Kinga Szűcs
|
|
|
- Gerda Eberhardt
- vor 9 Jahren
- Abrufe
Transkript
1 Kinga Szűcs
2 Warum wird Stochastik in der Schule unterrichtet? Welche Vorteile kann der Stochastikunterricht in den MU bringen? Welche Nachteile kann der Stochastikunterricht haben? Welche Ziele können/sollen verfolgt werden? Welche Inhalte sollen vermittelt werden?
3 Vemittlung sog. fundamentaler Ideen Vermittlung bereichsspezifischer Strategien Vermittlung mathematischer Konzepte, die die Stochastik prägen Entwicklung der Leitidee Daten und Zufall
4 Ausdruck von Informationen über eine unsichere Sache Revidieren von Informationen unter neuen (unterstellten) Fakten Offenlegen verwendeter Informationen Verdichten von Informationen Präzision von Information Variabilität Repräsentativität partieller Information Verbesserung der Präzision
5 Symmetrieüberlegungen Visualisierungen Verknüpfungen Messen (Schätzen) von Wahrscheinlichkeiten Approximation Schätzen und Testen Simulationen
6 Ereignisalgebra Wahrscheinlichkeitsmaß Wahrscheinlichkeitsraum Kombinatorik Zufallsvariablen und ihre Verteilungen Grenzwertsätze Schätzen und Testen
7 Die Schülerinnen und Schüler werten graphische Darstellungen und Tabellen von statistischen Erhebungen aus, planen statistische Erhebungen, sammeln systematisch Daten, erfassen sie in Tabellen und stellen sie graphisch dar, auch unter Verwendung geeigneter Hilfsmittel (wie Software), interpretieren Daten unter Verwendung von Kenngrößen, reflektieren und bewerten Argumente, die auf einer Datenanalyse basieren, beschreiben Zufallserscheinungen in alltäglichen Situationen, bestimmen Wahrscheinlichkeiten bei Zufallsexperimenten. (KMK, 2004) 7
8 Grundlegendes und erhöhtes Anforderungsniveau Die Schülerinnen und Schüler können [ ] Sachverhalte mithilfe von Baumdiagrammen oder Vierfeldertafeln untersuchen und damit Problemstellungen im Kontext bedingter Wahrscheinlichkeiten lösen Teilvorgänge mehrstufiger Zufallsexperimente auf stochastische Unabhängigkeit anhand einfacher Beispiele untersuchen
9 die Binomialverteilung und ihre Kenngrößen nutzen Simulationen zur Untersuchung stochastischer Situationen verwenden in einfachen Fällen aufgrund von Stichproben auf die Gesamtheit schließen (KMK, 2012)
10 Erhöhtes Anforderungsniveau Die Schülerinnen und Schüler können darüber hinaus für binomialverteilte Zufallsgrößen Aussagen über die unbekannte Wahrscheinlichkeit sowie die Unsicherheit und Genauigkeit dieser Aussagen begründen Hypothesentests interpretieren und die Unsicherheit und Genauigkeit der Ergebnisse begründen exemplarisch diskrete und stetige Zufallsgrößen unterscheiden und die Glockenform als Grundvorstellung von normalverteilten Zufallsgrößen nutzen stochastische Situationen untersuchen, die zu annähernd normalverteilten Zufallsgrößen führen (KMK 2012)
11 Die Schülerinnen und Schüler können [ ] Zufallsgrößen und Wahrscheinlichkeitsverteilungen zur Beschreibung stochastischer Situationen nutzen (KMK, 2012)
12 Zusammenhang mit (mindestens) folgenden prozessbezogenen Kompetenzen: mathematisch Modellieren (z.b. durch Planung um Umsetzung einer statistischen Untersuchung) Verwenden von mathematischen Darstellungen (Tabellen, Grafiken, Diagramme) Mit Mathematik symbolisch/formal/technisch umgehen (u.a. grafikfähiger TR, CAS, Computereinsatz) Mathematisch argumentieren und kommunizieren (Interpretation und Analyse der Ergebnisse)
13 Der Schüler sammelt und strukturiert Daten, stellt sie in Diagrammen dar und führt Berechnungen aus. Er entnimmt geeignete Informationen aus Darstellungen (Diagramme, Tabellen, Skizzen) und interpretiert diese. Er kann zwischen diesen Darstellungen wechseln. Der Schüler kann Gewinnchancen bei einfachen Zufallsexperimenten (Glücksrad, Würfeln, Münzwurf, Ziehen von Losen) durch experimentelles Vorgehen oder inhaltliche Überlegungen einschätzen, vergleichen, begründen und unter Verwendung der Begriffe sicher, unmöglich, möglich bzw. wahrscheinlich beschreiben.
