Grafikkarten-Architektur
|
|
|
- Dennis Vogt
- vor 9 Jahren
- Abrufe
Transkript
1 > Grafikkarten-Architektur Parallele Strukturen in der GPU Name: Sebastian Albers
2 2 > Inhalt > CPU und GPU im Vergleich > Rendering-Pipeline > Shader > GPGPU > Nvidia Tesla-Architektur
3 3 > Motivation: Warum auf Grafikkarten rechnen? 1000 GT200 NVIDIA GPU Intel CPU Maximalleistung in GFLOPS NV30 NV35 NV40 G70 G71 G80 Ultra G GHz Core2 Duo G GHz Harpertown GT200 = GeForce GTX 280 G92 = GeForce 9800 GTX G80 = GeForce 8800 GTX G71 = GeForce 7900 GTX G70 = GeForce 7800 GTX NV40 = GeForce 6800 Ultra NV35 = GeForce FX 5950 Ultra NV30 = GeForce FX Jan 2003 Jan 2004 Jan 2005 Jan 2006 Jan 2007 Jan 2008 Quelle: Nvidia, April 2009
4 4 > CPU und GPU im Vergleich > Central Processing Unit (CPU) > Wenige Kerne, hohe Taktung > Cache-Hierarchien > Niedrige Speicherzugriffszeiten (Latenz) > Beispiel: Intel Core i7-975 > Preis: ca. 900 > 4 Kerne > Taktung: 3.33 GHz > Bandbreite je nach verwendetem RAM > 3 2 GB DDR3-1600: 26.7 GB/s > 3 2 GB DDR3-800: 15.5 GB/s > Graphics Processing Unit (GPU) > 3D-Rendering hochgradig datenparallel GPU für datenparallelen Code optimiert > Viele Prozessoren, niedrige Taktung > Hoher Datendurchsatz (Speicherbandbreite) > Beispiel: Nvidia Geforce GTX 295 (2 GPUs) > Preis: ca. 450 > Prozessoren > Taktung: 1.48 GHz > Speicher: MB GDDR3 > Bandbreite: GB/s
5 5 > Bildsynthese / Rendering > Rendering: Erzeugung eines diskreten 2D-Bildes aus einer 3D-Szene > Programmierer spezifiziert Szene durch Primitive (Dreiecke, Linien, etc.) > Eckpunkt eines Primitivs heißt Vertex > Aus Primitiven werden diskrete Fragmente erzeugt > Fragment enthält Informationen wie 2D-Position, Tiefenwert, Farbe, Alphakanal > Fragmente werden zu Pixeln kombiniert > Rendering findet in einer Pipeline statt > Programmierbare Stages der Rendering-Pipeline definiert durch Shader-Funktionen: > In speziellen Shader-Programmiersprachen geschrieben > Definiert als sequentielle Funktion, die für einzelne Dateneinheit berechnet wird
6 6 > Shader > Shader-Arten: > Vertex-Shader: Verschiebung von Vertices > 1 Vertex 1 Vertex > Geometry-Shader: Manipulation von Primitiven > 1 Primitiv beliebig viele Primitive > Fragment-Shader / Pixel-Shader: Änderung der Fragment-Farbe > 1 Fragment 1 Fragment > Viel Geometrie, hohe Auflösungen Pro Bild werden sehr viele Shader-Funktionen aufgerufen > Shader-Berechnungen voneinander unabhängig Parallele Berechnung der Shader-Funktionen für verschiedene Daten auf so genannten Shader-Einheiten der Grafikkarte
7 7 > General Purpose Computing On GPUs (GPGPU) > GPGPU > Nicht-grafikspezifische Berechnungen auf GPUs > Effizient bei hoher Datenparallelität > Anfänge: Verwendung von OpenGL und Shader-Programmiersprachen > Nvidia Tesla-Architektur (ab Geforce 8, Erscheinungsjahr: 2007) > Unified-Shader-Architektur > Jede Shader-Einheit kann sämtliche Shader-Berechnungen durchführen Bessere Auslastung der GPU > Graphics Mode / Compute Mode > Graphics Mode: 3D-Rendering > Compute Mode: Teile der Grafikpipeline deaktiviert
8 8 > Beispiel: Geforce 8800 GTX > 128 Streaming Processors (Taktung: 1.35 GHz) > Organisiert in 16 Streaming Mulitprocessors > 768 MB GDDR3 (maximale Bandbreite: 86,4 GB/s) > Theoretische Maximalleistung: 518 GFLOPS
9 9 > Geforce 8800 GTX host CPU system GPU host interface SM MT IU shared
10 10 > Geforce 8800 GTX host CPU system GPU host interface SM MT IU shared
11 11 > Geforce 8800 GTX host CPU system GPU host interface SM MT IU shared
12 12 > Geforce 8800 GTX host CPU system GPU host interface SM MT IU shared
