Kinga Szűcs
|
|
|
- Axel Gerhardt
- vor 9 Jahren
- Abrufe
Transkript
1 Kinga Szűcs
2 Die Schülerinnen und Schüler werten graphische Darstellungen und Tabellen von statistischen Erhebungen aus, planen statistische Erhebungen, sammeln systematisch Daten, erfassen sie in Tabellen und stellen sie graphisch dar, auch unter Verwendung geeigneter Hilfsmittel (wie Software), interpretieren Daten unter Verwendung von Kenngrößen, reflektieren und bewerten Argumente, die auf einer Datenanalyse basieren, beschreiben Zufallserscheinungen in alltäglichen Situationen, bestimmen Wahrscheinlichkeiten bei Zufallsexperimenten. (KMK 2004) 2
3 Zusammenhang mit (mindestens) folgenden prozessbezogenen Kompetenzen: mathematisch Modellieren (z.b. durch Planung um Umsetzung einer statistischen Untersuchung) Verwenden von mathematischen Darstellungen (Tabellen, Grafiken, Diagramme) Mit Mathematik symbolisch/formal/technisch umgehen (u.a. grafikfähiger TR, Computereinsatz) Mathematisch argumentieren und kommunizieren (Interpretation und Analyse der Ergebnisse)
4 Der Schüler sammelt und strukturiert Daten, stellt sie in Diagrammen dar und führt Berechnungen aus. Er entnimmt geeignete Informationen aus Darstellungen (Diagramme, Tabellen, Skizzen) und interpretiert diese. Er kann zwischen diesen Darstellungen wechseln. Der Schüler kann Gewinnchancen bei einfachen Zufallsexperimenten (Glücksrad, Würfeln, Münzwurf, Ziehen von Losen) durch experimentelles Vorgehen oder inhaltliche Überlegungen einschätzen, vergleichen, begründen und unter Verwendung der Begriffe sicher, unmöglich, möglich bzw. wahrscheinlich beschreiben.
5 Der Schüler kann Daten in Ur- und Strichlisten erfassen, ordnen, veranschaulichen in: Ranglisten, Häufigkeitstabellen, Diagrammen, absolute Häufigkeiten ermitteln, Daten unter Verwendung von Kenngrößen (Minimum, Maximum, Spannweite, arithmetisches Mittel, Modalwert, Median) charakterisieren, vergleichen, darstellen, Daten aus statistischen Darstellungen entnehmen, vergleichen.
6 Der Schüler kann Zufallsexperimente planen, durchführen und protokollieren, die Wahrscheinlichkeit eines Ereignisses als seine zu erwartende relative Häufigkeit bei vielen Versuchswiederholungen beschreiben und durch geeignete Simulationen schätzen, Laplace-Wahrscheinlichkeiten berechnen, Ergebnisse und Ereignisse von ein- und zweistufigen Zufallsexperimenten verbal und mit Hilfe der zugehörigen Mengenschreibweise beschreiben, die Begriffe sicheres und unmögliches Ereignis sowie Gegenereignis anwenden, Wahrscheinlichkeiten unter Verwendung von Baumdiagrammen und Pfadregeln berechnen.
7 Der Schüler kann mit Hilfe von Baumdiagrammen mehrstufige Zufallsexperimente veranschaulichen, Wahrscheinlichkeiten von Ereignissen bestimmen, Ereignisse verknüpfen A B, A B, A und die Wahrscheinlichkeit der Verknüpfung bestimmen, Erwartungswert und Standardabweichung von Zufallsgrößen berechnen und interpretieren, Trefferzahl, Gewinn und Verlust (bei ein- und zweistufigen Zufallsexperimenten auch ohne Hilfsmittel) bestimmen, Bernoulli-Experimente als mehrstufige Zufallsexperimente beschreiben und Wahrscheinlichkeiten mit Hilfe der Bernoulli-Formel unter Nutzung des CAS berechnen, die Bernoulli-Formel an einem Beispiel begründen, die Bedingungen für die Anwendbarkeit der Bernoulli- Formel prüfen und die Ergebnisse kritisch werten.