14 Der Schüler kann Daten in Ur- und Strichlisten erfassen, ordnen, veranschaulichen in: Ranglisten, Häufigkeitstabellen, Diagrammen, absolute Häufigkeiten ermitteln, Daten unter Verwendung von Kenngrößen (Minimum, Maximum, Spannweite, arithmetisches Mittel, Modalwert, Median) charakterisieren, vergleichen, darstellen, Daten aus statistischen Darstellungen entnehmen, vergleichen.
15 Der Schüler kann Zufallsexperimente planen, durchführen und protokollieren, die Wahrscheinlichkeit eines Ereignisses als seine zu erwartende relative Häufigkeit bei vielen Versuchswiederholungen beschreiben und durch geeignete Simulationen schätzen, Laplace-Wahrscheinlichkeiten berechnen, Ergebnisse und Ereignisse von ein- und zweistufigen Zufallsexperimenten verbal und mit Hilfe der zugehörigen Mengenschreibweise beschreiben, die Begriffe sicheres und unmögliches Ereignis sowie Gegenereignis anwenden, Wahrscheinlichkeiten unter Verwendung von Baumdiagrammen und Pfadregeln berechnen.
16 Der Schüler kann mit Hilfe von Baumdiagrammen oder Vierfeldertafeln ein- und mehrstufige Zufallsexperimente veranschaulichen, Wahrscheinlichkeiten von Ereignissen bestimmen (in einfachen Fällen auch ohne Hilfsmittel), Ereignisse verknüpfen A B, A B, A und die Wahrscheinlichkeit der Verknüpfung bestimmen, - Teilvorgänge mehrstufiger Zufallsexperimente auf stochastische Unabhängigkeit anhand einfacher Beispiele untersuchen, Erwartungswert (in einfachen Fällen auch ohne Hilfsmittel) und Standardabweichung von Zufallsgrößen berechnen und interpretieren, Bernoulli-Ketten als mehrstufige Zufallsexperimente beschreiben und die Bernoulli-Formel anwenden, die Bedingungen für die Anwendbarkeit der Bernoulli-Formel prüfen und die Ergebnisse kritisch werten.
17 - binomialverteilte Zufallsgrößen an Beispielen erläutern, graphisch darstellen, A durch Erwartungswert und Standardabweichung charakterisieren, zum Lösen inner- und außermathematischer Probleme anwenden, Simulationen zur Untersuchung binomialverteilter Zufallsgrößen verwenden.
18 Der Schüler kann exemplarisch statistische Erhebungen planen und beurteilen, zweiseitige Signifikanztests für binomialverteilte Zufallsgrößen durchführen und interpretieren, normalverteilte Zufallsgrößen an Beispielen erläutern, graphisch darstellen sowie die Eigenschaften der Gaußschen Glockenkurve aus der Anschauung heraus beschreiben, durch Erwartungswert und Standardabweichung charakterisieren, zum Lösen inner- und außermathematischer Probleme anwenden.
19 Thema 2 (eine mögliche Vertiefung Anmerkung K.S.) Hypothesentests (auch einseitige Signifikanztests und Alternativtests) für binomial- und normalverteilte Zufallsgrößen durchführen und interpretieren, Unsicherheit der Ergebnisse von Hypothesentests begründen, diskrete und stetige Zufallsgrößen am Beispiel von Binomial- und Normalverteilungen vergleichen, den Zusammenhang zwischen Binomial- und Normalverteilung beschreiben, stochastische Situationen untersuchen, die zu annähernd normalverteilten Zufallsgrößen führen.
20 Borovcnik, M. (1996): Fundamentale Ideen als Organisationsprinzip der Mathematikdidaktik, Vortragsmanuskript. Zitiert bei Tietze, U.-P. et al. (Hrsg.) (2002): Mathematikunterricht in der Sekundarstufe. Band KMK (2004): Bildungsstandards im Fach Mathematik für den mittleren Schulabschluss. KMK (2012): Bildungsstandards im Fach Mathematik für die Allgemeine Hochschulreife. Tietze, U.-P./Klika, M./Wolpers, H. (Hrsg.) (2002): Mathematikunterricht in der Sekundarstufe. Band TMBWK (2013): Lehrplan für den Erwerb der allgemeinen Hochschulreife. Mathematik.
