterrichtsvorhaben Qualifikationsphase 1 LK Thema (Q1 LK UV1 A1): Modellieren von Sachsituationen mit Hilfe ganzrationaler
Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik
Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Mathematik 2.1.1 ÜBERSICHTSRASTER UNTERRICHTSVORHABEN EINFÜHRUNGSPHASE Unterrichtsvorhaben I: Unterrichtsvorhaben II: Beschreibung
Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans
Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht
Schulinternes Curriculum Mathematik Einführungsphase
Schulinternes Curriculum Mathematik Einführungsphase Inhaltsverzeichnis Abfolge der Unterrichtsvorhaben... 2 Unterrichtsvorhaben und... 3 Kompetenzerwartungen in den prozessbezogenen Kompetenzbereichen...
Fachcurriculum Mathematik Kursstufe Kepler-Gymnasium Pforzheim
Kompetenzen und Inhalte des Bildungsplans - besondere Eigenschaften von Funktionen rechnerisch und mithilfe des CAS bestimmen; Unterrichtsinhalte Analysis Bestimmung von Extrem- und Wendepunkten (ca. 8-11
Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer Einführungsphase Klettbuch
Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht
Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans
Stoffverteilungsplan Mathematik auf der Grundlage des Kernlehrplans Unterrichtsvorhaben I: Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen, Transformation), Inhaltsfeld: Funktionen
Schulinternes Curriculum. Mathematik Sekundarstufe II
Schulinternes Curriculum Mathematik Sekundarstufe II August 2015 I Inhaltsverzeichnis Entscheidungen zum Unterricht Unterrichtsvorhaben 1. Übersichtsraster für die Einführungs- und Qualifikationsphase
Abdeckung der inhaltlichen Schwerpunkte im Fach Mathematik für die Abiturprüfung 2009 in Nordrhein- Westfalen
Abdeckung der inhaltlichen Schwerpunkte im Fach Mathematik für die Abiturprüfung 2009 in Nordrhein- durch die Schülerbücher Lambacher-Schweizer - Analysis Grundkurs Ausgabe Nordrhein- (ISBN 978-3-12-732220-0)
Kernlehrplan Mathematik: Einführungsphase
Eine umfassende mathematische Grundbildung im Mathematikunterricht kann erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht werden. Entsprechend dieser
Schulinternes Curriculum Mathematik SII
Schulinternes Curriculum Mathematik SII Koordinatengeometrie Gerade, Parabel, Kreis Lösen von LGS mithilfe des Gaußverfahrens zur Bestimmung von Geraden und Parabeln 11 Differentialrechnung ganzrationaler
Schulinterne Vereinbarungen für den Unterricht in Sekundarstufe II
Schulinterne ereinbarungen für den Unterricht in Sekundarstufe (Beschluss der Fachkonferenz Mathematik vom 16.11.2011) Einführungsphase Funktionen (LS und ) (LS ) Kurvendiskussion ganzrationaler Funktionen
Lösen ausgewählte Routineverfahren auch hilfsmittelfrei zur Potenzfunktionen mit ganzzahligen
Einführungsphase: Funktionen und Analysis Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Vorhabenbezogene Absprache Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext
Thema: Die Ableitung, ein Schlüsselkonzept (Änderungsrate, Ableitung, Tangente) Zentrale Kompetenzen: Modellieren, Kommunizieren
In der Jahrgangsstufe 10 arbeitet das SGR mit dem Lehrbuch Lambacher Schweizer Einführungsphase und dem TI-nspire CX CAS. Die im eingeführten Lehrbuch vorhandenen Hinweise im Hinblick auf den Einsatz bzw.