8 Der Schüler kann Binomialverteilungen in Abhängigkeit von der Trefferwahrscheinlichkeit und vom Stichprobenumfang beschreiben und graphisch darstellen, zur Berechnung von Werten und zur graphischen Veranschaulichung der Binomialverteilung CAS oder Tabellenkalkulationssoftware sicher und zielgerichtet anwenden, binomialverteilte Zufallsgrößen beschreiben: Erwartungswert und Standardabweichung bestimmen und interpretieren, die Wahrscheinlichkeit dafür bestimmen, dass die Werte einer Zufallsgröße in einem gegebenen Intervall liegen, die Länge einer Bernoullikette bei gegebener Wahrscheinlichkeit bestimmen,
9 Der Schüler kann Alternativtests konstruieren, auswerten und dabei Hypothesen formulieren, Annahme- und Ablehnungsbereich bestimmen, Irrtumswahrscheinlichkeiten berechnen, Binomialverteilung und Alternativtest zur mathematischen Modellierung geeigneter Sachverhalte nutzen. (!)
Kinga Szűcs
Kinga Szűcs 28.10.2014 Warum wird Stochastik in der Schule unterrichtet? Welche Vorteile kann der Stochastikunterricht in den MU bringen? Welche Nachteile kann der Stochastikunterricht haben? Welche Ziele
Stoffverteilungsplan Mathematik Grundkurs. Lambacher Schweizer Stochastik ISBN Klassenarbeit
Q3.1 Grundlegende Begriffe der Grundlagen der Wahrscheinlichkeitstheorie: Beschreiben von Zufallsexperimenten (Laplace-Experimente) unter Verwendung der Begriffe Ergebnis, Ergebnismenge, Ereignis und Wahrscheinlichkeit
Stoffverteilungsplan Mathematik Leistungskurs. Lambacher Schweizer Stochastik ISBN Klassenarbeit
Lambacher Schweizer Q3.1 Grundlegende Begriffe der Grundlagen der Wahrscheinlichkeitstheorie: Beschreiben von Zufallsexperimenten (Laplace-Experimente) unter Verwendung der Begriffe Ergebnis, Ergebnismenge,
<; ;6 ++9,1, + ( #, + 6( 6( 4, 6,% 6 ;, 86': ; 3'!(( A 0 "( J% ;;,,,' "" ,+ ; & "+ <- ( + " % ; ; ( 0 + A,)"%1%#( + ", #( +. +!
!
Lernsituation 2: Stochastik (40 UStd.) Titel: Umgang mit Zufall und Wahrscheinlichkeit
Bildungsgang: Zweijährige Höhere Berufsfachschule Wirtschaft und Verwaltung (Höhere Handelsschule) Lernsituation 2: Stochastik (40 UStd.) Titel: Umgang mit Zufall und Wahrscheinlichkeit Einstiegsszenario
Qualifikationsphase (Q2) Grundkurs
Qualifikationsphase (Q2) Grundkurs Unterrichtsvorhaben I Thema: Von stochastischen Modellen, Zufallsgrößen, Wahrscheinlichkeitsverteilungen und ihren Kenngrößen (Q2-GK-S1) Inhaltlicher Schwerpunkt: Kenngrößen
Qualifikationsphase (Q2) Leistungskurs
Qualifikationsphase (Q2) Leistungskurs Unterrichtsvorhaben I Thema: Von stochastischen Modellen, Zufallsgrößen, Wahrscheinlichkeitsverteilungen und ihren Kenngrößen (Q2-GK-S1) Inhaltlicher Schwerpunkt:
Daten und Zufall in der Grundschule. Daten Titel und Zufall in der
Fortbildung zum Thema Daten und Zufall in der Grundschule Daten Titel und Zufall in der Sabine Kern / Erhard ltendorf 1 Schwerpunkte Zufall Schwerpunkte des Workshops - Standards der Grundschule und wie
1./2. Klasse Daten und Zufall 4.1 Daten erfassen und strukturiert darstellen - Kompetenzerwartungen
Stochastik warum? Gründe: Begründungsfeld 1: Stochastik trägt zur Umwelterschließung bei Begründungsfeld 2: Entwicklung des Wahrscheinlichkeitsbegriffs braucht Zeit Begründungsfeld 3: Interesse am Gegenstand
Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)
Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.