13 13 > Geforce 8800 GTX host CPU system GPU host interface SM MT IU shared
14 14 > Geforce 8800 GTX host CPU system GPU host interface SM MT IU shared
15 15 > Streaming Multiprocessor SM MT IU > Streaming Multiprocessor (SM) > Multithreaded Instruction Unit (MT IU) > Streaming Processor () > Special Function Unit () shared > Shared Memory
16 16 > Multithreaded Instruction Unit (MI UT) > MI UT verwaltet Ausführung von Threads auf einem SM > 32 Threads werden zu einem Warp zusammengefasst > Bis zu 24 Warps werden von einem SM verwaltet Warp
17 > Grafikhardware 17 > Hardware-Multithreading > Single Instruction Multiple Thread (SIMT) > Threads eines Warps führen das gleiche Programm aus > Verzweigungen im Programmcode Threads können unterschiedliche Instruktionen ausführen > In Anlehnung an die Flynnsche Klassifikation SIMD > 32 Threads pro Warp > Best case: alle Threads führen identische Instruktionen aus > Worst case: alle Threads führen paarweise verschiedene Instruktionen aus, dann: 1/32 der Maximalleistung > Probleme lassen sich häufig mit wenigen Verzweigungen lösen Meist gute Ausnutzung der Ressourcen möglich
18 18 > Hardware Multithreading Warps MT IU shared
19 19 > Hardware Multithreading 1. MT IU wählt Warp zur Ausführung aus Warps MT IU shared
20 20 > Hardware Multithreading 1. MT IU wählt Warp zur Ausführung aus 2. MT IU wählt Thread aus dem Warp aus Warps MT IU shared
21 21 > Hardware Multithreading 3. Instruktion dieses Threads wird für den gesamten Warp ausgeführt Warps MT IU 3.1. Threads, welche die Instruktion ausführen müssen, beteiligen sich 3.2. Threads, welche die Instruktion nicht ausführen müssen, warten shared
22 22 > Zusammenfassung > Moderne GPUs: viele Prozessoren hohes Leistungspotential > Datenparallele Berechnungen lassen sich auf GPUs effizient durchführen > Rendering: parallele Ausführung vieler Shader-Funktionen > Auf GPUs sind auch nicht-grafikspezifische Berechnungen möglich (GPGPU) > Tesla-Architektur > Beispiel: (stark vereinfachter) Aufbau einer Geforce 8800 GTX > Hardware Multithreading > 32 Threads werden zu einem Warp zusammengefasst und gemeinsam auf einem Streaming Multiprocessor ausgeführt (SIMT)
23 23 Vielen Dank für Ihre Aufmerksamkeit! Noch Fragen?
RST-Labor WS06/07 GPGPU. General Purpose Computation On Graphics Processing Units. (Grafikkarten-Programmierung) Von: Marc Blunck
RST-Labor WS06/07 GPGPU General Purpose Computation On Graphics Processing Units (Grafikkarten-Programmierung) Von: Marc Blunck Ablauf Einführung GPGPU Die GPU GPU Architektur Die Programmierung Programme
General Purpose Computation on GPUs
General Purpose Computation on GPUs Matthias Schneider, Robert Grimm Universität Erlangen-Nürnberg {matthias.schneider, robert.grimm}@informatik.stud.uni-erlangen.de M. Schneider, R. Grimm 1 Übersicht
CUDA. Moritz Wild, Jan-Hugo Lupp. Seminar Multi-Core Architectures and Programming. Friedrich-Alexander-Universität Erlangen-Nürnberg
CUDA Seminar Multi-Core Architectures and Programming 1 Übersicht Einleitung Architektur Programmierung 2 Einleitung Computations on GPU 2003 Probleme Hohe Kenntnisse der Grafikprogrammierung nötig Unterschiedliche
Thema: Hardware-Shader
Seminar Grafikprogrammierung Thema: Hardware-Shader Christian Bauer 03.07.08 Überblick Entwicklung Die Shader im Detail Programmierung GPGPU Zusammenfassung & Ausblick 1/19 Entwicklung (1) Früher: Berechnung
GPGPU-Architekturen CUDA Programmiermodell Beispielprogramm. Einführung CUDA. Ralf Seidler. Friedrich-Alexander-Universität Erlangen-Nürnberg