Mathematik Sekundarstufe II - Themenübersicht
Mathematik Sekundarstufe II - Themenübersicht Unterrichtsvorhaben EF-I: Einführungsphase Unterrichtsvorhaben EF-II: Grundlegende Eigenschaften von Potenzfunktionen, ganzrationalen Funktionen und Sinusfunktionen
Schulinternes Curriculum Mathematik Sekundarstufe II/Lk. Stand: November 2011
Schulinternes Curriculum Mathematik Sekundarstufe II/Lk Stand: November 2011 Bemerkungen: - Die angegebenen Seitenzahlen beziehen sich auf das eingeführt Lehrwerk Lambacher-Schweizer Leistungskurs aus
EdM Nordrhein-Westfalen Qualifikationsphase Bleib fit in Funktionsuntersuchungen. 1 Kurvenanpassung Lineare Gleichungssysteme
EdM Nordrhein-Westfalen Qualifikationsphase 978-3-507-87900-3 Bleib fit in Differenzialrechnung Bleib fit in Funktionsuntersuchungen 1 Kurvenanpassung Lineare Gleichungssysteme Lernfeld: Krumm, aber doch
Schulinterner Lehrplan Mathematik Qualifikationsphase Grundkurs
Schulinterner Lehrplan Heinrich-Böll-Gymnasium 1/6 Schulinterner Lehrplan Mathematik Qualifikationsphase Grundkurs Kapitel I Ableitung 1 Die natürliche Exponentialfunktion und ihre Ableitung 2 Exponentialgleichungen
Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1)
Schulinternes Curriculum - Mathematik - Einführungsphase Einführungsphase Funktionen und Analysis (A) Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) beschreiben
Schulinterner Lehrplan Mathematik Qualifikationsphase Leistungskurs
Schulinterner Lehrplan Heinrich-Böll-Gymnasium 1/8 Stand:22.6.2012 Schulinterner Lehrplan Mathematik Qualifikationsphase Leistungskurs 1.Halbjahr Kapitel I Ableitung 1. Die natürliche Exponentialfunktion
Jahrgangscurriculum 11.Jahrgang
Jahrgangscurriculum 11.Jahrgang Koordinatengeometrie Geraden (Lage von Geraden; Schnittwinkel) Abstände im KOSY Kreise Kreise und Geraden Parabeln und quadratische Funktionen (Parabel durch 3 Punkte, Anwendungsaufgaben)
Schulinternes Curriculum am SG Mathematik GK Q1 für die Themen in der Analysis im 1. Halbjahr, verabschiedet von der Fachkonferenz am
Schulinternes Curriculum am SG Mathematik GK Q1 für die Themen in der Analysis im 1. Halbjahr, verabschiedet von der Fachkonferenz am 16.12.14 Qualifikationsphase (Q1) GRUNDKURS Unterrichtsvorhaben Q1-I:
Stoffverteilungsplan Mathematik EF auf der Grundlage des Kernlehrplans Gymnasium An der Stenner Klettbuch
Bei der Erstellung des Stoffverteilungsplans wurde auf den Entwurf vom Klett Verlag zurückgegriffen. Hierbei wurde das Lehrbuch Lambacher Schweizer Mathematik zugrunde gelegt. Klettbuch 978-3-12-735431-2
Stoffverteilungsplan für das Fach Mathematik Qualifikationsphase
Stoffverteilungsplan für das Fach Mathematik Qualifikationsphase Schuljahrgang 11 Analysis Ableitungen und Funktionsuntersuchungen Ableitungsregeln, insbesondere Produkt-, Quotienten- und Kettenregel graphisches
Wie steht s mit dir? Buch Schätze dich ein! Inhaltsbezogene Kompetenzen LS 11/12
Mathematik - Lernstandsbogen Kurs: Jahrgang Q1.1 Thema: Analysis I / Stochastik I Zeitraum: 40 U- Wochen Wie steht s mit dir? Buch Schätze dich ein! Inhaltsbezogene Kompetenzen LS 11/12 0. Themenbereich:
Schulinterner Lehrplan Mathematik: Q1 und Q2
Schulinterner Lehrplan Mathematik: Q1 und Q2 Übersichtsraster Unterrichtsvorhaben Qualifikationsphase (Q1) GRUNDKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II : Thema: Optimierungsprobleme (Q-GK-A1)