Kinga Szűcs
Kinga Szűcs 25.10.2011 Die Schülerinnen und Schüler werten graphische Darstellungen und Tabellen von statistischen Erhebungen aus, planen statistische Erhebungen, sammeln systematisch Daten, erfassen sie
Kinga Szűcs Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Abteilung Didaktik
Beurteilende Statistik im Mathematikunterricht Kinga Szűcs Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Abteilung Didaktik 20.11.2014 Gliederung Anliegen der beurteilenden
Lernsituation 2: Stochastik (40 UStd.) Titel: Umgang mit Zufall und Wahrscheinlichkeit
Bildungsgang: Zweijährige Höhere Berufsfachschule Wirtschaft und Verwaltung (Höhere Handelsschule) Lernsituation 2: Stochastik (40 UStd.) Titel: Umgang mit Zufall und Wahrscheinlichkeit Einstiegsszenario
untersuchen Lage- und Streumaße von Stichproben
Qualifikationsphase Leistungskurs 1 QII 2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks Buch: Elemente der Mathematik, Qualifikationsphase NRW Leistungskurs, Braunschweig 2015, Westermann
<; ;6 ++9,1, + ( #, + 6( 6( 4, 6,% 6 ;, 86': ; 3'!(( A 0 "( J% ;;,,,' "" ,+ ; & "+ <- ( + " % ; ; ( 0 + A,)"%1%#( + ", #( +. +!
!
Grundlagen der. h Rückblick. Dr. K. Krüger. Grundwissen Mathematik
Grundlagen der Schulmathematik h Rückblick Sommersemester 2009 Dr. K. Krüger Grundwissen Mathematik (DGS) Folie aus der 1. Vorlesung Inhalte 1. Beschreibende Statistik Mauna Loa Co2 1200 Streudiagramm
Daten, Häufigkeiten, Wahrscheinlichkeiten
Daten, Häufigkeiten, Wahrscheinlichkeiten Ein neuer Bereich im Lehrplan Mathematik Die acht Bereiche des Faches Mathematik Prozessbezogene Bereiche Problemlösen / kreativ sein Inhaltsbezogene Bereiche
Station 1 Das Galtonbrett, Realmodelle
Station 1 Das Galtonbrett, Realmodelle Zeit zur Bearbeitung: 10 Minuten 1.1 Versuch:. Münzwurf mit dem Galtonbrett Betrachtet wird folgendes Zufallsexperiment: Fünf identische Münzen werden zehn-mal geworfen.
Abbildung der Lehrplaninhalte im Lambacher Schweizer Thüringen Klasse 9 Lambacher Schweizer 9 Klettbuch
Leitidee Lernkompetenzen Lambacher Schweizer Klasse 9 Anmerkungen: Der Lehrplan für das Gymnasium in Thüringen ist ein Doppeljahrgangslehrplan. Das bedeutet, dass die Inhalte, die im Lehrplan zu finden
Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Klett Wahrscheinlichkeitsrechnung im Griff - Mathematik
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Klett Wahrscheinlichkeitsrechnung im Griff - Mathematik 5.-10. Klasse Das komplette Material finden Sie hier: School-Scout.de Wahrscheinlichkeitsrechnung
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK 1. Prüfungsteil Name:
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK 1. Prüfungsteil Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell
Elementare Stochastik
Mathematik Primarstufe und Sekundarstufe I + II Elementare Stochastik Mathematische Grundlagen und didaktische Konzepte Bearbeitet von Herbert Kütting, Martin J. Sauer, Friedhelm Padberg 3. Aufl. 2011.
Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.
.3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil
Lehrplan Mathematik für die Gymnasiale Oberstufe Saar
Lehrplan Mathematik für die Gymnasiale Oberstufe Saar 14. Juli 2015 Jens Merkle, Holger Blees, Anke Czernotzky Bildungsstandards als Rahmenbedingungen Abitur 2017 nach Bildungsstandards (Aufgabenpool:
Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5
Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung
ISBN
1 Zeitraum Ziele / Inhalte (Sach- und Methodenkompetenz) Klassenarbeit Analysis Grenzwerte 1. Die explizite und rekursive Beschreibung von Zahlenfolgen verstehen und Eigenschaften von Zahlenfolgen kennen
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell und Typ sind mit
Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19
Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist
Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium
Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Klasse 8 8 Kapitel I Reelle Zahlen 1 Von bekannten und neuen Zahlen 2 Wurzeln und Streckenlängen 3 Der geschickte Umgang mit Wurzeln
Statistik für NichtStatistiker
Statistik für NichtStatistiker Zufall und Wahrscheinlichkeit von Prof. Dr. Karl Bosch 5., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis 1. ZufalLsexperimente und zufällige Ereignisse
1./2. Klasse Daten und Zufall 4.1 Daten erfassen und strukturiert darstellen - Kompetenzerwartungen
Stochastik warum? Gründe: Begründungsfeld 1: Stochastik trägt zur Umwelterschließung bei Begründungsfeld 2: Entwicklung des Wahrscheinlichkeitsbegriffs braucht Zeit Begründungsfeld 3: Interesse am Gegenstand
Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen
Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind
Grundlage ist das Lehrbuch Fundamente der Mathematik, Cornelsen Verlag, ISBN
Schulinternes Curriculum der Klasse 8 am Franz-Stock-Gymnasium (vorläufige Version, Stand: 20.08.16) Grundlage ist das Lehrbuch, Cornelsen Verlag, ISBN 978-3-06-040323-3 ca. 6 Wochen Kapitel I: Terme Terme
Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung
R. Brinkmann http://brinkmann-du.de Seite 5.05.0 Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung Erwartungswert binomialverteilter Zufallsgrößen Wird ein Bernoulli- Versuch, bei
1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente...