.3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil
Grundlage ist das Lehrbuch Fundamente der Mathematik, Cornelsen Verlag, ISBN
Schulinternes Curriculum der Klasse 8 am Franz-Stock-Gymnasium (vorläufige Version, Stand: 20.08.16) Grundlage ist das Lehrbuch, Cornelsen Verlag, ISBN 978-3-06-040323-3 ca. 6 Wochen Kapitel I: Terme Terme
untersuchen Lage- und Streumaße von Stichproben
Qualifikationsphase Leistungskurs 1 QII 2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks Buch: Elemente der Mathematik, Qualifikationsphase NRW Leistungskurs, Braunschweig 2015, Westermann
Kinga Szűcs Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Abteilung Didaktik
Beurteilende Statistik im Mathematikunterricht Kinga Szűcs Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Abteilung Didaktik 20.11.2014 Gliederung Anliegen der beurteilenden
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Klett Wahrscheinlichkeitsrechnung im Griff - Mathematik
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Klett Wahrscheinlichkeitsrechnung im Griff - Mathematik 5.-10. Klasse Das komplette Material finden Sie hier: School-Scout.de Wahrscheinlichkeitsrechnung
Problemlösen. Zahl Ebene und Raum Größen Daten und Vorhersagen. Fachsprache, Symbole und Arbeitsmittel anwenden
Curriculum Mathematik 3. Klasse Aus den Rahmenrichtlinien Die Schülerin, der Schüler kann Vorstellungen von natürlichen, ganzen rationalen Zahlen nutzen mit diesen schriftlich im Kopf rechnen geometrische
Schulcurriculum Mathematik
Fachkonferenz Mathematik Schulcurriculum Mathematik Schuljahrgang 8 Lehrwerk: Fundamente der Mathematik 8, Schroedel-Verlag, ISBN 978-3-06-008008-3 Das Schulcurriculum ist auf Grundlange des Stoffverteilungsplans
Abitur 2013 Mathematik NT Stochastik S II
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2013 Mathematik NT Stochastik S II Eine Agentur vertreibt Tickets für Sportveranstaltungen ( S ), Konzerte ( K ), Musicals ( M ) und Eventreisen ( E
1.4 Sachrechnen in den Bildungsstandards
1.4 Sachrechnen in den Bildungsstandards http://www.kmk.org/fileadmin/veroe ffentlichungen_beschluesse/2004/20 04_10_15-Bildungsstandards-Mathe- Primar.pdf Mathematikunterricht in der Grundschule Allgemeine
Inhaltsbezogene Kompetenzen
Rationale Zahlen Brüche und Anteile Was man mit einem Bruch alles machen kann Kürzen und Erweitern Die drei Gesichter einer rationalen Zahl Ordnung in die Brüche bringen Dezimalschreibweise bei Größen
Grundlagen der. h Rückblick. Dr. K. Krüger. Grundwissen Mathematik
Grundlagen der Schulmathematik h Rückblick Sommersemester 2009 Dr. K. Krüger Grundwissen Mathematik (DGS) Folie aus der 1. Vorlesung Inhalte 1. Beschreibende Statistik Mauna Loa Co2 1200 Streudiagramm
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Klett Ich kann... Mathe - Wahrscheinlichkeitsrechnung
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Klett Ich kann... Mathe - Wahrscheinlichkeitsrechnung Das komplette Material finden Sie hier: School-Scout.de Ich kann... MATHE Schritt
Die Umsetzung der Lehrplaninhalte in Fokus Mathematik 7 und 8 (Gymnasium) auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen
Die Umsetzung der Lehrplaninhalte in 7 und 8 (Gymnasium) auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen Schulinternes Curriculum Erwartete prozessbezogene am Ende der 8. Klasse: Argumentieren/Kommunizieren
Abbildung der Lehrplaninhalte im Lambacher Schweizer Thüringen Klasse 9 Lambacher Schweizer 9 Klettbuch
Leitidee Lernkompetenzen Lambacher Schweizer Klasse 9 Anmerkungen: Der Lehrplan für das Gymnasium in Thüringen ist ein Doppeljahrgangslehrplan. Das bedeutet, dass die Inhalte, die im Lehrplan zu finden