Einführung CUDA Friedrich-Alexander-Universität Erlangen-Nürnberg PrakParRA, 18.11.2010 Outline 1 GPGPU-Architekturen 2 CUDA Programmiermodell 3 Beispielprogramm Outlook 1 GPGPU-Architekturen 2 CUDA Programmiermodell
GPGPU-Architekturen CUDA Programmiermodell Beispielprogramm Organiosatorisches. Tutorial CUDA. Ralf Seidler
Friedrich-Alexander-Universität Erlangen-Nürnberg 05.10.2010 Outline 1 GPGPU-Architekturen 2 CUDA Programmiermodell 3 Beispielprogramm 4 Organiosatorisches Outlook 1 GPGPU-Architekturen 2 CUDA Programmiermodell
SS08, LS12, Friedrich-Alexander-Universität Erlangen Florian Hänel, Frederic Pollmann HS Multicore Architectures and Programming GPU EVOLUTION
SS08, LS12, Friedrich-Alexander-Universität Erlangen Florian Hänel, Frederic Pollmann HS Multicore Architectures and Programming GPU EVOLUTION (until Geforce 7 Series) 1 ÜBERSICHT Grafikpipeline Verlagerung
LEISTUNGSVERGLEICH VON FPGA, GPU UND CPU FÜR ALGORITHMEN ZUR BILDBEARBEITUNG PROSEMINAR INF-B-610
LEISTUNGSVERGLEICH VON FPGA, GPU UND CPU FÜR ALGORITHMEN ZUR BILDBEARBEITUNG PROSEMINAR INF-B-610 Dominik Weinrich [email protected] Dresden, 30.11.2017 Gliederung Motivation Aufbau und Hardware
Seminar Multicore-Programmierung
Multicore- und GPGPU-Architekturen Fakultät für Informatik und Mathematik Universität Passau 04. November 2010 APUs / 1 / 39 Inhaltsverzeichnis I APUs / APUs / 2 / 39 Inhaltsverzeichnis II APUs / 3 / 39
Gerät Preis* CPU, VGA, HD, RAM Ausstattung
1 PC Ultra 559.- CPU: Intel Core Duo ab 3,0 GHz RAM: 8 GB HD: 128 GB SSD + 1 TB HDD VGA: GeForce GTX 750 2GB GDDR5 robuster Verarbeitung. Neben starken verfügt der PC Ultra über eine hochwertige Grafikkarte
OpenCL. OpenCL. Boris Totev, Cornelius Knap
OpenCL OpenCL 1 OpenCL Gliederung Entstehungsgeschichte von OpenCL Was, warum und überhaupt wieso OpenCL CUDA, OpenGL und OpenCL GPUs OpenCL Objekte Work-Units OpenCL Adressbereiche OpenCL API Codebeispiel
Paralleler Cuckoo-Filter. Seminar: Implementierungstechniken für Hauptspeicherdatenbanksysteme Jeremias Neth München, 21.
Paralleler Cuckoo-Filter Seminar: Implementierungstechniken für Hauptspeicherdatenbanksysteme Jeremias Neth München, 21. November 2017 1 Paralleler Cuckoo-Filter Cuckoo-Hashtabelle Serieller Cuckoo-Filter
Einführung. GPU-Versuch. Andreas Schäfer Friedrich-Alexander-Universität Erlangen-Nürnberg
GPU-Versuch [email protected] Friedrich-Alexander-Universität Erlangen-Nürnberg Praktikum Parallele Rechnerarchitekturen SS2014 Outline 1 Einführung 2 Outlook 1 Einführung 2 Eine kurze Geschichte
technische universität dortmund Lehrstuhl für Hochfrequenztechnik Übertragungssysteme
Lehrstuhl für Hochfrequenztechnik GPU-beschleunigte numerische Simulation faseroptischer Übertragungssysteme, Marius Helf, Peter Krummrich Übersicht Motivation Split-Step p Fourier Methode Ansätze für
Multicore-Architekturen
Universität Erlangen- Nürnberg Technische Universität München Universität Stuttgart Multicore-Architekturen Vortrag im Rahmen der Ferienakademie 2009 Kurs 1: Programmierkonzepte für Multi-Core Rechner
Software Engineering für moderne parallele Plattformen 9. GPGPUs: Grafikkarten als Parallelrechner
Software Engineering für moderne parallele Plattformen 9. GPGPUs: Grafikkarten als Parallelrechner Dipl.-Inform. Korbinian Molitorisz M. Sc. Luis Manuel Carril Rodriguez KIT Universität des Landes Baden-Württemberg
Compute Unified Device Architecture CUDA
Compute Unified Device Architecture 06. Februar 2012 1 / 13 Gliederung 2 / 13 : Compute Unified Device Architecture entwickelt von Nvidia Corporation spezifiziert Software- und Hardwareeigenschaften Ziel:
Multicore Herausforderungen an das Software-Engineering. Prof. Dr.-Ing. Michael Uelschen Hochschule Osnabrück 15.09.2010
Multicore Herausforderungen an das Software-Engineering Prof. Dr.-Ing. Michael Uelschen Hochschule Osnabrück 15.09.2010 Inhalt _ Motivation _ Herausforderung 1: Hardware _ Herausforderung 2: Software-Partitionierung
Eine kurze Geschichte der Grafikkarten
3.1 Einführung Eine kurze Geschichte der Grafikkarten ursprünglich: Graphics Card steuert Monitor an Mitte 80er: Grafikkarten mit 2D-Beschleunigung angelehnt an Arcade- und Home-Computer frühe 90er: erste
Computergrafik Universität Osnabrück, Henning Wenke,
Computergrafik Universität Osnabrück, Henning Wenke, 2012-05-14 Kapitel V: Modeling Transformation & Vertex Shader 5.1 Vertex Definitionen: Vertex Vertex Computergrafik Mathematischer Punkt auf einer Oberfläche
Eine Einführung in die Architektur moderner Graphikprozessoren
Eine Einführung in die Architektur moderner Graphikprozessoren Seminarvortrag von Sven Schenk WS 2005/2006 Universität Mannheim, Lehrstuhl für Rechnerarchitektur Inhalt Historische Eckpunkte Einführung
World of Warcraft. Mindestvoraussetzungen
World of Warcraft Betriebssystem Windows XP / Windows Vista / Windows 7 Windows 7 / Windows 8 64-bit mit Windows 8 mit aktuellstem Servicepack aktuellstem Servicepack Prozessor Intel Core 2 Duo E6600 oder
Übersicht 1. Anzeigegeräte 2. Framebuffer 3. Grundlagen 3D Computergrafik 4. Polygongrafik, Z-Buffer 5. Texture-Mapping/Shading 6. GPU 7. Programmierbare Shader 1 LCD/TFT Technik Rotation der Licht-Polarisationsebene
GPGPU-Programmierung
12 GPGPU-Programmierung 2013/04/25 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken ist im Allgemeinen nicht erlaubt. Motivation (1) General Purpose Computing on
Praxiseinheit: Realisierung einer hardwarebeschleunigten Disparitätenberechnung zur automatischen Auswertung von Stereobildern
Praxiseinheit: Realisierung einer hardwarebeschleunigten Disparitätenberechnung zur automatischen Auswertung von Stereobildern Institut für Betriebssysteme und Rechnerverbund TU Braunschweig 25.10., 26.10.
Grundlagen der Spieleprogrammierung
Grundlagen der Spieleprogrammierung Teil I: 3D-Graphik Kapitel 8: Hardware Peter Sturm Universität Trier Outline 1. Übersicht und Motivation 2. Mathematische Grundlagen 3. Das Ideal: Photorealistisch (Raytracing,
Ansätze 4. GPU. Echtzeit- Raytracing. Polygon- Rendering. Computerspiele Sommer (c) 2013, Peter Sturm, Universität Trier 1
4. GPU Ansätze Echtzeit- Raytracing Modell und Materialeigenschaften auf Raytracer Kontinuierliche Darstellung Polygon- Rendering CPU wählt darzustellende Polygone aus Render Pipeline (c) 2013, Peter Sturm,
Masterpraktikum Scientific Computing
Masterpraktikum Scientific Computing High-Performance Computing Thomas Auckenthaler Wolfgang Eckhardt Prof. Dr. Michael Bader Technische Universität München, Germany Outline Organisatorisches Entwicklung
GPGPU-Programmierung
12 GPGPU-Programmierung 2014/04/29 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken ist im Allgemeinen nicht erlaubt. Motivation (1) General Purpose Computing on
Motivation (GP)GPU CUDA Zusammenfassung. CUDA und Python. Christian Wilms. Integriertes Seminar Projekt Bildverarbeitung
CUDA und Python Christian Wilms Integriertes Seminar Projekt Bildverarbeitung Universität Hamburg WiSe 2013/14 12. Dezember 2013 Christian CUDA und Python 1 Gliederung 1 Motivation 2 (GP)GPU 3 CUDA 4 Zusammenfassung
K&R Monza Office, Internet und Multimedia-PC!