Inhaltsverzeichnis 1 Grundlagen der Wahrscheinlichkeitsrechnung 1 1.1 Wahrscheinlichkeitsräume Ein erster mathematischer Blick auf Zufallsexperimente.......... 1 1.1.1 Wahrscheinlichkeit, Ergebnisraum,
Schulinternes Curriculum Mathematik 8
Die dargestellte Reihenfolge der Unterrichtsinhalte ist eine von mehreren sinnvollen Möglichkeiten und daher nicht bindend. Lambacher Schweizer 8 * Inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen
Schulcurriculum Mathematik
Fachkonferenz Mathematik Schulcurriculum Mathematik Schuljahrgang 9 Lehrwerk: Fundamente der Mathematik 9, Cornelsen-Verlag, ISBN 978-3-06-040149-9 Das Schulcurriculum ist auf Grundlange des Stoffverteilungsplans
Funktionen Lineare Zuordnungen mit eigenen Worten in Wertetabellen, Graphen und in Termen darstellen und zwischen diesen Darstellungen wechseln.
Kernlernplan Jahrgangsstufe 8 8 Lineare Funktionen und lineare Gleichungen 1. Lineare Funktionen 2. Aufstellen von linearen Funktionsgleichungen 3. Nullstellen und Schnittpunkte Funktionen Interpretieren
Box. Mathematik ZU DEN KERNCURRICULUM-LERNBEREICHEN:
Box Mathematik Schülerarbeitsbuch P (μ o- X μ + o-) 68,3 % s rel. E P (X = k) f g h A t μ o- μ μ + o- k Niedersachsen Wachstumsmodelle und Wahrscheinlichkeitsrechnung ZU DEN KERNCURRICULUM-LERNBEREICHEN:
1.4 Sachrechnen in den Bildungsstandards
1.4 Sachrechnen in den Bildungsstandards http://www.kmk.org/fileadmin/veroe ffentlichungen_beschluesse/2004/20 04_10_15-Bildungsstandards-Mathe- Primar.pdf Mathematikunterricht in der Grundschule Allgemeine
Stichwortverzeichnis. Symbole
Stichwortverzeichnis Symbole 50ste Perzentil 119 A Absichern, Ergebnisse 203 Abzählbar unendliche Zufallsvariable 146 Alternativhypothese 237 238 formulieren 248 Anekdote 340 Annäherung 171, 191 Antwortquote
Schulinterner Lehrplan Mathematik Klasse 8
Schulinterner Lehrplan Mathematik Klasse 8 Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Terme und Gleichungen mit Klammern ordnen und vergleichen gleichartige Terme. führen die Rechenoperationen
Die Umsetzung der Lehrplaninhalte in Fokus Mathematik 7 und 8 (Gymnasium) auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen
Die Umsetzung der Lehrplaninhalte in 7 und 8 (Gymnasium) auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen Schulinternes Curriculum Erwartete prozessbezogene am Ende der 8. Klasse: Argumentieren/Kommunizieren
Schulinternes Curriculum Mathematik 8
Die dargestellte Reihenfolge der Unterrichtsinhalte ist eine von mehreren sinnvollen Möglichkeiten und daher nicht bindend. Kapitel I Lineare Funktionen 1 Lineare Funktionen 2 Aufstellen von linearen Funktionsgleichungen
Inhaltsbereich Wahrscheinlichkeit und Statistik
Inhaltsbereich Wahrscheinlichkeit und Statistik AG Mathematik, Sankt Pölten 11.11.2009 Markus Binder Modell für die zentrale srp im Schulversuch Teil I: Aufgaben mit 15-25 Items Teil II: 6-8 Aufgaben,
Teil / Ein paar statistische Grundlagen 25. Kapitel 1 Was Statistik ist und Warum sie benötigt Wird 2 7
Inhaltsverzeichnis Einführung 21 Über dieses Buch 21 Törichte Annahmen über den Leser 22 Wie dieses Buch aufgebaut ist 23 Teil I: Ein paar statistische Grundlagen 23 Teil II: Die beschreibende Statistik
Schuleigener Lehrplan Mathematik -Klasse 8 -