(4) in Sachsituationen mathematische Problemstellungen und Zusammenhänge erkennen, geeignete Hilfsmittel und Strategien
Mathematik 5. Klasse Grundschule Die Schülerin, der Schüler kann (1) mit den natürlichen Zahlen schriftlich und im Kopf rechnen (2) geometrische Objekte der Ebene und des Raumes erkennen, beschreiben und
Daten, Häufigkeiten, Wahrscheinlichkeiten
Daten, Häufigkeiten, Wahrscheinlichkeiten Ein neuer Bereich im Lehrplan Mathematik Die acht Bereiche des Faches Mathematik Prozessbezogene Bereiche Problemlösen / kreativ sein Inhaltsbezogene Bereiche
Mathematik 8 Version 09/10
Mathematik 8 Version 09/10 Informationen aus authentischen Texten mehrschrittige Argumentationen Spezialfälle finden Verallgemeinern Untersuchung von Zahlen und Figuren Überprüfen von Ergebnissen und Lösungswegen
Schulinterner Lehrplan Mathematik Klasse 8
Schulinterner Lehrplan Mathematik Klasse 8 Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Terme und Gleichungen mit Klammern ordnen und vergleichen gleichartige Terme. führen die Rechenoperationen
Lambacher Schweizer Klasse 7 G9
Im Lambacher Schweizer sind Kompetenzbereiche und Inhaltsfelder innerhalb aller Kapitel eng miteinander verwoben. So werden in den Aufgaben immer wieder Fähigkeiten der sechs Kompetenzbereiche Darstellen,,
Schulinternes Curriculum Mathematik 8
Die dargestellte Reihenfolge der Unterrichtsinhalte ist eine von mehreren sinnvollen Möglichkeiten und daher nicht bindend. Lambacher Schweizer 8 * Inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen
Schulinternes Curriculum Mathematik 8
Die dargestellte Reihenfolge der Unterrichtsinhalte ist eine von mehreren sinnvollen Möglichkeiten und daher nicht bindend. Kapitel I Lineare Funktionen 1 Lineare Funktionen 2 Aufstellen von linearen Funktionsgleichungen
Pfadregel. 400 Kugeln durchlaufen die möglichen Pfade. Das Diagramm zeigt das Ergebnis am Ende der Versuchsdurchführung.
Würfelsimulation 1) Bezeichnen Sie in den Säulendiagrammen (Histogrammen - 2. Graphik) die senkrechten Achsen und vervollständigen Sie im ersten Diagramm die Achseneinteilung. Lesen Sie im Histogramm für
1. Flächen und Rauminhalte
Stoffverteilungsplan Klasse 8 Schulbuch: Elemente der Mathematik Die Kapitelangaben sind dem Lehrbuch entnommen 1. Flächen und Rauminhalte Lernbereich Längen, Flächen- und Rauminhalte und deren Terme.
M A T H E H Z T P T G A E H T A M. pk 5: Kommunizieren. Boxplots in Klasse 7. S. Göttge-Piller. Folie 1
M T E E T M pk 5: Kommunizieren Boxplots in Klasse 7 S. öttge-piller Folie 1 M T E E T M Prozessbezogene Kompetenz: Kommunizieren Überlegungen, Lösungswege und Ergebnisse darstellen (1) Mathematische Einsichten
Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium
Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Klasse 8 8 Kapitel I Reelle Zahlen 1 Von bekannten und neuen Zahlen 2 Wurzeln und Streckenlängen 3 Der geschickte Umgang mit Wurzeln
Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend.
Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend. Prozessbezogene Kompetenzbereiche Mathematisch argumentieren
Vorläufiger schuleigener Lehrplan für das Fach Mathematik Jahrgang 8 Stand Lehrbuch: Mathematik heute 8
Terme und Gleichungen - Umformen von Termen - Auflösen und Setzen einer Klammer - Lösen von Gleichungen - Anwenden von Gleichungen - Umstellen von Formeln - Zwei Klammern in einem Produkt Binomische Formeln
Stoffverteilungsplan Mathematik im Jahrgang 8 Lambacher Schweizer 8
