Thread-Konzept in objektorientierten Programmiersprachen. Threads. Threads in Java
|
|
|
- Jacob Weiß
- vor 9 Jahren
- Abrufe
Transkript
1 Thread-Konzept in objektorientierten Programmiersprachen 1 Threads ein Thread ist ein eigenständiges Programmfragment, das parallel zu anderen Teilen eines Programmes ablaufen kann alle Threads eines Programmes teilen sich einen gemeinsamen Adressraum (leichtgewichtiger Prozeß) in einem Multithreading-System verwaltet die Rechnerkernvergabe (Scheduler) die zur Ausführung anstehenden Threads man unterscheidet zwei Arten der Parallelität: pseudoparallele Abarbeitung auf Einprozessorsystemen echte parallele Abarbeitung auf Mehrprozessorsystemen 2 Threads in Java Threads werden in der virtuellen Maschine durch Objekte der Klasse javalangthread repräsentiert virtuelle Maschine verwendet Thread-Objekte zum Starten, Starten oder Suspendieren von Threads ein Thread beginnt die Ausführung mit dem Aufruf der run()- Methode des Thread-Objektes Deklaration eines Threads Konstruktion einer Unterklasse der Klasse Thread Implementierung des Interfaces Runnable Erzeugen eines Threads Erzeugen eines Objektes einer Unterklasse der Klasse der Thread Erzeugen eines Thread-Objektes unter Angabe eines Objektes einer Klasse, welches das Interface Runnable implementiert 3
2 Deklaration und Erzeugen eines Threads class TextThread extends Thread { String text; public TextThread(String text){ thistext = text; public void run() { for(int i = 0; i< 10; i++) Systemoutprintln(text); TextThread java = new TextThread( Java ); javastart(); TextThread expresso = new TextThread( Expresso ); expressostart(); 4 Deklaration und Erzeugen eines Threads class TextThread implements Runnable { String text; public TextThread(String text){ thistext = text; public void run() { while( true ) Systemoutprintln(text); TextThread java = new TextThread( Java ); Thread thread = new Thread(java); threadstart(); 5 Zustände eines Threads schlafend resume() suspend() suspendiert suspend() resume() blockiert interrupt() sleep() resume() suspend() notify(), interrupt() wait(), join() new erzeugt start() rechenwillig run() zu Ende stop() beendet Scheduler yield() rechnend seit JDK 12 verworfen 6
3 Starten eines Threads javastart(); Beenden eines Threads javastop(); Unterbrechen eines Threads javasuspend(); Fortsetzen eines Threads javaresume(); Pausieren eines Programmes try { javasleep(1000) // 1000 ms catch ( InterruptedException e) { Steuerung eines Threads 7 Steuerung eines Threads interrupt() - Wecken von schlafenden bzw blockierten Threads yield() - der aufrufende Thread gibt freiwillig die CPU ab isalive() - true, falls der Thread gestartet, aber nicht beendet ist join() - wartet auf das Ende des Threads, für den die Methode aufgerufen wurde setname(string) - ändert den Namen des Threads getname() - gibt den Namen des Threads aus setpriority(int) - ändert die Priorität des Threads ThreadMIN_PRIORITY = 0 ThreadMAX_PRIORITY = 10 (Standard - ThreadNORM_PRIORITY = 5) getpriority() - gibt die Priorität des Threads aus 8 Problem: Zugriff auf gemeinsame Daten Spooler- Katalog 4 abc out = 4 Thread A 5 6 progc progn Thread B 7 in = 7 9
4 Vermeidung von Wettkampfbedingungen Situationen, bei der zwei oder mehrere Threads auf gemeinsame Daten zugreifen und deren Ergebnisse vom Fortschritt eines Threads abhängen, heißen Wettkampfbedingungen Benötigt wird ein Verfahren zur Gewährleistung eines gegenseitigen Ausschlusses von Threads Programmteil aus dem auf den gemeinsamen Speicher zugegriffen wird heißt kritischer Bereich Vermeidung von Wettkampfbedingungen: 2 Threads dürfen sich nicht gleichzeitig in kritischen Bereichen aufhalten keine Annahme über relative Geschwindigkeit der Threads kein Threads außerhalb eines kritischen Bereiches darf einen anderen blockieren kein Thread sollte beliebig lange auf den Eintritt in einen kritischen Bereich warten 10 Synchronisationskonzept: Semaphor Mechanismus zum wechselseitigen Ausschluss und zur Synchronisation von Threads (Dijkstra, 1965) Ein Semaphor ist eine gemeinsam benutzte Integer-Variable S auf die nur die drei Operationen Init, P(asseer) und V(erlaat) zugreifen können P(S): if(s > 0) then S = S-1; else { stoppe ausführenden Thread; trage den Thread in die Warteliste von S ein; V(S): S = S + 1; if(warteliste von S!= ) then { wähle Thread Q aus Warteliste von S; springe zu der P-Operation in Q, durch die Q gestoppt wurde; System muss atomare Ausführung von P und V garantieren 11 Anwendung: Semaphor Definition kritischer Abschnitte: Sei S mit 1 initialisiert P(S); { kritischer Abschnitt V(S); Synchronisation von Threads: Sei S mit 0 initialisiert Thread A Thread B { { V(S); P(S); // B wartet auf A Initialisierungswert n > 1: Verwaltung kritischer Bereiche, die von n Threads gleichzeitig genutzt werden können 12