Schuleigener Lehrplan Mathematik -Klasse 8 - 1. Lineare Funktionen und lineare Gleichungen 1. Lineare Funktionen 2. Aufstellen von linearen Funktionsgleichungen 3. Nullstellen und Schnittpunkte Wiederholen
Abbildung der Lehrplaninhalte im Lambacher Schweizer Thüringen Klasse 8 Lambacher Schweizer 8 Klettbuch
Leitidee Lernkompetenzen Lambacher Schweizer Klasse 8 Anmerkungen: Der Lehrplan für das Gymnasium in Thüringen ist ein Doppeljahrgangslehrplan. Das bedeutet, dass die Inhalte, die im Lehrplan zu finden
Daten und Zufall in der Grundschule. Daten Titel und Zufall in der
Fortbildung zum Thema Daten und Zufall in der Grundschule Daten Titel und Zufall in der Sabine Kern / Erhard ltendorf 1 Schwerpunkte Zufall Schwerpunkte des Workshops - Standards der Grundschule und wie
Schulcurriculum für die Qualifikationsphase im Fach Mathematik
Schulcurriculum für die Qualifikationsphase im Fach Mathematik Fach: Mathematik Klassenstufe: 11/12 Anzahl der zu unterrichtenden Wochenstunden: 4 Die folgenden Standards im Fach Mathematik benennen sowohl
Mathematik 8 Version 09/10
Mathematik 8 Version 09/10 Informationen aus authentischen Texten mehrschrittige Argumentationen Spezialfälle finden Verallgemeinern Untersuchung von Zahlen und Figuren Überprüfen von Ergebnissen und Lösungswegen
Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler
Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung
Daten und Zufall. eine gar nicht sooo neue Leitidee im Bildungsplan Mathematik Grundschule. SINUS September 2012 Benedikt Rocksien 1
Daten und Zufall eine gar nicht sooo neue Leitidee im Bildungsplan Mathematik Grundschule SINUS September 2012 Benedikt Rocksien 1 Es hängt an der Wand, macht Ticktack, und wenn es runterfällt, geht die
Inhaltsbezogene Kompetenzen
Rationale Zahlen Brüche und Anteile Was man mit einem Bruch alles machen kann Kürzen und Erweitern Die drei Gesichter einer rationalen Zahl Ordnung in die Brüche bringen Dezimalschreibweise bei Größen
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Klett Ich kann... Mathe - Wahrscheinlichkeitsrechnung
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Klett Ich kann... Mathe - Wahrscheinlichkeitsrechnung Das komplette Material finden Sie hier: School-Scout.de Ich kann... MATHE Schritt
Lehrwerk: Lambacher Schweizer, Klett Verlag
Thema I: Lineare und lineare Gleichungen 1. Lineare 2. Aufstellen von linearen Funktionsgleichungen 3. Nullstellen und Schnittpunkte 1. Klassenarbeit Thema II: Reelle 1. Von bekannten und neuen 2. Wurzeln
K: Argumentieren/Kommunizieren P: Problemlösen M: Modellieren W: Werkzeuge
UNTERRICHTSVORHABEN MATHEMATIK ggf. fächerverbindende Kooperation mit Thema: Arithmetik/Algebra mit Zahlen und Symbolen umgehen Umfang: 24 Wochen Jahrgangsstufe 8 Termumformungen Lineare Gleichungen mit
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik GK 1. Prüfungsteil Name:
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik GK 1. Prüfungsteil Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell
Abitur 2016 Mathematik Stochastik IV
Seite 1 http://www.abiturloesung.de/ Seite Abitur 016 Mathematik Stochastik IV Bei einem Zufallsexperiment wird eine ideale Münze so lange geworfen, bis zum zweiten Mal Zahl (Z) oder zum zweiten Mal Wappen
Neue gymnasiale Oberstufe neue Chancen für CAS-Einsatz?