Mathematik Jahrgangsstufe 8 (Lambacher Schweitzer 8) Zeitraum prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Informationen aus authentischen Texten Überprüfen von Ergebnissen und Ordnen Rationale
Abbildung der Lehrplaninhalte im Lambacher Schweizer Thüringen Klasse 8 Lambacher Schweizer 8 Klettbuch
Leitidee Lernkompetenzen Lambacher Schweizer Klasse 8 Anmerkungen: Der Lehrplan für das Gymnasium in Thüringen ist ein Doppeljahrgangslehrplan. Das bedeutet, dass die Inhalte, die im Lehrplan zu finden
BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK
BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK 1. Allgemeine mathematische Kompetenzen Primarbereich Allgemeine mathematische Kompetenzen zeigen sich in der lebendigen Auseinandersetzung mit Mathematik und
MWG Mathematik-Schulcurriculum Klasse 7
MWG Mathematik-Schulcurriculum Klasse 7 Hinweis: Physik wird in Klasse 7 an unsere Schule epochal unterrichtet. Da der Lehrplan in Physik den Umgang mit Dreiecken und Winkeln benötigt, wird bei den Klassen,
So lügt man mit Statistik Eine Gebrauchsanweisung
So lügt man mit Statistik Eine Gebrauchsanweisung Georg Bruckmaier & Christine Schmeißer Didaktik der Mathematik Naturwissenschaftliche Fakultät I, Mathematik Lehrerfortbidung am 17. März 2011 Regensburg
Jahrgangsstufe 7. Gymnasium Waldstraße Hattingen Schulinternes Curriculum Mathematik Klasse 7
Jahrgangsstufe 7 Lehrwerk: Lambacher Schweizer 7, Mathematik für Gymnasien, Nordrhein-Westfalen (ISBN 978-3-12-734471-4) Im Laufe der Jahrgangsstufe 7 wird ein wissenschaftlicher Taschenrechner mit integriertem
Stoffverteilungsplan Mathematik 5 / 6 Lehrwerk: Lambacher Schweizer 5/6
Klasse 5 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Medienkompetenzen Natürliche Zahlen Stochastik Erheben: Daten erheben, in Ur- und Strichlisten zusammenfassen Darstellen: Häufigkeitstabellen,
Schulinternes Curriculum im Fach Mathematik CJD Christophorusschule Gymnasium Versmold
Schulinternes Curriculum im Fach Mathematik CJD Christophorusschule Gymnasium Versmold Jahrgangsstufe 8 1. Terme mit mehreren Variablen Aufstellen eines Terms mit Variablen Aufbau eines Terms Addieren
Was macht mathematische Kompetenz aus?
Was macht mathematische Kompetenz aus? ^ Kompetenzstrukturmodell Zahlen und Operationen Raum und Form Größen und Messen Daten und Zufall Stand 02/2013 Probleme lösen mathematische Kenntnisse, Fertigkeiten
Seite 1 von 5. Schulinternes Curriculum Mathematik. Jahrgang 6
Seite 1 von 5 Schulinternes Curriculum Mathematik Jahrgang 6 Gültig ab: 2011/2012 Erläuterungen: prozessbezogene Kompetenzbereiche inhaltsbezogene Kompetenzbereiche P1 mathematisch argumentieren I1 Zahlen
Abitur 2013 Mathematik Stochastik III
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2013 Mathematik Stochastik III Folgende Tabelle gibt die Verteilung der Blutgruppen und der Rhesusfaktoren innerhalb der Bevölkerung Deutschlands wieder:
Mathematik - Klasse 8 -
Schuleigener Lehrplan Mathematik - Klasse 8 - 1. Terme und Gleichungen mit Klammern 1.1 Auflösen einer Klammer 1.2 Minuszeichen vor einer Klammer Subtrahieren einer Klammer 1.3 Ausklammern 1.4 Auflösen
Lehrwerk: Lambacher Schweizer, Klett Verlag
Thema I: Lineare und lineare Gleichungen 1. Lineare 2. Aufstellen von linearen Funktionsgleichungen 3. Nullstellen und Schnittpunkte 1. Klassenarbeit Thema II: Reelle 1. Von bekannten und neuen 2. Wurzeln
Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 8 September 2018
Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 8 September 2018 Anzahl der schriftlichen Arbeiten: 4, Gewichtung der schriftlichen Leistungen 50%-60% Nachweis der Durchführung: siehe