5 Beispiel: Producer und Consumer Threads Puffer Producer Consumer abc cde efg out = 1 in = 4 13 Beispiel: Producer und Consumer Threads Semaphore nichtvoll = 5, // Puffer ist nicht voll, initialisiert mit Puffergröße 5 nichtleer = 0, // Puffer ist nicht leer gesperrt = 1; // Puffer wird gelesen oder beschrieben Producer: Consumer: do{ do{ Erzeuge Datum; P(nichtleer); P(nichtvoll); P(gesperrt); P(gesperrt); Nimm Datum aus Puffer; Lege Datum im Puffer ab; V(gesperrt); V(gesperrt); V(nichtvoll); V(nichtleer); Verbrauche Datum; until true; until true; 14 Probleme bei Semaphoren Falsche oder missbräuchliche Anwendung durch den Programmierer V(S); P(S); P(S); P(S); Auftreten von Verklemmungen (Deadlocks) P(S 1 ); P(S 2 ); P(S 2 ); P(S 1 ); V(S 2 ); V(S 1 ); V(S 1 ); V(S 2 ); Verklemmungen können durch Anforderung aller Semaphore vor Eintritt in den kritischen Bereich vermieden werden 15
6 Synchronisationskonzept: Monitor Semaphormechanismen für wechselseitigen Ausschluss und Synchronisation werden in einem Monitor (Hoare, Hansen) gekapselt Monitor ist ein abstrakter Datentyp mit der zusätzlichen Eigenschaft des wechselseitigen Ausschluss Deklaration gemeinsamer Variablen Deklaration von Operationen Initialisierungscode Eingabeschlange für Threads Bedingungsvariablen S mit denen über wait(s) und notify(s) zugegriffen werden kann 16 Monitore in Java Ein Monitor ist die Kapselung eines kritischen Bereiches mit Hilfe einer automatisch verwalteten Sperre jedes von der JVM angelegte Objekt verfügt über eine Sperre Schlüsselwort synchronized markiert Methoden in einer Klasse für die ein Thread vor Ausführung die Sperre verlangen muß class SpeechSynthesizer{ synchronized void say(string words){ // Speak Sperre wird immer von einem Objekt angefordert nicht statische Methode => Objekt mit dem die Methode aufgerufen wird statische Methode => Class-Objekt der entsprechenden Klasse 17 Beispiel class SpreadSheet { int cella1, cella2, cella3; synchronized int sumrow() { return cella1 + cella2 + cella3; synchronized void setrow(int a1, int a2, int a3){ cella1 = a1; cella2 = a2; cella3 = a3; Aufruf von sumrow() oder setrow() über ein Objekt a verlangt jeweils die Sperre von Objekt a 18
7 Beispiel class SpreadSheet { static int cella1, cella2, cella3; synchronized static int sumrow() { return cella1 + cella2 + cella3; synchronized static void setrow(int a1, int a2, int a3){ cella1 = a1; cella2 = a2; cella3 = a3; Aufruf von sumrow() oder setrow() verlangt jeweils die Sperre von dem Class-Objekt der Klasse SpreadSheet 19 Synchronisation von Blöcken Schlüsselwort synchronized kann für Blöcke verwendet werden Angabe eines Objektes, dessen Sperre verwendet werden soll synchronized (myobject){ // Anweisungsblock der synchronisiert werden muß synchronized void mymethod(){ void mymethod(){ <=> synchronized (this){ Synchronisation von Blöcken oder Methoden verschiedener Klassen 20 Freigabe von Sperren wait() und notify() erweitern Synchronisationsmechanismen Methodenaufruf wait() bewirkt: Thread beendet Bearbeitung eines synchronisierten Blocks und geht in den schlafenden Zustand Sperre für den synchronisierten Block wird freigegeben Methodenaufruf notify() bewirkt: mit wait() in den schlafenden Zustand versetzter Thread, kann wieder die Sperre des entsprechenden Objektes anfordern notify() aufrufender Thread beendet normal die Ausführung auf dem synchronisierten Block aufgeweckter Thread kann (muß aber nicht) als nächstes die Sperre erhalten und führt dann die Bearbeitung fort überladene Version der wait-methode und notifyall()-methode 21