Neue gymnasiale Oberstufe neue Chancen für CAS-Einsatz? Beschluss der KMK vom 07.05.2009: Aufwertung der MINT-Bildung, u.a. CAS in allen MINT-Fächern verbindlich nutzen Die veränderte Unterrichtsstruktur
Abitur 2013 Mathematik NT Stochastik S II
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2013 Mathematik NT Stochastik S II Eine Agentur vertreibt Tickets für Sportveranstaltungen ( S ), Konzerte ( K ), Musicals ( M ) und Eventreisen ( E
Stoffverteilungsplan Mathematik im Jahrgang 8 Lambacher Schweizer 8
Mathematik Jahrgangsstufe 8 (Lambacher Schweitzer 8) Zeitraum prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Informationen aus authentischen Texten Überprüfen von Ergebnissen und Ordnen Rationale
FACHCURRICULUM KL. 9. Raum und Form Figuren zentrisch strecken Üben und Festigen. Strahlensätze. Rechtwinklige Dreiecke.
MATHEMATIK Schönbuch-Gymnasium Holzgerlingen Seite 1/5 Ähnliche Figuren - Strahlensätze Figuren zentrisch strecken Eigenschaften der zentrischen Streckung kennen und Zentrische Streckung anwenden Strahlensätze
Bevor wir richtig anfangen... 8
Statistik macchiato Inhalt Vorwort Bevor wir richtig anfangen... 8 Beschreibung von Daten Ordnung ist das halbe Leben... 16 Häufigkeitstabellen... 19 Häufigkeitsverteilungen... 19 Mittelwert (arithmetisches
Lambacher Schweizer Klasse 7 G9
Im Lambacher Schweizer sind Kompetenzbereiche und Inhaltsfelder innerhalb aller Kapitel eng miteinander verwoben. So werden in den Aufgaben immer wieder Fähigkeiten der sechs Kompetenzbereiche Darstellen,,
Fit for Abi & Study Stochastik
Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen
Schulcurriculum Mathematik
Fachkonferenz Mathematik Schulcurriculum Mathematik Schuljahrgang 10 Lehrwerk: Fundamente der Mathematik 10, Cornelsen-Verlag, ISBN 978-3-06-041317-1 Das Schulcurriculum ist auf Grundlange des Stoffverteilungsplans
MAT Gleichungen 14 DS. Alle Schüler/innen können...
MAT 08-01 Gleichungen 14 DS Leitidee: Zahlen und Operationen Thema im Buch: Gleich gleicher Gleichung Gleichungen in Form von Streichholzbildern mit Worten beschreiben und umgekehrt. mithilfe von Variablen
Inhaltsbezogene Kompetenzen Arithmetik/Algebra mit Zahlen und Symbolen umgehen Rechnen mit rationalen Zahlen
Arithmetik/Algebra mit Zahlen und Symbolen umgehen Rechnen mit rationalen Zahlen Ordnen ordnen und vergleichen rationale Zahlen Operieren lösen lineare Gleichungen nutzen lineare Gleichungssysteme mit
Abitur 2015 Mathematik Stochastik IV
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 201 Mathematik Stochastik IV In einer Urne befinden sich vier rote und sechs blaue Kugeln. Aus dieser wird achtmal eine Kugel zufällig gezogen, die Farbe
UNTERRICHTSVORHABEN 1
UNTERRICHTSVORHABEN 1 ggf. fächerverbindende Kooperation mit Umfang:14 Wochen Jahrgangsstufe 8 Thema: Arithmetik/Algebra mit Zahlen und Symbolen umgehen Termumformungen Lineare Gleichungen mit zwei Variablen,
Dimensionen. Mathematik. Grundkompetenzen. für die neue Reifeprüfung
Dimensionen Mathematik 7 GK Grundkompetenzen für die neue Reifeprüfung Inhaltsverzeichnis Buchkapitel Inhaltsbereiche Seite Komplexe Zahlen Algebra und Geometrie Grundbegriffe der Algebra (Un-)Gleichungen
Grundkompetenzkatalog. Mathematik
Grundkompetenzkatalog Mathematik AG - Algebra und Geometrie AG 1.1 AG 1.2 AG 2.1 AG 2.2 AG 2.3 AG 2.4 AG 2.5 AG 3.1 AG 3.2 AG 3.3 Wissen über Zahlenmengen N, Z, Q, R, C verständig einsetzen Wissen über
Statistik für Ingenieure und Naturwissenschaftler
Sheldon M. Ross Statistik für Ingenieure und Naturwissenschaftler 3. Auflage Aus dem Amerikanischen übersetzt von Carsten Heinisch ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spektrum Inhalt Vorwort zur dritten
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik GK 1. Prüfungsteil Name:
Muster für einen Studienbericht (in Auszügen) im Fach Mathematik GK 1. Prüfungsteil Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell
GES Espenstraße Schulinterner Lehrplan Mathematik Stand Vorbemerkung
Vorbemerkung Die im Folgenden nach Jahrgängen sortierten Inhalte, inhaltsbezogenen Kompetenzen (IK) und prozessbezogenen Kompetenzen (PK) sind für alle im Fach Mathematik unterrichtenden Lehrer verbindlich.