Abitur 2016 Mathematik Stochastik IV
Seite 1 http://www.abiturloesung.de/ Seite Abitur 016 Mathematik Stochastik IV Bei einem Zufallsexperiment wird eine ideale Münze so lange geworfen, bis zum zweiten Mal Zahl (Z) oder zum zweiten Mal Wappen
Inhaltsübersicht Fach: Mathematik FachkollegInnen scj, krö, sja, nah,erf, sik Jahrgang: 5 Schuljahr: 2016/2017 Halbjahr: 1/2
Halbjahr/1 Zeit (in Wochen) Inhalte Seite inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler prozessbezogene Kompetenzen Die Schülerinnen und Schüler Berufsorientierung 1 19.- 23.09.2016 Daten Daten
Kurzfassung des schulinternen Lehrplans Mathematik (Erstellt im Sommersemester 2019)
Kurzfassung des schulinternen Lehrplans Mathematik (Erstellt im Sommersemester 2019) Vorkurs Termumformungen - Anwendung der Rechengesetze, insbesondere des Distributivgesetzes - binomische Formeln Lineare
BILDUNGSSTANDARDS HAUPTSCHULE MATHEMATIK
BILDUNGSSTANDARDS HAUPTSCHULE MATHEMATIK 1. Allgemeine Kompetenzen im Fach Mathematik (HS) Mit dem Erwerb des Hauptschulabschlusses nach Klasse 9 sollen Schülerinnen und Schüler über die nachfolgend genannten
Schulcurriculum Mathematik
Fachkonferenz Mathematik Schulcurriculum Mathematik Schuljahrgang 9 Lehrwerk: Fundamente der Mathematik 9, Cornelsen-Verlag, ISBN 978-3-06-040149-9 Das Schulcurriculum ist auf Grundlange des Stoffverteilungsplans
Materialhinweise Leistungsbeurteilung Mögliche Fächerverbindung Schulbuch - S (G) Arbeitsheft - S (G)
MAT 10-01 Quadratische Funktionen 12 DS Leitidee: Funktionaler Zusammenhang Thema im Buch: Brücken und mehr quadratische Funktionen von linearen Funktionen unterscheiden. quadratische Funktionen durch
Schulinterner Lehrplan für das Fach Mathematik Klasse 6 Theo Hespers Gesamtschule, Mönchengladbach Zum Lehrwerk Mathematik + (Stand: März 2018)
Schulinterner Lehrplan für das Fach Mathematik Klasse 6 Theo Hespers Gesamtschule, Mönchengladbach Zum Lehrwerk Mathematik + (Stand: März 2018) Bei der Stoffverteilung können die folgenden prozessbezogenen
Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend.
Schulplan Mathematik Klasse 9 Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend. Prozessbezogene Kompetenzbereiche
Stochastik Grundlagen
Grundlegende Begriffe: Zufallsexperiment: Ein Experiment, das beliebig oft wiederholt werden kann. Die möglichen Ergebnisse sind bekannt, nicht jedoch nicht, welches Ergebnis ein einzelnes Experiment hat.
Kurs 2 Stochastik EBBR Vollzeit (1 von 2)
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 281 Bremen Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Name: Ich 1. 2. 3. 4.. 6. 7. So schätze ich meinen Lernzuwachs ein.
Grundkompetenzkatalog. Mathematik
Grundkompetenzkatalog Mathematik AG - Algebra und Geometrie AG 1.1 AG 1.2 AG 2.1 AG 2.2 AG 2.3 AG 2.4 AG 2.5 AG 3.1 AG 3.2 AG 3.3 Wissen über Zahlenmengen N, Z, Q, R, C verständig einsetzen Wissen über
K: Argumentieren/Kommunizieren P: Problemlösen M: Modellieren W: Werkzeuge
UNTERRICHTSVORHABEN MATHEMATIK ggf. fächerverbindende Kooperation mit Thema: Arithmetik/Algebra mit Zahlen und Symbolen umgehen Umfang: 24 Wochen Jahrgangsstufe 8 Termumformungen Lineare Gleichungen mit
Abgleich Schnittpunkt Mathematik Niedersachsen mit dem neuen Kerncurriculum Realschule, Klasse 5/6
Abgleich Schnittpunkt Mathematik Niedersachsen mit dem neuen Kerncurriculum Realschule, Klasse 5/6 Kernkompetenzen Ende Schuljahr 6 Schnittpunkt/Kapitel/Lerneinheit verfügen über inhaltliche Vorstellungen
Notenpunkte: Unterschrift: Zur Bestimmung des arithmetischen Mittels ist es wichtig die Daten der Größe nach zu ordnen.!!