K&R Monza Office, Internet und Multimedia-PC! Ab sofort mit Intel Core i3 3,40 Ghz Neu: Mainboard Gigabyte GA-H97M-D3H NEU: 1 TB Seagate Barracuda Festplatte aufrüstbar durch modulare Bauweise (alle gängingen
2 Rechnerarchitekturen
2 Rechnerarchitekturen Rechnerarchitekturen Flynns Klassifikation Flynnsche Klassifikation (Flynn sche Taxonomie) 1966 entwickelt, einfaches Modell, bis heute genutzt Beschränkung der Beschreibung auf
PRIP-Preis. Effizientes Object Tracking durch Programmierung von Mehrkernprozessoren und Grafikkarten
Masterarbeit @ PRIP-Preis Effizientes Object Tracking durch Programmierung von Mehrkernprozessoren und Grafikkarten Michael Rauter Pattern Recognition and Image Processing Group Institute of Computer Aided
Apple imac 5,1-20 Zoll (Late 2006)
Apple imac 5,1-20 Zoll (Late 2006) - Prozessor: Core 2 Duo 2x2166 MHz - Arbeitsspeicher : 2048 MB - Festplatte : 250 GB - Laufwerk: DVDRW - Grafik onboard: ATI Radeon Xpress 1600 128 MB - Grafik Zusatz:
Echtzeitfähige hige Verfahren in der Computergrafik. Lehrstuhl für f r Informatik Computer Grafik und Visualisierung TUM
Echtzeitfähige hige Verfahren in der Computergrafik Prof. Dr. Rüdiger R Westermann Lehrstuhl für f r Informatik Computer Grafik und Visualisierung TUM Lehr- und Forschungsinhalte Visualisierung Darstellung
CPU, GPU und FPGA. CPU, GPU und FPGA Maximilian Bandle, Bianca Forkel 21. November 2017
CPU, GPU und FPGA, Bianca Forkel 21. November 2017 CPU, GPU und FPGA Inhalt CPU: Central Processing Unit GPU: Graphical Processing Unit FPGA: Field Programmable Gate Array 2 CPU Central Processing Unit
Gliederung. Was ist CUDA? CPU GPU/GPGPU CUDA Anwendungsbereiche Wirtschaftlichkeit Beispielvideo
Gliederung Was ist CUDA? CPU GPU/GPGPU CUDA Anwendungsbereiche Wirtschaftlichkeit Beispielvideo Was ist CUDA? Nvidia CUDA ist eine von NvidiaGPGPU-Technologie, die es Programmierern erlaubt, Programmteile
Verteidigung der Bachelorarbeit, Willi Mentzel
Verteidigung der Bachelorarbeit, Willi Mentzel Motivation U.S. Energy Consumption Breakdown 3x Durchschnittliche Leistungsaufnahme 114 Millionen kw Hohes Optimierungspotential 2 Ziele für Energieoptimierung
Stream Processing und High- Level GPGPU Sprachen
Stream Processing und High- Level GPGPU Sprachen Seminar Programmierung von Grafikkarten Jens Breitbart Problem 5000% 4000% 3000% 2000% Rechenleistung: +71% pro Jahr Bandbreite: +25% pro Jahr Zugriffszeit:
Ein kleiner Einblick in die Welt der Supercomputer. Christian Krohn 07.12.2010 1
Ein kleiner Einblick in die Welt der Supercomputer Christian Krohn 07.12.2010 1 Vorschub: FLOPS Entwicklung der Supercomputer Funktionsweisen von Supercomputern Zukunftsvisionen 2 Ein Top10 Supercomputer
298,- DDR3. Intel EGA-PCI0001. Office: Gaming: Multimedia: Gesamt: Upgrade Möglichkeiten. I. Die Rechner werden nur auf Abholung Vorort verkauft.