8 Beispiel class MyThing { synchronized void waitermethod() { // Ausführung irgendwelche Sachen wait(); // Weiterbearbeitung der Methode synchronized void notifiermethod() { // Ausführung irgendwelcher Sachen notify(); // Weitere Arbeiten werden ausgeführt werden synchronized void relatedmethod(){ // Ausführung irgendwelcher Arbeiten 22 Beispiel: Producer und Consumer Threads class Producer extends Threads{ static final int MAXQUEUE = 5; private Vector messages = new Vector(); public void run(){ try{ while(true){ putmessage(); sleep( 1000); catch (InterruptedException e){ 23 Beispiel: Producer und Consumer Threads private sychronized void putmessage() throws InterruptedException{ while( messagesize == MAXQUEUE) wait(); messageaddelement( new javautildate()tostring()); notify(); public synchronized String getmessage() throws InterruptedException { notify(); while( messagessize() == 0 ) wait(); Stringmessage = (String) messagesfirstelement(); messagesremoveelement( message ); return message; 24
9 Beispiel: Producer und Consumer Threads class Consumer extends Threads { Producer producer; Consumer( Producer p){ producer = p; public void run() { try { while( true ){ String message = producergetmessage(); Systemoutprintln( Got message: + message); sleep( 2000 ); catch ( InterruptedException e ) { 25 Rechnerkernvergabe Rechnerkernvergabe (Scheduler) entscheidet welcher der lauffähigen Threads den Rechnerkern zugewiesen bekommt Rechnerkernvergabe sollte garantieren, dass jeder Thread einen gerechten Anteil an der CPU erhält die CPU zu 100 Prozent ausgelastet wird die Antwortzeit für interaktive Benutzer minimiert wird die Anzahl der bearbeiteten Aufträge pro Stunde maximiert werden Hauptproblem: Laufzeitverhalten der im System befindlichen Threads kann nicht vorausgesagt werden Rechnerkernvergabestrategien können in verdrängende und nicht verdrängende Strategien (non preemptive und preemptive scheduling) unterteilt werden 26 Nicht verdrängende Rechnerkernvergabestrategien FIFS-Strategie: Threads erhalten den Prozessor in der Reihenfolge ihres Eintretens in die Liste `rechenwillig Warteschlange RK A C E B Prioritätengesteuerte Rechnerkernvergabe: Warteschlangen Priorität RK A E 1 B 2 C 3 27
10 Verdrängende Strategien: Round-Robin-Verfahren jedem Thread wird eine Zeitscheibe zugewiesen, innerhalb welcher er laufen darf Umschalten der CPU Zeitscheibe ist abgelaufen Thread terminiert oder wird blockiert Rechnerkernvergabe verwaltet Liste rechenwilliger Threads Zeitscheibe abgelaufen Einfügen am Ende der Liste Festlegen der Dauer einer Zeitscheibe kleine Zeitscheibe geringe Effizienz der CPU durch viele Kontextumschaltungen große Zeitscheibe schlechte Antwortzeiten für interaktive Anforderungen Zeitscheibe um 100 ms ist häufig ein vernünftiger Kompromiss 28 Prioritätengesteuertes Round-Robin-Verfahren innerhalb der nach Prioritäten geordneten Warteschlangen wird das Round-Robin-Verfahren angewandt hoch Priorität tief 29 Methoden zur Rechnerkernvergabe in Java Prioritätengesteuerte Rechnerkernvergabe Rechnerkernabgabe sleep(), wait(), yields() und stop() 30
Monitore. Klicken bearbeiten
Sascha Kretzschmann Institut für Informatik Monitore Formatvorlage und deren Umsetzung des Untertitelmasters durch Klicken bearbeiten Inhalt 1. Monitore und Concurrent Pascal 1.1 Warum Monitore? 1.2 Monitordefinition
Einführung in die Programmierung Blockkurs Java
Michael Bader 8. 12. April 2002 Freitag Inhaltsübersicht Exceptions und Errors Ausnahmebehandlung: try/catch/finally Threads Zugriffskontrolle bei gemeinsamen Variablen: synchronized, wait(), notify()
Systeme 1. Kapitel 6. Nebenläufigkeit und wechselseitiger Ausschluss
Systeme 1 Kapitel 6 Nebenläufigkeit und wechselseitiger Ausschluss Threads Die Adressräume verschiedener Prozesse sind getrennt und geschützt gegen den Zugriff anderer Prozesse. Threads sind leichtgewichtige
Verteilte Systeme CS5001
Verteilte Systeme CS5001 Th. Letschert TH Mittelhessen Gießen University of Applied Sciences Client-Server-Anwendungen: Vom passiven (shared state) Monitor zum aktiven Monitor Monitor (Hoare, Brinch-Hansen,
Synchronisation in Java. Invisible Web
Synchronisation in Java Studienprojekt Invisible Web Tang Zhihong Synchronisation in Java Synchronisationsproblem Monitore Wait und notify PipedInputStream und PipedOutputStream Synchronisation von Collections
Parallele Prozesse. Prozeß wartet
Parallele Prozesse B-66 Prozeß: Ausführung eines Programmes in seinem Adressraum (zugeordneter Speicher) Parallele Prozesse: gleichzeitig auf mehreren Prozessoren laufende Prozesse p1 p2 verzahnte Prozesse:
parallele Prozesse auf sequenziellen Prozessoren Ein Process ist ein typisches Programm, mit eigenem Addressraum im Speicher.