MATHEMATIK NEUE WEGE BADEN-WÜRTTEMBERG
MATHEMATIK NEUE WEGE BADEN-WÜRTTEMBERG Gegenüberstellung der Bildungsstandards Klasse 8 und der in den Schülerbänden 3 und 4 1. Leitidee Zahl die Unvollständigkeit von Zahlbereichen verstehen und aufzeigen
Schulinternes Curriculum Mathematik Jahrgangsstufe 8
Schulinternes Curriculum Mathematik Jahrgangsstufe 8 Unterrichtsvorhaben I: Terme und Gleichungen mit Klammern Terme zusammenfassen, ausmultiplizieren und mit einem einfachen Faktor faktorisieren binomische
die Funktionsgleichung einer quadratischen Funktion mit Hilfe von drei Punkten bestimmen.
MAT 10-01 Quadratische Funktionen 12 DS Leitidee: Funktionaler Zusammenhang Thema im Buch: Null und nichtig quadratische Funktionen durch Term, Gleichung, Tabelle, Graph darstellen und zwischen den Darstellungen
Prozessbezogene Kompetenzen (Argumentieren / Kommunizieren / Problemlösen, Modellieren, Werkzeuge)
Stochastik mit Daten und Zufall arbeiten Zweistufige Zufallsexperimente/Baumdiagramme Laplaceregel und Pfadregeln/Boxplots Erheben planen und führen Datenerhebungen durch, nutzen zur Erfassung der Daten
EdM Hessen Qualifikationsphase Bleib fit in Exponentialfunktionen und Logarithmen
EdM Hessen Qualifikationsphase 978-3-507-87911-9 Bleib fit in Differenzialrechnung 1 Integralrechnung Lernfeld: Wie groß ist? 1.1 Der Begriff des Integrals 1.1.1 Aus Änderungsraten rekonstruierter Bestand
Schulcurriculum Mathematik
Fachkonferenz Mathematik Schulcurriculum Mathematik Schuljahrgang 8 Lehrwerk: Fundamente der Mathematik 8, Schroedel-Verlag, ISBN 978-3-06-008008-3 Das Schulcurriculum ist auf Grundlange des Stoffverteilungsplans
Bio- Statistik 1. mit 87 Abbildungen, 40 Tabellen und 102 Beispielen
Bio- Statistik 1 Beschreibende und explorative Statistik - Wahrscheinlichkeitsrechnung und Zufallsvariablen - Statistische Maßzahlen - Wichtige Verteilungen - Beurteilende Statistik - Vertrauensintervalle
Stoffverteilungsplan im Rahmen des schulinternen Lehrplans für die Jahrgangsstufe EF bezogen auf das Lehrwerk Fokus Mathematik
Stoffverteilungsplan im Rahmen des schulinternen Lehrplans für die Jahrgangsstufe EF bezogen auf das Lehrwerk Zeitraum 6 UE Kapitel 1 Wiederholung zu linearen und quadratischen Funktionen 1.1 Fit im Umgang
Notenpunkte: Unterschrift: Zur Bestimmung des arithmetischen Mittels ist es wichtig die Daten der Größe nach zu ordnen.!!