Schulinternes Curriculum Goethe-Oberschule Mathematik Sekundarstufe II
Schulinternes Curriculum Goethe-Oberschule Mathematik Sekundarstufe II Auf Zeitangeben wurde bewusst verzichtet, da im kommenden Schuljahr 2010/2011 zum ersten Mal der Übergang von Klasse 10 ins Kurssystem
Gymnasium Sulingen Fachschaft Mathematik Schulcurriculum Oberstufe (Stand ) Inhaltsbezogene Kompetenzen (hilfsmittelfrei)
1. Halbjahr (Analysis I) Prozessbezogene Kompetenzen Kurvenanpassung Teilthema Biegelinien entfällt ab 2017. Kompetenzen (hilfsmittelfrei) Kompetenzen (mit CAS) Zusätzliche Hinweise der Fachschaft Die
Stoffverteilung Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer EF
Der zeitliche Umfang der Unterrichtseinheiten ist eine Orientierung. In der ZAP werden immer zwei Themengebiete geprüft, aller Voraussicht nach sind diese im Wechsel: Analysis - Vektorrechung oder Analysis
Kompetenzerwartungen und inhaltliche Schwerpunkte. Stochastik Leistungskurs in der Q2 am SG
Kompetenzerwartungen und inhaltliche Schwerpunkte Stochastik Leistungskurs in der Q2 am SG Inhaltliche Schwerpunkte Stochastische Modelle und Kenngrößen von Wahrscheinlichkeitsverteilungen Bedingte Wahrscheinlichkeit
1 Die Fachgruppe Mathematik am Dietrich-Bonhoeffer-Gymnasium
1 Die Fachgruppe Mathematik am Dietrich-Bonhoeffer-Gymnasium In der Einführungsphase werden mehrere parallele Grundkurse eingerichtet, aus denen sich für die Qualifikationsphase Leistungs- und Grundkurse
Schulinternes Curriculum Mathematik 9 auf der Grundlage des Kernlehrplans 2007
Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht
Mathematik Schulinterner Lehrplan Einführungsphase (EF)
Mathematik Schulinterner Lehrplan (EF) Unterrichtsvorhaben I: Den Zufall im Griff Modellierung von Zufallsprozessen 2 UE 2 UE Stochastik Mehrstufige Zufallsexperimente Sachverhalte mithilfe von Baumdiagrammen
2 Fortführung der Differenzialrechnung... 48
Inhaltsverzeichnis Inhaltsverzeichnis 1 Folgen und Grenzwerte................................................................................... 10 1.1 Rekursive und explizite Vorgabe einer Folge...........................................................
Schulinternes Curriculum. Mathematik
Gymnasium Zitadelle Schulinternes Curriculum (G 8) Stand: Schuljahr 2012/13 Gymnasium Zitadelle Schulinternes Curriculum Seite 1 EF Eingeführtes Lehrbuch: Lambacher Schweizer 10 Einführungsphase Funktionen
(in Klammern: Abschnitte aus dem Lehrbuch Lambacher-Schweizer, Analysis Leistungskurs NRW, Stuttgart )
Herder-Gymnasium Köln-Buchheim: Schulinterner Lehrplan Mathematik Leistungskurs Q1/Q2 (Stand: März 2013) Schulinterner Lehrplan M LK Q1/Q2 (Abi 2014 und 2015) ANALYSIS (1) (in Klammern: Abschnitte aus
Thema: Optimierungsprobleme (Q-LK-A1)
Thema: Optimierungsprobleme (Q-LK-A1) führen Extremalprobleme durch Kombination mit Nebenbedingungen auf Funktionen einer Variablen zurück und lösen diese verwenden notwendige Kriterien und hinreichende
Regionalcurriculum Mathematik
Regionalcurriculum Mathematik Die folgenden Standards im Fach Mathematik benennen sowohl allgemeine als auch inhaltsbezogene mathematische Kompetenzen, die Schülerinnen und Schüler in aktiver Auseinandersetzung
1. Übersicht über die Unterrichtsvorhaben
Schulinterner Lehrplan zum Kernlehrplan für die Qualifikationsphase Mathematik gültig ab dem 01.08.2015 beginnend mit der Q1 1. Übersicht über die Unterrichtsvorhaben LK ( ) GK Thema Analysis (100 Ustd.)