Intel EGA-PCI0001» Intel Pentium G860 2,8GHz (boxed) TDP: 65W L3-Cache: 3MB shared» Mainboard matx (Sockel: 1155) ASRock H61M-S» Festplatte 500 GByte, 7200rpm» 2 GB DDR3 Speicher, 1333MHz» VGA & Sound
Grafikprozessor Grafikspeicher Taktung Kühlung Schnittstellen Ausgänge Treiber Crossfire & SLI ATI Nvidia Matrox PowerVR Technologies Inhaltsverzeichn
Grafikprozessor Grafikspeicher Taktung Kühlung Schnittstellen Ausgänge Treiber Crossfire & SLI ATI Nvidia Matrox PowerVR Technologies Inhaltsverzeichnis Grafikprozessor Der Grafikprozessor dient zur Berechnung
Cell and Larrabee Microarchitecture
Cell and Larrabee Microarchitecture Benjamin Grund Dominik Wolfert Universität Erlangen-Nürnberg 1 Übersicht Einleitung Herkömmliche Prozessorarchitekturen Motivation für Entwicklung neuer Architekturen
OEM Hardware Nr. : PCI\VEN_10DE&DEV_05E2&SUBSYS_ &REV_A1
SiSoftware Sandra Grafikkarte Display : \\.\DISPLAY1 VGA-kompatibel : Nein Windowsgerätename : NVIDIA GeForce GTX 260 OEM Hardware Nr. : PCI\VEN_10DE&DEV_05E2&SUBSYS_00000000&REV_A1 OEM Gerätename : nvidia
Rheinisch-Westfälische Technische Hochschule Aachen. Seminararbeit
Rheinisch-Westfälische Technische Hochschule Aachen Seminararbeit Analyse von General Purpose Computation on Graphics Processing Units Bibliotheken in Bezug auf GPU-Hersteller. Gregori Kerber Matrikelnummer
Architektur moderner GPUs. W. Sczygiol - M. Lötsch
Architektur moderner GPUs W. Sczygiol - M. Lötsch Überblick Chipentwicklung Aktuelle Designs Nvidia: NV40 (ATI: R420) Vertex-Shader Pixel-Shader Shader-Programmierung ROP - Antialiasing Ausblick Referenzen
Untersuchung und Vorstellung moderner Grafikchiparchitekturen
Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Untersuchung und Vorstellung moderner Grafikchiparchitekturen Hauptseminar Technische
Software Engineering für moderne, parallele Plattformen. 9. GPGPUs: Grafikkarten als Parallelrechner. Dr. Victor Pankratius
Software Engineering für moderne, parallele Plattformen 9. GPGPUs: Grafikkarten als Parallelrechner Dr. Victor Pankratius Dr. Victor Pankratius, Dipl.Inform. Frank Otto IPD Tichy Lehrstuhl für Programmiersysteme
Physikalische Berechnungen mit General Purpose Graphics Processing Units (GPGPUs)
Fakultätsname XYZ Fachrichtung XYZ Institutsname XYZ, Professur XYZ Physikalische Berechnungen mit General Purpose Graphics Processing Units (GPGPUs) im Rahmen des Proseminars Technische Informatik Juni
Extrablatt IT. MADE IN GERMANY.
TERRA MOBILE 1415 Topaktuelles 14" Einsteiger Notebook zum knallharten Preis! Intel Celeron Processor N2840 (1M Cache, up to 2.58 GHz) Prozessor Windows 8.1 64-Bit Intel HD graphics RAM - Größe 2 GB 1
OpenCL. Programmiersprachen im Multicore-Zeitalter. Tim Wiersdörfer
OpenCL Programmiersprachen im Multicore-Zeitalter Tim Wiersdörfer Inhaltsverzeichnis 1. Was ist OpenCL 2. Entwicklung von OpenCL 3. OpenCL Modelle 1. Plattform-Modell 2. Ausführungs-Modell 3. Speicher-Modell
MULTICORE- UND GPGPU- ARCHITEKTUREN
MULTICORE- UND GPGPU- ARCHITEKTUREN Korbinian Pauli - 17. November 2011 Seminar Multicore Programmierung, WS11, Universität Passau 2 Einleitung Klassisches Problem der Informatik: riesige Datenmenge! Volkszählung
1 Einleitung. 2 Parallelisierbarkeit von. Architektur
Beschleunigung von Aufgaben der parallelen Bildverarbeitung durch Benutzung von NVIDIA-Grafikkarten mit der Compute Unified Device Architecture (CUDA) Roman Glebov [email protected] Abstract Diese Arbeit
Acer Desktops, AllInOne, Bundles und Server vom: 22. Tel: Fax:
Tel: 0402 2000330 Fax: 0402 2000339 8:00 Uhr Acer Aspire G-70 DG.E03EG.020 Intel Core I7 i7-6700, Memory (in MB): 32768, nvidia GeForce 900 Series GTX 980, Festplatte(n): 256GB SSD, 2000GB HDD, Optische(s)
Volumenakquise. Vortrag von Benjamin Gayer