Threads parallele Prozesse auf sequenziellen Prozessoren Prozesse und Threads Es gibt zwei unterschiedliche Programme: Ein Process ist ein typisches Programm, mit eigenem Addressraum im Speicher. Ein Thread
Einführung in die Programmierung
Technische Universität München WS 2003/2004 Institut für Informatik Prof. Dr. Christoph Zenger Testklausur Einführung in die Programmierung Probeklausur Java (Lösungsvorschlag) 1 Die Klasse ArrayList In
Praktikum aus Softwareentwicklung 2, Stunde 5
Praktikum aus Softwareentwicklung 2, Stunde 5 Lehrziele/Inhalt 1. Threads Threads Threads sind parallele, oder auf Rechnern mit nur einer CPU quasi-parallele, Programmabläufe in Java. Sie können beispielsweise
Objektorientierte Programmierung
Objektorientierte Programmierung 1 Geschichte Dahl, Nygaard: Simula 67 (Algol 60 + Objektorientierung) Kay et al.: Smalltalk (erste rein-objektorientierte Sprache) Object Pascal, Objective C, C++ (wiederum
5. Threads, Serverprozesse und Benachrichtigungen
5. Threads, Serverprozesse und Benachrichtigungen Threads allgemein Threads in Android: Handler und Messages Services: Local, Remote, Binding Benachrichtigungen Entwicklung mobiler Anwendungen Europäische
Innere Klassen in Java
Innere Klassen in Java SS 2012 Prof. Dr. Margarita Esponda Innere Klassen Klassen- oder Interfacedefinitionen können zur besseren Strukturierung von Programmen verschachtelt werden Eine "Inner Class" wird
Zur Erinnerung: Threads. Threadverwaltung. Threads: Prioritäten. Beispiel Flugbuchungsprogramm. Nichtdeterminismus
Zur Erinnerung: Threads Programmierung (fortgeschrittene Konzepte) Threads, Monitore, Semaphore und speisende en Wolf-Ulrich Raffel ([email protected]) Möglichkeiten, Threads zu definieren Bildung einer
2.2 Prozesse in Java
2.2 Prozesse in Java! Java sieht kein Schlüsselwort für Prozesse vor, sondern bestimmte Klassen und Schnittstellen. Mit anderen Worten: der Prozessbegriff wird mit Mitteln der Objektorientierung eingeführt.
Kapitel 4. Monitore und wechselseitiger Ausschluss
Seite 1 Kapitel 4 Monitore und wechselseitiger Ausschluss Prof. Dr. Rolf Hennicker 28.05.2015 4.1 Interferenzen Seite 2 Parallel ablaufende Prozesse können sich gegenseitig (störend) beeinflussen. Beispiel
Prozeß P1 Prozeß P2. Zur Synchronisation stehen den beiden Prozessen binäre Semaphore und die beiden Funktionen
Seite 8 A UFGABE 11 INTERP ROZEßKOMMUNIKATION Das folgende Petrinetz zeigt zwei verkoppelte Prozesse P1 und P2. Die Transitionen a und b beschreiben Aktionen von P1, die Transitionen c und d Aktionen von
Große Übung Praktische Informatik 1
Große Übung Praktische Informatik 1 2005-12-08 [email protected] http://www.informatik.uni-mannheim.de/pi4/people/fuessler 1: Announcements / Orga Weihnachtsklausur zählt als Übungsblatt,
Round-Robin Scheduling (RR)
RR - Scheduling Reigen-Modell: einfachster, ältester, fairster, am weitesten verbreiteter Algorithmus Entworfen für interaktive Systeme (preemptives Scheduling) Idee: Den Prozessen in der Bereitschaftsschlange
Softwarelösungen: Versuch 4
Softwarelösungen: Versuch 4 Nichtstun in Schleife wird ersetzt durch zeitweilige Zurücknahme der Anforderung, um es anderen Prozessen zu erlauben, die Ressource zu belegen: /* Prozess 0 */ wiederhole flag[0]
Objektorientierte Programmierung
Universität der Bundeswehr Fakultät für Informatik Institut 2 Priv.-Doz. Dr. Lothar Schmitz FT 2006 Zusatzaufgaben Lösungsvorschlag Objektorientierte Programmierung Lösung 22 (Java und UML-Klassendiagramm)
Themen. Web Service - Clients. Kommunikation zw. Web Services
Themen Web Service - Clients Kommunikation zw. Web Services Bisher: Implementierung einer Java Anwendung und Bereitstellung durch Apache Axis unter Apache Tomcat Java2WSDL Erzeugen einer WSDL-Datei zur
Effiziente Java Programmierung
Effiziente Java Programmierung Seminar Implementierung moderner virtueller Maschinen am Beispiel von Java SS 2009 von Reinhard Klaus Losse 20. Mai 2009 Gliederung Definition Effizienz Werkzeuge zum Messen
Klausurvorbereitung VS1 (Prof. Brecht) (B0rg Edition)
Ein Prozess kann unmittelbar vom Zustand 1. Running in den Zustand Ready 2. Running in den Zustand Blocked 3. Ready in den Zustand Running Klausurvorbereitung VS1 (Prof. Brecht) (B0rg Edition) Der Adressraum
Übung zu Grundlagen der Betriebssysteme. 10. Übung 18.12.2012
Übung zu Grundlagen der Betriebssysteme 10. Übung 18.12.2012 Aufgabe 1 a) Was versteht man unter einem kritischen Abschnitt oder kritischen Gebiet (critical area)? b) Welche Aufgabe hat ein Semaphor? c)
Musterlösungen zur Klausur Informatik 3
Musterlösungen zur Klausur Informatik 3 Justus-Liebig-Universität Gießen Wintersemester 2003/2004 Aufgabe 1 (6 Punkte) Man kreuze bei den folgenden Deklarationen und Definitionen jeweils an, ob sie aus
Schritt 1 - Ein Spielfeld
Schritt 1 - Ein Spielfeld Wir beginnen mit zwei einfachen Java-Klassen, dem eigentlichen Spielfeld und dem Applet zum Anzeigen des Spielfeldes (und später der Buttons und der anderen Bedienelemente). Hier
Programmieren in Java
Programmieren in Java objektorientierte Programmierung 2 2 Zusammenhang Klasse-Datei In jeder *.java Datei kann es genau eine public-klasse geben wobei Klassen- und Dateiname übereinstimmen. Es können
Parallele Programmierung in Java
PPJ-1 Parallele Programmierung in Java Prof. Dr. Uwe Kastens Sommersemester 2000 Vorlesung Parallele Programmierung in Java SS 2000 / Folie 01 PPJ-2 Ziele und Durchführung Die Studierenden sollen grundlegende
Verhindert, dass eine Methode überschrieben wird. public final int holekontostand() {...} public final class Girokonto extends Konto {...