Heinrich-Heine-Gymnasium Herausforderungen annehmen Haltungen entwickeln Gemeinschaft stärken
Heinrich-Heine-Gymnasium Herausforderungen annehmen Haltungen entwickeln Gemeinschaft stärken Schulinterner Lehrplan Mathematik in der ab dem Schuljahr 2014/15 Eingeführtes Schulbuch: Mathematik Gymnasiale
Stoffverteilungsplan Mathematik auf Grundlage des Kernlehrplans Einführungsphase (Klasse 10)
Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht
Einführungsphase. Kapitel I: Funktionen. Arithmetik/ Algebra
Einführungsphase prozessbezogene Kompetenzen Die SuS sollen... inhaltliche Kompetenzen konkrete Umsetzung zur Zielerreichung Die SuS können... Kapitel I: - Realsituationen in ein mathematisches Modell
Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer Einführungsphase Klettbuch 978-3-12-735431-2
Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht
Themenpool teilzentrale Reifeprüfung Mathematik Europagymnasium Auhof, Aubrunnerweg 4, 4040 Linz; Schulkennzahl:
Themenpool teilzentrale Reifeprüfung Mathematik Europagymnasium Auhof, Aubrunnerweg 4, 4040 Linz; Schulkennzahl: 401546 Thema 1: Zahlenbereiche und Rechengesetze Reflektieren über das Erweitern von Zahlenbereichen
Exkurs: Kreisgleichung mit Tangenten; LGS zur Bestimmung von Parabeln Exkurs: Umkehrfunktion
Grundkurs Jahrgangstufe Eph Eingeführtes Lehrbuch: Lambacher Schweizer Einführungsphase (Klett) Eph/1 1) Funktionen und ihre Eigenschaften - Modellieren von Sachverhalten Funktionsbegriff, Definitions-
Schulinterner Lehrplan der Gesamtschule Paderborn-Elsen. Mathematik SII Qualifikationsphase Leistungskurs
Schulinterner Lehrplan der Gesamtschule Paderborn-Elsen Mathematik SII Qualifikationsphase Leistungskurs Q-Phase Leistungskurs Funktionen und Analysis (A) Thema: Optimierungsprobleme (Q-LK-A1) führen Extremalprobleme
Schulinterner Lehrplan Franz-Stock-Gymnasium, Jahrgangsstufe 9. Erwartete prozessbezogene Kompetenzen am Ende der 9. Klasse:
Schulinterner Lehrplan Franz-Stock-Gymnasium, Jahrgangsstufe 9 Erwartete prozessbezogene Kompetenzen am Ende der 9. Klasse: Argumentieren/Kommunizieren Mathematische Zusammenhänge mit eigenen Worten erläutern
Mathematik - Klasse 9
Schuleigener Lehrplan Mathematik - Klasse 9 1. Ähnlichkeit Geometrie 1.1. Ähnliche Vielecke 1.2. Flächeninhalt bei zueinander ähnlichen Figuren 1.3. Ähnlichkeitssatz für Dreiecke 1.3.1. Überprüfen auf
Lehrwerk: Lambacher Schweizer, Klett Verlag
Thema I: Lineare und lineare Gleichungen 1. Lineare 2. Aufstellen von linearen Funktionsgleichungen 3. Nullstellen und Schnittpunkte 1. Klassenarbeit Thema II: Reelle 1. Von bekannten und neuen 2. Wurzeln
Curriculum für das Fach: Mathematik
Curriculum für das Fach: Mathematik Prinzipien der Unterrichtsgestaltung und Bewertung. Prinzipien der Unterrichtsgestaltung. Ziel des Mathematikunterrichts ist, die Kollegiatinnen und Kollegiaten auf
Stoffverteilungsplan Mathematik 9 und 10 auf der Grundlage des Kernlehrplans
Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung r (fachmathematischer) und r Kompetenzen erreicht werden kann. Entsprechend
Schulcurriculum für die Qualifikationsphase im Fach Mathematik