Name: Seite 1 von 11 Universität Kassel 29. April 2009 Biehler / Hofmann Elementare Stochastik 1 2 3 4 5 6 7! 12 5 9 4 13 4 13 60 Notenpunkte: Unterschrift: Aufgabe 1 Aussagen (12 Punkte) Kreuzen Sie an,
Mathematik - Klasse 6 -
Schuleigener Lehrplan Mathematik - Klasse 6 - Stand: 03.11.2011 2 I. Rationale Zahlen Die n Kompetenzen gelten grundsätzlich für alle Kapitel. Abweichungen werden gesondert aufgeführt. Die hier genannten
Materialien/ Anregungen. prozessbezogene Kompetenzen laut Kernlehrplan. inhaltsbezogene Kompetenzen laut Kernlehrplan
HARDTBERG GYMNASIUM DER STADT BONN Stand: Juni 2011 Schulinternes Curriculum Mathematik Das schulinterne Curriculum folgt dem Kernlehrplan für das Gymnasium Sekundarstufe I (G8) in Nordrhein-Westfalen
Abitur 2015 Mathematik Stochastik IV
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 201 Mathematik Stochastik IV In einer Urne befinden sich vier rote und sechs blaue Kugeln. Aus dieser wird achtmal eine Kugel zufällig gezogen, die Farbe
Argumentieren / Kommunizieren Die SuS
Kap. im Arithmetik / Algebra Die I. II. II. 3, 4, 5, 6, 7 IV. 5 unterscheiden rationale und irrationale Zahlen wenden das Radizieren als Umkehrung des Potenzierens an; berechnen und überschlagen Quadratwurzeln
Fach: Mathematik Jahrgang: 6
In jeder Unterrichtseinheit muss bei den überfachlichen Kompetenzen an je mindestens einer Selbst-, sozialen und lernmethodischen Kompetenz gearbeitet werden, ebenso muss in jeder Einheit mindestens eine
UNTERRICHTSVORHABEN 1
UNTERRICHTSVORHABEN 1 Thema: Arithmetik/Algebra mit Zahlen und Symbolen umgehen ggf. fächerverbindende Kooperation mit Umfang: 6 Wochen Jahrgangsstufe 7 Rechnen mit rationalen Zahlen Ordnen ordnen und
LehrplanPlusMathematik (Stand )
LehrplanPlusMathematik (Stand 08.01.2014) Kompetenzorientiert unterrichten bedeutet, den Wechsel von der zielorientierten Inputsteuerung zur schülerorientierten Kompetenzerwartung (Outcome) zu vollziehen.
ISBN
1 Zeitraum Ziele / Inhalte (Sach- und Methodenkompetenz) Klassenarbeit Analysis Grenzwerte 1. Die explizite und rekursive Beschreibung von Zahlenfolgen verstehen und Eigenschaften von Zahlenfolgen kennen
Stoffverteilungsplan Mathematik 8 auf der Grundlage des G8 Kernlehrplans Lehrwerk: Lambacher Schweizer 8
Lehrwerk: prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Methodische 1. Halbjahr Argumentieren / Kommunizieren ziehen Informationen aus authentischen Texten präsentieren Lösungswege und Problembearbeitungen
Daten und Zufall. eine gar nicht sooo neue Leitidee im Bildungsplan Mathematik Grundschule. SINUS September 2012 Benedikt Rocksien 1
Daten und Zufall eine gar nicht sooo neue Leitidee im Bildungsplan Mathematik Grundschule SINUS September 2012 Benedikt Rocksien 1 Es hängt an der Wand, macht Ticktack, und wenn es runterfällt, geht die
Inhaltsbezogene Kompetenzen Arithmetik/Algebra mit Zahlen und Symbolen umgehen Rechnen mit rationalen Zahlen
Arithmetik/Algebra mit Zahlen und Symbolen umgehen Rechnen mit rationalen Zahlen Ordnen ordnen und vergleichen rationale Zahlen Operieren lösen lineare Gleichungen nutzen lineare Gleichungssysteme mit
Schulinternes Curriculum Mathematik Jahrgangsstufe 8
Schulinternes Curriculum Mathematik Jahrgangsstufe 8 Unterrichtsvorhaben I: Terme und Gleichungen mit Klammern Terme zusammenfassen, ausmultiplizieren und mit einem einfachen Faktor faktorisieren binomische
Funktionen Lineare Zuordnungen mit eigenen Worten in Wertetabellen, Graphen und in Termen darstellen und zwischen diesen Darstellungen wechseln.
Kernlernplan Jahrgangsstufe 8 8 Lineare Funktionen und lineare Gleichungen 1. Lineare Funktionen 2. Aufstellen von linearen Funktionsgleichungen 3. Nullstellen und Schnittpunkte Funktionen Interpretieren
Schulinterner Lehrplan Mathematik Qualifikationsphase Grundkurs
Schulinterner Lehrplan Heinrich-Böll-Gymnasium 1/6 Schulinterner Lehrplan Mathematik Qualifikationsphase Grundkurs Kapitel I Ableitung 1 Die natürliche Exponentialfunktion und ihre Ableitung 2 Exponentialgleichungen
Werkzeug e - möglicher Methoden -einsatz. (kursiv: Zusatz GaW) Vorgaben Kernlehrplan - Ende 8. Inhaltsbezogene Kompetenzen. Arithmetik / Algebra
Inhaltsbezogene Kompetenzen Vorgaben Kernlehrplan - Ende 8 (kursiv: Zusatz GaW) Werkzeug e - möglicher Methoden -einsatz Arithmetik / Algebra Zuordnungen verbal, in Wertetabellen, als Graphen und in Termen
Gymnasium OHZ Schul-KC Mathematik Jahrgang 8 eingeführtes Schulbuch: Lambacher Schweizer 8
Probleme mathematisch lösen ziehen mehrere Lösungsmöglichkeiten in Betracht und überprüfen sie. nutzen Darstellungsformen wie Terme und Gleichungen zur Problemlösung. formen überschaubare Terme mit Variablen
Kapitel I Reelle Zahlen. Arithmetik / Algebra
Themen/Inhalte inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen Aufgaben (Minimum) integrierende Wiederholung Zeit Kapitel I Reelle Zahlen Erkundungen 1. Von bekannten und neuen Zahlen 2. Wurzeln
MAT Gleichungen 14 DS. Alle Schüler/innen können...