PIWIN I Kap. 8 Objektorientierte Programmierung - Vererbung 31 Schlüsselwort: final Verhindert, dass eine Methode überschrieben wird public final int holekontostand() {... Erben von einer Klasse verbieten:
Java Kurs für Anfänger Einheit 4 Klassen und Objekte
Java Kurs für Anfänger Einheit 4 Klassen und Ludwig-Maximilians-Universität München (Institut für Informatik: Programmierung und Softwaretechnik von Prof.Wirsing) 13. Juni 2009 Inhaltsverzeichnis klasse
Multi-Threading. Ralf Abramowitsch Vector Informatik GmbH [email protected]
Multi-Threading Ralf Abramowitsch Vector Informatik GmbH [email protected] Einführung in Threads Threads synchronisieren ThreadPools Thread = unabhängiger Ausführungspfad, der gleichzeitig
Prof. Dr. Uwe Schmidt. 21. August 2007. Aufgaben zur Klausur Objektorientierte Programmierung im SS 2007 (IA 252)
Prof. Dr. Uwe Schmidt 21. August 2007 Aufgaben zur Klausur Objektorientierte Programmierung im SS 2007 (IA 252) Zeit: 75 Minuten erlaubte Hilfsmittel: keine Bitte tragen Sie Ihre Antworten und fertigen
2A Basistechniken: Weitere Aufgaben
2A Basistechniken: Weitere Aufgaben 2A.3 Programmierung unter UNIX/Linux 1. Gegeben sind einige Ausschnitte von C-Programmen, die unter UNIX/Linux ausgeführt werden sollen. Beantworten Sie die zugehörigen
Parallele Prozesse Prozeß Parallele Prozesse verzahnte Prozesse Nebenläufige Prozesse: Threads Vorlesung Software-Entwicklung / Folie 131 Ziele:
Parallele Prozesse SWE-131 Prozeß: Ausführung eines sequentiellen Programmstückes in dem zugeordneten Speicher (Adressraum). Veränderlicher Zustand: Speicherinhalt und Programmposition. Parallele Prozesse:
Handbuch ECDL 2003 Professional Modul 3: Kommunikation Kalender freigeben und andere Kalender aufrufen
Handbuch ECDL 2003 Professional Modul 3: Kommunikation Kalender freigeben und andere Kalender aufrufen Dateiname: ecdl_p3_02_03_documentation.doc Speicherdatum: 08.12.2004 ECDL 2003 Professional Modul
Domänenmodell: Fadenkommunikation und -synchronisation
Domänenmodell: Fadenkommunikation und -synchronisation Alexander Humphreys, Reinhard Rösch, Fabian Scheler 15. Mai 2003 Inhaltsverzeichnis 1 Domänendefinition 1 2 Domänenlexikon 1 3 Konzeptmodelle 4 4
Es kann maximal ein Prozess die Umladestelle benutzen.