Name: Seite 1 von 11 Universität Kassel 29. April 2009 Biehler / Hofmann Elementare Stochastik 1 2 3 4 5 6 7! 12 5 9 4 13 4 13 60 Notenpunkte: Unterschrift: Aufgabe 1 Aussagen (12 Punkte) Kreuzen Sie an,
So lügt man mit Statistik Eine Gebrauchsanweisung
So lügt man mit Statistik Eine Gebrauchsanweisung Georg Bruckmaier & Christine Schmeißer Didaktik der Mathematik Naturwissenschaftliche Fakultät I, Mathematik Lehrerfortbidung am 17. März 2011 Regensburg
Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz
- 1 - Grundgesamtheit, Merkmale, Stichprobe Dimension, Umfang Skalierung Eigenschaften der Stichprobe kennzeichnende Größen Eigenschaften der Stichprobe kennzeichnende Größen Punktediagramm, Regressionsgerade,
Argumentieren / Kommunizieren Die SuS
Kap. im Arithmetik / Algebra Die I. II. II. 3, 4, 5, 6, 7 IV. 5 unterscheiden rationale und irrationale Zahlen wenden das Radizieren als Umkehrung des Potenzierens an; berechnen und überschlagen Quadratwurzeln
Daten und Zufall. eine gar nicht sooo neue Leitidee im Bildungsplan Mathematik Grundschule. SINUS September 2012 Benedikt Rocksien 1
Daten und Zufall eine gar nicht sooo neue Leitidee im Bildungsplan Mathematik Grundschule SINUS September 2012 Benedikt Rocksien 1 Mathematikunterricht in der Grundschule Allgemeine mathematische Kompetenzen
Stoffverteilungsplan Mathematik 7 Lehrwerk: Lambacher Schweizer 7
Prozente und Zinsen Arithmetik/Algebra Ordnen: Rationale Zahlen ordnen, vergleichen Operieren: Grundrechenarten für rationale Zahlen ausführen Prozente Vergleiche werden einfacher Prozentsatz Prozentwert
1. Flächen und Rauminhalte
Stoffverteilungsplan Klasse 8 Schulbuch: Elemente der Mathematik Die Kapitelangaben sind dem Lehrbuch entnommen 1. Flächen und Rauminhalte Lernbereich Längen, Flächen- und Rauminhalte und deren Terme.
Inhaltsbezogene Kompetenzen Prozessbezogenen Kompetenzen Methodische Vorgaben/Erläuterungen/ Ergänzungen
Inhaltsbezogene Kompetenzen Prozessbezogenen Kompetenzen Methodische Vorgaben/Erläuterungen/ Ergänzungen Zeitdauer in Wochen Artithmetik/Algebra mit Zahlen und Symbolen umgehen Zehnerpotenzschreibweise
Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend.
Schulplan Mathematik Klasse 9 Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend. Prozessbezogene Kompetenzbereiche
Stoffverteilungsplan Mathematik 8 auf der Grundlage des G8 Kernlehrplans Lehrwerk: Lambacher Schweizer 8
Lehrwerk: prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Methodische 1. Halbjahr Argumentieren / Kommunizieren ziehen Informationen aus authentischen Texten präsentieren Lösungswege und Problembearbeitungen
Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 6 Februar 2016
Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 6 Februar 2016 Anzahl der schriftlichen Arbeiten: 5, Gewichtung der schriftlichen Leistungen 50%-60% Nachweis der Durchführung: siehe
Abgleich für das Unterrichtsfach Mathematik mit dem Kerncurriculum für das Gymnasium gymnasiale Oberstufe (2018) in Niedersachsen
Abgleich für das Unterrichtsfach Mathematik mit dem Kerncurriculum für das Gymnasium gymnasiale Oberstufe (2018) in Niedersachsen Leistungskurs/erhöhtes Anforderungsniveau - G9 ISBN: 978-3-12-735531-5
MWG Mathematik-Schulcurriculum Klasse 7
MWG Mathematik-Schulcurriculum Klasse 7 Hinweis: Physik wird in Klasse 7 an unsere Schule epochal unterrichtet. Da der Lehrplan in Physik den Umgang mit Dreiecken und Winkeln benötigt, wird bei den Klassen,
Kompetenzerwartungen und inhaltliche Schwerpunkte. Stochastik Leistungskurs in der Q2 am SG
Kompetenzerwartungen und inhaltliche Schwerpunkte Stochastik Leistungskurs in der Q2 am SG Inhaltliche Schwerpunkte Stochastische Modelle und Kenngrößen von Wahrscheinlichkeitsverteilungen Bedingte Wahrscheinlichkeit
geeigneten Fachbegriffen erläutern Kommunizieren
Kapitel I Rationale Zahlen Arithmetik / Algebra Einfache Bruchteile auf verschiedene Weise darstellen: Lesen: Informationen aus Text, Bild, 1 Brüche und Anteile handelnd, zeichnerisch an wiedergeben 2
Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz...
Inhaltsverzeichnis Vorwort... 2 Zum Einstieg... 3 1 Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße... 5 1.2 Erwartungswert und Varianz... 7 2 Wahrscheinlichkeitsverteilungen
Fachcurriculum Mathematik 5. Klasse TFO
Fachcurriculum Mathematik 5. Klasse TFO Die Fachlehrer: Jolanda Wieser Fach: Mathematik Fachspezifische Kompetenzen Die Schülerin, der Schüler kann : mit symbolischen, formalen und technischen Elementen