MAT 08-01 Gleichungen 14 DS Leitidee: Zahlen und Operationen Thema im Buch: Gleich gleicher Gleichung Gleichungen in Form von Streichholzbildern mit Worten beschreiben und umgekehrt. mithilfe von Variablen
Allgemeine Hinweise und Vereinbarungen für den Mathematikunterricht an der IGS Buchholz
Allgemeine Hinweise und Vereinbarungen für den Mathematikunterricht an der IGS Buchholz Zeichnungen mit Bleistift und Lineal anfertigen Beim Messen und Zeichnen gilt: max. 1 2 mm bzw. 1-2 Toleranz Aufgaben,
geeigneten Fachbegriffen erläutern Kommunizieren
Kapitel I Rationale Zahlen Arithmetik / Algebra Einfache Bruchteile auf verschiedene Weise darstellen: Lesen: Informationen aus Text, Bild, 1 Brüche und Anteile handelnd, zeichnerisch an wiedergeben 2
Synopse zum Kernlehrplan für die Realschule, Gesamtschule und Sekundarschule
Synopse zum Kernlehrplan für die Realschule, Gesamtschule und Sekundarschule Schnittpunkt Mathematik Differenzierende Ausgabe Band 6 978-3-12-742475-1 Schule: Lehrer: Die Kernlehrpläne betonen, dass eine
Lehrwerk: Lambacher Schweizer, Klett Verlag
Lerninhalte 6 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Thema 1: Rationale Zahlen 1 Teilbarkeit 2 Brüche und Anteile 3 ggt und kgv 4 Kürzen und Erweitern 5 Brüche auf der Zahlengeraden 6
Schulcurriculum (1/4 der Jahresstunden)
Mathematik: Curriculum Jahrgang 8 G9 Jahresstundenzahl des Faches: 35 Schulwochen x 4 (Wochenstundenzahl laut Kontingentstundentafel) = 140 1.Lerneinheit: Prozentrechnung Zinsrechnung (25 Stunden) Leitidee
HvGG: Kompetenzorientiertes Fachcurriculum Mathematik Jahrgangsstufe 9 (2014)
Inhaltsfelder (analog zum Kerncurriculum) Besonderheiten auf einen Blick Leistungsnachweise Funktionaler Zusammenhang Quadratische Funktionen, Quadratische Gleichungen, Potenzfunktionen Raum und Form Trigonometrie
Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 6 Februar 2016
Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 6 Februar 2016 Anzahl der schriftlichen Arbeiten: 5, Gewichtung der schriftlichen Leistungen 50%-60% Nachweis der Durchführung: siehe
Mathematik. Abiturprüfung Prüfungsteil A (CAS) Arbeitszeit: 90 Minuten
Mathematik Abiturprüfung 2019 Prüfungsteil A (CAS) Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie
Stoffverteilungsplan Mathematik 7 Lehrwerk: Lambacher Schweizer 7
Prozente und Zinsen Arithmetik/Algebra Ordnen: Rationale Zahlen ordnen, vergleichen Operieren: Grundrechenarten für rationale Zahlen ausführen Prozente Vergleiche werden einfacher Prozentsatz Prozentwert
Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 6
Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 6 Reihenfolge Buchabschnitt Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 1.1 1.7 Brüche mit gleichem
GES Espenstraße Schulinterner Lehrplan Mathematik Stand Vorbemerkung
Vorbemerkung Die im Folgenden nach Jahrgängen sortierten Inhalte, inhaltsbezogenen Kompetenzen (IK) und prozessbezogenen Kompetenzen (PK) sind für alle im Fach Mathematik unterrichtenden Lehrer verbindlich.