10.11.11 1 Volumenakquise Vortrag von Benjamin Gayer Einführung Bildquelle: http://www.medical.siemens.com/siemens/de_de/rg_marcom_fbas/files/patienteninformationen/ct_geschichte_technologie. pdf 10.11.11
BRUGO UG (haftungsbeschränkt) Haardtstraße Wiesthal
Lenovo ThinkPad X201 12,1" 1280 x 800 Intel 520M Core i5 2x2400 MHz 4096 MB DDR3 Ram 320 GB Festplatte Art.Nr.10088 189 übernommen. Bei den Angeboten handelt es sich um e. Stand 16.11.2018 Fujitsu LIFEBOOK
High-Performance Bildverarbeitung (nicht nur) mit JAVA. Prof. Dr.Thomas Netzsch - Hochschule Darmstadt - University of Applied Sciences
High-Performance Bildverarbeitung (nicht nur) mit JAVA 1 High-Performance Bildverarbeitung (nicht nur) mit JAVA Fragen: wie kann ein typisches BV-Unternehmen wirtschaftlich an der aktuellen Hardwareentwicklung
Prozessor- und Rechnerarchitekturen (Master)
Prozessor- und Rechnerarchitekturen (Master) Themen am 14.06.17: NVIDIA Tegra X1 Mobilprozessor NVIDIA Volta und Pascal ProRecArc17_V9 Ulrich Schaarschmidt HS Düsseldorf, SS 2017 14.06.2017 U.G. Schaarschmidt
GPGPU mit NVIDIA CUDA
01.07.12 GPGPU mit NVIDIA CUDA General-Purpose on Formatvorlagecomputing des Graphics Processing durch Units Untertitelmasters mit KlickenCompute bearbeiten NVIDIA Unified Device Architecture Gliederung
Machine Learning Hardware
Machine Learning Hardware Dominik Scherer 06.11.2017 Seminar Neuste Trends in Big Data Analytics Betreuer: Dr. Julian Kunkel Motivation Maschinelles Lernen in vielen Bereichen angewendet, z.b. Spracherkennung
Mesh-Visualisierung. Von Matthias Kostka. Visualisierung großer Datensätze
Mesh-Visualisierung Von Matthias Kostka Übersicht Einführung Streaming Meshes Quick-VDR Rendering virtueller Umgebung Rendering mit PC-Clustern Zusammenfassung 2 Mesh Untereinander verbundene Punkte bilden
PC-SHOP DELMENHORST. Kundeninformation - 03/ Delmenhorst
Se it 1 99 8 Kundeninformation - 03/2017 PC-SHOP Wir verstehen was von deinem PC! [PC- & Notebookwerkstatt [Webdesign [Firmen-Service [Hard- & Software Oldenburger Strasse 40, (04221) 27753 Delmenhorst
Diplomarbeit. Neue Möglichkeiten durch programmierbare Shader. Unter der Leitung von: Prof. Dr.-Ing. Detlef Krömker
Diplomarbeit 5HDO7LPH6SHFLDO (IIHFWV Neue Möglichkeiten durch programmierbare Shader Unter der Leitung von: Prof. Dr.-Ing. Detlef Krömker Betreut von: Paul Grimm, Ralf Dörner Beginn: 01.04.02 Abgabe: 30.09.02
Blockseminar: Verteiltes Rechnen und Parallelprogrammierung. Sommer Semester 2015. Tim Conrad
Blockseminar: Verteiltes Rechnen und Parallelprogrammierung Sommer Semester 2015 Tim Conrad Staff Tim Conrad AG Medical Bioinformatics email: [email protected] Telefon: 838-51445 Büro: Raum 138,
MESIF- (links) vs. MESI-Protokoll (rechts)
2.3 Beispiele für Multikern-Architekturen 2.3.1 Intel-Nehalem-Architektur MESIF- (links) vs. MESI-Protokoll (rechts) Annahme: Prozessor links unten und rechts oben haben Kopie MESIF : Nur Prozessor, dessen
Predator G3. Premium Design. Advanced Technology. Immersive entertainment
- 1 - Desktop PCs Predator G3 Der neue Acer Predator G3 - Designed für Gaming und HD- Entertainment. Angetrieben von der neuesten CPU-Generation und von High-End Grafikkarten lässt er keine Wünsche offen
GPU-Computing. Michael Vetter
GPU-Computing Universität Hamburg Scientific Visualization and Parallel Processing @ Informatik Climate Visualization Laboratory @ Clisap/CEN Übersicht Hintergrund und Entwicklung von GPGPU Programmierumgebungen
MITK-OpenCL: Eine Erweiterung für das Medical Imaging Interaction Toolkit
MITK-OpenCL: Eine Erweiterung für das Medical Imaging Interaction Toolkit Jan Hering 1,2, Ingmar Gergel 1, Susanne Krömker 2, Hans-Peter Meinzer 1, Ingmar Wegner 1 1 Abt. Medizinische und Biologische Informatik,
Shader zur Bildbearbeitung
15. Oktober 2009 1 / 23 Übersicht 1 Motivation 2 Grundlagen 3 State of the Art 4 Konzeption 5 Implementierung 6 Benchmarks 7 Fazit 2 / 23 Motivation: GPU >> CPU Moores Law: Hardware verbessert sich rapide