SoSe 0 Konzepte und Methoden der Systemsoftware Universität Paderborn Fachgebiet Rechnernetze Präsenzübung (Musterlösung) 0-06-0 bis 0-06-06 Aufgabe : Erzeuger/Verbraucher-Pattern Ein Getränkemarkt hat
Lebenszyklus von Threads
Threads Umgangssprachlich Faden, Diskussionsfaden, Gewinde, Faser, Garn, roter Faden Threads ermöglichen Nebenläufigkeit (parallele Ausführung von Anwendungsteilen). Typisch für Threads ist,dass sie zu
Dr. Monika Meiler. Inhalt
Inhalt 15 Parallele Programmierung... 15-2 15.1 Die Klasse java.lang.thread... 15-2 15.2 Beispiel 0-1-Printer als Thread... 15-3 15.3 Das Interface java.lang.runnable... 15-4 15.4 Beispiel 0-1-Printer
Objektorientierte Programmierung. Kapitel 12: Interfaces
12. Interfaces 1/14 Objektorientierte Programmierung Kapitel 12: Interfaces Stefan Brass Martin-Luther-Universität Halle-Wittenberg Wintersemester 2012/13 http://www.informatik.uni-halle.de/ brass/oop12/
Einführung in die Java- Programmierung
Einführung in die Java- Programmierung Dr. Volker Riediger Tassilo Horn riediger [email protected] WiSe 2012/13 1 Wichtig... Mittags keine Pommes... Praktikum A 230 C 207 (Madeleine + Esma) F 112 F 113
3 Objektorientierte Konzepte in Java
3 Objektorientierte Konzepte in Java 3.1 Klassendeklarationen Fragen an die Klassendeklaration: Wie heißt die Klasse? Wer darf auf die Klasse und ihre Attribute/Methoden zugreifen? Ist die Klasse eine
Java-Programmierung. Remote Method Invocation - RMI
Java-Programmierung Remote Method Invocation - RMI Entwicklungsmethoden Sockets Entwurf verteilter Anwendungen ist relativ aufwändig, da zunächst ein Kommunikationsprotokoll entwickelt werden muss aufwändig
Ausnahmebehandlung in Java
Ausnahmebehandlung in Java class A { void foo() throws Help, SyntaxError {... class B extends A { void foo() throws Help { if (helpneeded()) throw new Help();... try {... catch (Help e) {... catch (Exception
Java: Vererbung. Teil 3: super() www.informatikzentrale.de
Java: Vererbung Teil 3: super() Konstruktor und Vererbung Kindklasse ruft SELBSTSTÄNDIG und IMMER zuerst den Konstruktor der Elternklasse auf! Konstruktor und Vererbung Kindklasse ruft SELBSTSTÄNDIG und
Delegatesund Ereignisse
Delegatesund Ereignisse «Delegierter» Methoden Schablone Funktionszeiger Dr. Beatrice Amrhein Überblick Definition eines Delegat Einfache Delegate Beispiele von Delegat-Anwendungen Definition eines Ereignisses
Modellierung und Programmierung 1
Modellierung und Programmierung 1 Prof. Dr. Sonja Prohaska Computational EvoDevo Group Institut für Informatik Universität Leipzig 19. November 2015 Gültigkeitsbereich (Scope) von Variablen { int m; {
Technische Dokumentation SilentStatistikTool
Technische Dokumentation SilentStatistikTool Version 1.0 Marko Schröder 1115063 Inhalt Einleitung... 3 Klasse Program... 3 Klasse ArgumentHandler... 3 Bereitgestellte Variablen... 3 Bereitgestellte Methoden...
Effiziente Administration Ihrer Netzwerkumgebung
Admin Anwender Aufträge, Freigaben Verwaltet Benutzer, Mailboxen, Ordner und vergibt Berechtigungen Anbindung von Fremdsystemen Erzeugt und pflegt Mailboxen und Datenbanken Benutzerinformationen und Konventionen
Drei-Schichten-Architektur. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 16: 3-Schichten-Architektur 1 Fachkonzept - GUI
Universität Osnabrück Drei-Schichten-Architektur 3 - Objektorientierte Programmierung in Java Vorlesung 6: 3-Schichten-Architektur Fachkonzept - GUI SS 2005 Prof. Dr. F.M. Thiesing, FH Dortmund Ein großer
Prinzipien Objektorientierter Programmierung
Prinzipien Objektorientierter Programmierung Valerian Wintner Inhaltsverzeichnis 1 Vorwort 1 2 Kapselung 1 3 Polymorphie 2 3.1 Dynamische Polymorphie...................... 2 3.2 Statische Polymorphie........................
C# im Vergleich zu Java
C# im Vergleich zu Java Serhad Ilgün Seminar Universität Dortmund SS 03 Gliederung Entstehung von C# und Java Überblick von C# und Java Unterschiede und Gemeinsamkeiten Zusammenfassung und Ausblick Entstehung
Betriebssysteme. Wintersemester 2015. Kapitel 2 Prozess und Threads. Patrick Kendzo [email protected]
Betriebssysteme Wintersemester 2015 Kapitel 2 Prozess und Threads Patrick Kendzo [email protected] Programm Inhalt Einleitung Prozesse und Threads Speicherverwaltung Eingabe und Ausgabe Dateisysteme Zusammenfassung
Zählen von Objekten einer bestimmten Klasse
Zählen von Objekten einer bestimmten Klasse Ziel, Inhalt Zur Übung versuchen wir eine Klasse zu schreiben, mit der es möglich ist Objekte einer bestimmten Klasse zu zählen. Wir werden den ++ und den --
Klausur zur Einführung in die objektorientierte Programmierung mit Java