Schulcurriculum für die Qualifikationsphase im Fach Mathematik Fach: Mathematik Klassenstufe: 11/12 Anzahl der zu unterrichtenden Wochenstunden: 4 Die folgenden Standards im Fach Mathematik benennen sowohl
Fachbereich Mathematik
Qualifikationsphase Leistungskurse 12. und 13. Schuljahr (Abitur nach 13 Schuljahren) Semesterübersicht Semester 12. und 13. Schuljahr Leistungskursfach Gewichtung 1 Differentialrechnung I 2/3 Integralrechnung
Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium
Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Klasse 8 8 Kapitel I Reelle Zahlen 1 Von bekannten und neuen Zahlen 2 Wurzeln und Streckenlängen 3 Der geschickte Umgang mit Wurzeln
Zentralabitur 2017 Mathematik
Zentralabitur.nrw Ministerium für Schule und Weiterbildung des Landes Nordrhein-Westfalen Zentralabitur 2017 Mathematik I. Unterrichtliche Voraussetzungen für die schriftlichen Abiturprüfungen an Weiterbildungskollegs
Kernlehrplan Mathematik in Klasse 9 am Städtischen Gymnasium Gütersloh (für das 8-jährige Gymnasium)
Kernlehrplan Mathematik in Klasse 9 am Städtischen Gymnasium Gütersloh (für das 8-jährige Gymnasium) Zeitraum Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Lehrbuchkapitel Elemente der Mathematik
Lambacher Schweizer für berufliche Gymnasien. Ausgabe Wirtschaft. Stoffverteilungsplan für das berufliche Gymnasium
Lambacher Schweizer für berufliche Gymnasien. Lambacher Schweizer Mathematik für berufliche Gymnasien Wirtschaft 12/13 Stoffverteilungsplan für das berufliche Gymnasium in Rheinland-Pfalz Stoffverteilungsplan
Schulinterner Lehrplan gymnasiale Oberstufe Einführungsphase Mathematik
Schulinterner Lehrplan Mathematik Heinrich- Böll-Gymnasium Troisdorf Stand: Februar 2015 Schulinterner Lehrplan gymnasiale Oberstufe Einführungsphase Mathematik Schulinterner Lehrplan Mathematik Heinrich-
Stoffverteilungsplan Mathematik im Jahrgang 8 Lambacher Schweizer 8
Mathematik Jahrgangsstufe 8 (Lambacher Schweitzer 8) Zeitraum prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Informationen aus authentischen Texten Überprüfen von Ergebnissen und Ordnen Rationale
Schulinterner Lehrplan des Gymnasiums Buxtehude Süd Klasse 8
1. Terme und mit Klammern Schwerpunkt: Beschreibung von Sachverhalten Schwerpunkt: Problemlösen 1.1 Auflösen und Setzen einer Klammer 1.2 Minuszeichen vor einer Klammer Subtrahieren einer Klammer 1.3 Ausklammern
Neue Wege Klasse 8. Schulcurriculum EGW. Zeiteinteilung/ Kommentar 1.4 Ungleichungen weglassen 1.5 Gleichungen mit Parametern weglassen
Neue Wege Klasse 8 Schulcurriculum EGW Inhalt Neue Wege 8 prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Kapitel 1 Die Sprache der Algebra Terme und Gleichungen 1.1 Rechnen mit Termen Summen und
Schulinternes Curriculum. Mathematik. Einführungsphase. Gymnasium Letmathe
Schulinternes Curriculum Mathematik Einführungsphase Gymnasium Letmathe Einführungsphase Stand: März 2015 Inhaltsfeld: Funktionen und Analysis (A) (Zeitbedarf: 1 UE entspricht 67,5 Minuten) Funktionen
Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Lambacher Schweizer 9
Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht
Grundlage ist das Lehrbuch Fundamente der Mathematik, Cornelsen Verlag, ISBN
Schulinternes Curriculum der Klasse 8 am Franz-Stock-Gymnasium (vorläufige Version, Stand: 20.08.16) Grundlage ist das Lehrbuch, Cornelsen Verlag, ISBN 978-3-06-040323-3 ca. 6 Wochen Kapitel I: Terme Terme
Altes Gymnasium Oldenburg ab Schuljahr 2009/ 10. Jahrgang: 10 Lehrwerk: Elemente der Mathematik Hilfsmittel: ClassPad300, Das große Tafelwerk
Schulinternes Curriculum Mathematik Jahrgang: 10 Lehrwerk: Elemente der Mathematik Hilfsmittel: ClassPad300, Das große Tafelwerk Legende: prozessbezogene Kompetenzbereiche inhaltsbezogene Kompetenzbereiche
Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 7
Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 7 Reihen -folge Buchabschnit t Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 1.1 1.9 Zuordnungen -
Grundkompetenzen (Mathematik Oberstufe)
Grundkompetenzen (Mathematik Oberstufe) AG: Algebra und Geometrie (14 Deskriptoren) FA: Funktionale Abhängigkeiten (35 Deskriptoren) AN: Analysis (11 Deskriptoren) WS: Wahrscheinlichkeit und Statistik
Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1)
Einführungsphase Funktionen und Analysis (A) Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) beschreiben die Eigenschaften von Potenzfunktionen mit ganzzahligen
1. Flächen und Rauminhalte
Stoffverteilungsplan Klasse 8 Schulbuch: Elemente der Mathematik Die Kapitelangaben sind dem Lehrbuch entnommen 1. Flächen und Rauminhalte Lernbereich Längen, Flächen- und Rauminhalte und deren Terme.
Zentralabitur 2017 Mathematik
Zentralabitur.nrw Ministerium für Schule und Weiterbildung des Landes Nordrhein-Westfalen Zentralabitur 2017 Mathematik I. Unterrichtliche Voraussetzungen für die schriftlichen Abiturprüfungen an Gymnasien,
GES Espenstraße Schulinterner Lehrplan Mathematik Stand Vorbemerkung
Vorbemerkung Die im Folgenden nach Jahrgängen sortierten Inhalte, inhaltsbezogenen Kompetenzen (IK) und prozessbezogenen Kompetenzen (PK) sind für alle im Fach Mathematik unterrichtenden Lehrer verbindlich.
Lambacher Schweizer für berufliche Gymnasien. Ausgabe Wirtschaft
Lambacher Schweizer für berufliche Gymnasien. Lambacher Schweizer Mathematik für berufliche Gymnasien Wirtschaft 12/13 Stoffverteilungsplan für die Qualifikationsphase Grundkurs am Beruflichen Gymnasium
Mathematik 8 Version 09/10
Mathematik 8 Version 09/10 Informationen aus authentischen Texten mehrschrittige Argumentationen Spezialfälle finden Verallgemeinern Untersuchung von Zahlen und Figuren Überprüfen von Ergebnissen und Lösungswegen
Kapitel I Reelle Zahlen. Arithmetik / Algebra
Themen/Inhalte inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen Aufgaben (Minimum) integrierende Wiederholung Zeit Kapitel I Reelle Zahlen Erkundungen 1. Von bekannten und neuen Zahlen 2. Wurzeln
Schulinterner Lehrplan Mathematik LK Q2
Schulinterner Lehrplan Mathematik LK Q2 Da es sich um die erstmalige praktische Umsetzung der neuen Kernlehrpläne handelt, gelten die folgenden Angaben nur unter Vorbehalt. Die Reihenfolge der einzelnen