Hochleistungsrechnen auf Grafikkarten für innovative Automotiveanwendungen Simulation der Wasserdurchfahrt eines Serienfahrzeugs
auf Hochleistungsrechnen auf für innovative Automotiveanwendungen Simulation der Wasserdurchfahrt eines Serienfahrzeugs Thorsten Grahs, Christian Janßen move-csc UG, Inst. Scientific Computing, TU Braunschweig
PC-SHOP DELMENHORST PC-SYSTEME - 10/ Delmenhorst
Se it 1 99 8 PC-SYSTEME - 10/2017 Wir verstehen was von deinem PC! [PC- & Notebookwerkstatt [Webdesign [Firmen-Service [Hard- & Software Oldenburger Strasse 40, (04221) 27753 Delmenhorst - [email protected]
Grundlagen der Rechnerarchitektur. Ein und Ausgabe
Grundlagen der Rechnerarchitektur Ein und Ausgabe Übersicht Grundbegriffe Hard Disks und Flash RAM Zugriff auf IO Geräte RAID Systeme SS 2012 Grundlagen der Rechnerarchitektur Ein und Ausgabe 2 Grundbegriffe
GPU Programmierung. Thorsten Grosch
Thorsten Grosch Willkommen zur ersten Vorlesung! g Heute Organisatorisches Vorstellung von Team und Vorlesung Historischer Rückblick zu GPUs 2 Das Team Vorlesung Jun.-Prof. Thorsten Grosch AG Computervisualistik
Evolution of GPUs. Die Entwicklung der Graphics Processing Units. Marvin Kampf und Michael Moese. Seminar: Multi-Core Architectures and Programming
Evlutin f GPUs Die Entwicklung der Graphics Prcessing Units Marvin Kampf und Michael Mese Seminar: Multi-Cre Architectures and Prgramming Was bedeutet Entwicklung hin zur GPU? Hinzufügen vn Prgrammierbarkeit
CUDA. Jürgen Pröll. Multi-Core Architectures and Programming. Friedrich-Alexander-Universität Erlangen-Nürnberg Jürgen Pröll 1
CUDA Jürgen Pröll Multi-Core Architectures and Programming Jürgen Pröll 1 Image-Resize: sequentiell resize() mit bilinearer Interpolation leicht zu parallelisieren, da einzelne Punkte voneinander unabhängig
General-purpose computing on GPUs
Seminar Multiprocesser on Chip Seminararbeit General-purpose computing on GPUs Institut für Informatik Universität Potsdam eingereicht von: Michael Winkelmann (738901) Sommersemester 2010 Zusammenfassung
Staff. Tim Conrad. Zeitplan. Blockseminar: Verteiltes Rechnen und Parallelprogrammierung. Sommer Semester 2013. Tim Conrad
Blockseminar: Verteiltes Rechnen und Parallelprogrammierung Sommer Semester 2013 Tim Conrad Staff Tim Conrad AG Computational Proteomics email: [email protected] Telefon: 838-51445 Büro: Raum 138,
Vergleich von Forward und Deferred Rendering
Vergleich von Forward und Deferred Rendering Kamil René König Bachelorarbeit Bachelor Informatik 12.08.2014 Betreuer: Prof. Dr. Detlef Krömker, Dr. Daniel Schiffner Übersicht Motivation Definitionen Forward
Viele Rechenaufgaben können auf verschiedene CPUs und/oder Maschinen aufgeteilt und verteilt werden, um die Leistung zu steigern
3.2 Heterogene Multi-Core-Architekturen: Cell BE Viele Rechenaufgaben können auf verschiedene CPUs und/oder Maschinen aufgeteilt und verteilt werden, um die Leistung zu steigern Herkömmliche CPUs und Techniken
Parallel Computing. Einsatzmöglichkeiten und Grenzen. Prof. Dr. Nikolaus Wulff
Parallel Computing Einsatzmöglichkeiten und Grenzen Prof. Dr. Nikolaus Wulff Parallel Architekturen Flynn'sche Klassifizierung: SISD: single Instruction, single Data Klassisches von-neumann sequentielles
Endorsed SI Anwenderbericht: Einsatz von System Platform 2012 R2 in virtualisierten Umgebungen zur Prozessvisualisierung
Endorsed SI Anwenderbericht: Einsatz von System Platform 2012 R2 in virtualisierten Umgebungen zur Prozessvisualisierung Fritz Günther 17.03.2014 Folie 1 Agenda Was ist Virtualisierung Server- / Clientvirtualisierung
Architektur und Programmierung von Grafik- und Koprozessoren
Architektur und Programmierung von Grafik- und Koprozessoren Die Grafik Pipeline Stefan Zellmann Lehrstuhl für Informatik, Universität zu Köln SS2018 Scan Konvertierung Scan Konvertierung Während dieser