Klausur zur Einführung in die objektorientierte Programmierung mit Java im Studiengang Informationswissenschaft Prof. Dr. Christian Wolff Professur für Medieninformatik Institut für Medien-, Informations-
Daniel Warneke [email protected] 08.05.2006. Ein Vortrag im Rahmen des Proseminars Software Pioneers
Design Patterns Daniel Warneke [email protected] 08.05.2006 Ein Vortrag im Rahmen des Proseminars Software Pioneers Design Patterns 1/23 Übersicht Einleitung / Motivation Design Patterns Beispiele Rolle des
1. EINLEITUNG 2. GLOBALE GRUPPEN. 2.1. Globale Gruppen anlegen
GLOBALE GRUPPEN 1. EINLEITUNG Globale Gruppen sind system- oder kategorieweite Gruppen von Nutzern in einem Moodlesystem. Wenn jede Klasse einer Schule in eine globale Gruppe aufgenommen wird, dann kann
MORE Profile. Pass- und Lizenzverwaltungssystem. Stand: 19.02.2014 MORE Projects GmbH
MORE Profile Pass- und Lizenzverwaltungssystem erstellt von: Thorsten Schumann erreichbar unter: [email protected] Stand: MORE Projects GmbH Einführung Die in More Profile integrierte
II. Grundlagen der Programmierung. 9. Datenstrukturen. Daten zusammenfassen. In Java (Forts.): In Java:
Technische Informatik für Ingenieure (TIfI) WS 2005/2006, Vorlesung 9 II. Grundlagen der Programmierung Ekkart Kindler Funktionen und Prozeduren Datenstrukturen 9. Datenstrukturen Daten zusammenfassen
5. Abstrakte Klassen. Beispiel (3) Abstrakte Klasse. Beispiel (2) Angenommen, wir wollen die folgende Klassenhierarchie implementieren:
5. Abstrakte Klassen Beispiel 5. Abstrakte Klassen 5. Abstrakte Klassen Beispiel Beispiel (3) Angenommen, wir wollen die folgende Klassenhierarchie implementieren: Probleme des Implementierungsvorschlags:
Nutzung von GiS BasePac 8 im Netzwerk
Allgemeines Grundsätzlich kann das GiS BasePac Programm in allen Netzwerken eingesetzt werden, die Verbindungen als Laufwerk zu lassen (alle WINDOWS Versionen). Die GiS Software unterstützt nur den Zugriff
Studentische Lösung zum Übungsblatt Nr. 7
Studentische Lösung zum Übungsblatt Nr. 7 Aufgabe 1) Dynamische Warteschlange public class UltimateOrderQueue private Order[] inhalt; private int hinten; // zeigt auf erstes freies Element private int
Dieses Tutorial gibt eine Übersicht der Form Klassen von Struts, welche Besonderheiten und Unterschiede diese aufweisen.
Übersicht Struts Forms Dieses Tutorial gibt eine Übersicht der Form Klassen von Struts, welche Besonderheiten und Unterschiede diese aufweisen. Allgemeines Autor: Sascha Wolski http://www.laliluna.de/tutorials.html
Java RMI Remote Method Invocation
Java RMI Remote Method Invocation Ziel: Aufruf von Instanzmethoden entfernter Objekte basierend auf Java. Paket: java.rmi und Unterpakete Topologie: RMI Registry RMI Server RMI Client Der Server registriert
Probeklausur: Programmierung WS04/05
Probeklausur: Programmierung WS04/05 Name: Hinweise zur Bearbeitung Nimm Dir für diese Klausur ausreichend Zeit, und sorge dafür, dass Du nicht gestört wirst. Die Klausur ist für 90 Minuten angesetzt,
Client-Server-Beziehungen
Client-Server-Beziehungen Server bietet Dienste an, Client nutzt Dienste Objekt ist gleichzeitig Client und Server Vertrag zwischen Client und Server: Client erfüllt Vorbedingungen eines Dienstes Server
Das Typsystem von Scala. L. Piepmeyer: Funktionale Programmierung - Das Typsystem von Scala
Das Typsystem von Scala 1 Eigenschaften Das Typsystem von Scala ist statisch, implizit und sicher 2 Nichts Primitives Alles ist ein Objekt, es gibt keine primitiven Datentypen scala> 42.hashCode() res0:
Lehrer: Einschreibemethoden
Lehrer: Einschreibemethoden Einschreibemethoden Für die Einschreibung in Ihren Kurs gibt es unterschiedliche Methoden. Sie können die Schüler über die Liste eingeschriebene Nutzer Ihrem Kurs zuweisen oder
Betriebssystembau (BSB)
Betriebssystembau (BSB) 6. Übung http://ess.cs.tu-.de/de/teaching/ws2013/bsb/ Olaf Spinczyk [email protected] http://ess.cs.tu-.de/~os AG Eingebettete System Informatik 12, TU Dortmund Agenda Vorstellung
Programmieren I. Kapitel 15. Ein und Ausgabe
Programmieren I Kapitel 15. Ein und Ausgabe Kapitel 15: Ein und Ausgabe Ziel: einen kleinen Einblick in die vielfältigen IO Klassen geben Grober Überblick Klasse File zur Verwaltung von Dateien Random
Nebenläufige Programmierung
Nebenläufige Programmierung Perspektiven der Informatik 27. Januar 2003 Gert Smolka Telefon-Szenario Eine Telefonzelle Mehrere Personen wollen telefonieren Immer nur eine Person kann telefonieren Ressource
S7-Hantierungsbausteine für R355, R6000 und R2700
S7-Hantierungsbausteine für R355, R6000 und R2700 1. FB90, Zyklus_R/W Dieser Baustein dient zur zentralen Kommunikation zwischen Anwenderprogramm und dem Modul R355 sowie den Geräten R6000 und R2700 über
Vorkurs C++ Programmierung
Vorkurs C++ Programmierung Klassen Letzte Stunde Speicherverwaltung automatische Speicherverwaltung auf dem Stack dynamische Speicherverwaltung auf dem Heap new/new[] und delete/delete[] Speicherklassen:
Institut für Programmierung und Reaktive Systeme 25. August 2014. Programmier-Labor. 04. + 05. Übungsblatt. int binarysearch(int[] a, int x),
Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme 25. August 2014 Programmier-Labor 04. + 05. Übungsblatt Aufgabe 21: a) Schreiben Sie eine Methode
Programmierkurs Java
Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen
Java Kurs für Anfänger Einheit 5 Methoden
Java Kurs für Anfänger Einheit 5 Methoden Ludwig-Maximilians-Universität München (Institut für Informatik: Programmierung und Softwaretechnik von Prof.Wirsing) 22. Juni 2009 Inhaltsverzeichnis Methoden
Thread-Synchronisation in in Java. Threads Wechselseitiger Ausschluss Bedingte Synchronisation Beispiel: Warteschlangen
Thread-Synchronisation in in Java Threads Wechselseitiger Ausschluss Bedingte Synchronisation Beispiel: Warteschlangen Die Klasse Thread Die Die Klasse Thread gehört zur zur Standardbibliothek von von
5. Abstrakte Klassen
5. Abstrakte Klassen Beispiel 5. Abstrakte Klassen Angenommen, wir wollen die folgende Klassenhierarchie implementieren: Vogel Amsel Drossel Fink Peter Becker, Programiersprache Java FH Bonn-Rhein-Sieg,
http://www.tutego.com/ Schieberegler und analoge Anzeigen
http://www.tutego.com/ Schieberegler und analoge Anzeigen http://www.tutego.com/ JScrollBar Schieberegler Unter Swing ersetzt javax.swing.jscrollbardie Klasse java.awt.scrollbar. Direkt wird die Klasse
Typumwandlungen bei Referenztypen
Typumwandlungen bei Referenztypen Genau wie es bei einfachen Typen Typumwandlungen gibt, gibt es auch bei Referenztypen Umwandlungen von einem Referenztypen in einen anderen Referenztypen, die wie bei
Dämon-Prozesse ( deamon )
Prozesse unter UNIX - Prozessarten Interaktive Prozesse Shell-Prozesse arbeiten mit stdin ( Tastatur ) und stdout ( Bildschirm ) Dämon-Prozesse ( deamon ) arbeiten im Hintergrund ohne stdin und stdout
Übungen zu Softwaretechnik
Prof. Dr. Dr. h.c. M. Broy Lösungsblatt 11 Dr. H. Ehler, S. Wagner 23. Januar 2004 Übungen zu Softwaretechnik Aufgabe 16 Qualitätseigenschaften Broker-Pattern Beurteilen Sie das in Aufgabe 15 benutzte
U08 Entwurfsmuster (II)
U08 Entwurfsmuster (II) Inhalt der Übung Diskussion und Implementierung von Entwurfsmustern Übungsaufgaben Aufgabe 1 (Queue) Gegeben ist das folgende Analysemodell einer Warteschlange (Queue): Eine Warteschlange
Lösungsvorschläge. zu den Aufgaben im Kapitel 4
Lösungsvorschläge zu den Aufgaben im Kapitel 4 Aufgabe 4.1: Der KNP-Algorithmus kann verbessert werden, wenn in der Funktion nexttabelle die Zuweisung next[tabindex] = ruecksprung; auf die etwas differenziertere
Fachgebiet Informationssysteme Prof. Dr.-Ing. N. Fuhr. Programmierung Prof. Dr.-Ing. Nobert Fuhr. Übungsblatt Nr. 6
Gudrun Fischer Sascha Kriewel [email protected] Anmeldung zur Klausur! Übungsblatt Nr. 6 Um an der Klausur teilzunehmen, müssen sich Studierende der angewandten Informatik in
Einführung in die objektorientierte Programmierung mit Java. Klausur am 19. Oktober 2005
Einführung in die objektorientierte Programmierung mit Java Klausur am 19. Oktober 2005 Matrikelnummer: Nachname: Vorname: Semesteranzahl: Die Klausur besteht aus drei Frageblöcken zu den Inhalten der
Einführung in Javadoc
Einführung in Javadoc Johannes Rinn http://java.sun.com/j2se/javadoc Was ist Javadoc? Javadoc ist ein Werkzeug, dass eine standardisierte Dokumentation für die Programmiersprache Java unterstützt. Vorteil:
Übung 1 mit C# 6.0 MATTHIAS RONCORONI
Übung 1 mit C# 6.0 MATTHIAS RONCORONI Inhalt 2 1. Überblick über C# 2. Lösung der Übung 1 3. Code 4. Demo C# allgemein 3 aktuell: C# 6.0 mit.net-framework 4.6: Multiparadigmatisch (Strukturiert, Objektorientiert,
Technische Universität München SS 2006 Fakultät für Informatik 12. Oktober 2006 Prof. Dr. A. Knoll. Aufgabe 1 Transferfragen (Lösungsvorschlag)
Technische Universität München SS 2006 Fakultät für Informatik 12. Oktober 2006 Prof. Dr. A. Knoll Lösungsvorschläge der Klausur zu Einführung in die Informatik II Aufgabe 1 Transferfragen (Lösungsvorschlag)
Computeranwendung und Programmierung (CuP)
Computeranwendung und Programmierung (CuP) VO: Peter Auer (Informationstechnologie) UE: Norbert Seifter (Angewandet Mathematik) Organisatorisches (Vorlesung) Vorlesungszeiten Montag 11:15 12:45 Freitag
