Masterpraktikum Scientific Computing
|
|
|
- Richard Bauer
- vor 9 Jahren
- Abrufe
Transkript
1 Masterpraktikum Scientific Computing High-Performance Computing Thomas Auckenthaler Wolfgang Eckhardt Prof. Dr. Michael Bader Technische Universität München, Germany
2 Outline Organisatorisches Entwicklung General Purpose GPU Programming (GPGPU) C for CUDA conference, location, December 8,
3 Organisatorisches Diese Woche: Programmierung mit NVidia CUDA Di, : Besprechung der Lösung Blatt 3 Di, : Ausgabe der Projektaufgabe Di, : Abgabe der Lösung zu CUDA conference, location, December 8,
4 Outline Organisatorisches Entwicklung General Purpose GPU Programming (GPGPU) C for CUDA conference, location, December 8,
5 Herkömmliche Implementierung der Graphik-Pipeline Figure: Klassische Graphikpipeline - Ein Prozessor (Shader) pro Stufe conference, location, December 8,
6 Unified Architecture Herkömmlich Einschränkungen durch HW (fixed-function pipeline), gleichzeitig z.t. redundante Logik NVidia Lösung: Unified Device Architecture (UDA) Implementierungen: G80 (2006), GT200 (2007), Fermi (2009) ATI / AMD: Unified Shader Architecture, z.b. HD-2000 Reihe, HD-3000 Reihe conference, location, December 8,
7 Vergleich CPU - GPU Intel Xeon X5355 NVidia Tesla C1060 (T10) Clock Speed 2.66 GHZ 1296 #Cores / SPEs theor. Peak Perf Price ca USD 1200 EUR conference, location, December 8,
8 GPU Programming Shader Programmierung, sehr hardwarenah: Microsoft HLSL NVidia Cg OpenCL (Open Computing Language) Heterogene, parallele Platformen mit CPU s, GPU s, DSP s, Dezember 2008 Apple, Intel, IBM, Nvidia, AMD Brook (Stanford University) NVidia: CUDA (C for Cuda, Cuda Driver API, CUBLAS, CUFFT)... conference, location, December 8,
9 Outline Organisatorisches Entwicklung General Purpose GPU Programming (GPGPU) C for CUDA conference, location, December 8,
10 C for CUDA conference, location, December 8,
11 C for CUDA - Übersetzung Cuda-Programm wird als C-Programm mit geringfügig erweiterter Syntax geschrieben. nvcc test.cu -o test conference, location, December 8,
12 Kernels: Bsp. Vektoraddition global void vecadd(float* A, float* B, float* C) { int i = threadidx.x; C[i] = A[i] + B[i]; } Kernel wird parallel von N Threads ausgeführt In Kernel Built-in Variables verfügbar (threadidx.x) Kernels sind C-Funktionen mit zusätzlichem Modifier Modifier gibt an, wo Funktion lebt: global global : wird auf Graphikkarte ausgeführt, von Host aus aufgerufen device : kann nur von Kernels aufgerufen werden host : kann nur auf Host aufgerufen werden conference, location, December 8,
13 Thread-Hierachie Threads werden in 1d/2d/3d Blöcke unterteilt, Blöcke liegen in 1d/2d Gittern; wird bei Aufruf des Kernels spezifiziert dim3 block(w, h, d); dim3 grid(w2, h2); mykernel<<<grid, block>>>(...); Konfiguration innerhalb Kernels durch built-in Variablen zugänglich threadidx Thread-Index blockidx Block-Index blockdim Dimensionen eines Blocks griddim Dimensionen des Grids Synchronisation innerhalb eines Blockes mit syncthreads() conference, location, December 8,
14 Kernels global void vecaddgpu(float* A, float* B, float* C) { int i = threadidx.x; C[i] = A[i] + B[i]; } host void vecadd(int n, float* A, float* B, float* C) { dim3 grid(1); dim3 block(n); vecaddgpu<<<gid,block>>>(a, B, C); } Wie könnte eine Aufteilung für die Addition von n n Matrizen aussehen? Beachte: Einschränkungen durch HW (z.b. nur 512 Threads pro Block) conference, location, December 8,
15 Speicher-Hierachie globaler Speicher langsam, nicht gecached shared memory: modifier shared außerdem: Textur-Speicher, Constant-Memory conference, location, December 8,
16 Speicher-Verwaltung Allokation von globalem Graphikspeicher float* ptr; cudamalloc(&ptr, n * sizeof(float)); Kopieren cudamemcpy(void* target, void* source, int size, enum cudamemcpykind); cudamemcpyhosttohost cudamemcpyhosttodevice cudamemcpydevicetohost cudamemcpydevicetodevice Freigabe von globalem Graphikspeicher cudafree(void* ptr); conference, location, December 8,
17 Error Checking and Debugging Alle Runtime-Funktionen geben Fehlercode zurück. Problematisch bei asynchronen Funktionsaufrufen. Daher: cudathreadsynchronize() in Verbindung mit cudagetlasterror(). Debugging: übersetze Code mit --device-emulation: Graphikkarte wird emuliert, Makro DEVICE_EMULATION definiert z.b. printf() oder Debugger möglich #ifdef DEVICE_EMULATION printf("variable i: %d\n", i); #endif conference, location, December 8,
18 Performance - Hinweise Speicher: Verschmelzen von Zugriffen auf globalen Speicher Speicherart Bankkonflikte Figure: zu einem Speicherzugriff verschmolzen Figure: resultiert in 16 Speicherzugriffen (CUDA 1.0/1.1 conference, location, December 8,
19 Performance - Hinweise Threads eines Blockes unterteilt in Warps a 32 Threads Code-Verzweigungen / ifs... genügend Blöcke Latenzen verbergen conference, location, December 8,
20 Hinweise - Aufgaben Nutzung des Codes zum Einlesen einer.pgm-datei möglich, nachdem die Implementierung zum.cpp umbenannt wurde Entwicklung auf atsccs30 (Quadro NVS 290) Test auf gvs2.lrz-muenchen.de (Quadro FX 5800) Auf gvs2 existiert kein Reservierungssystem, daher: prüfe mit top last prüfe mit lsof /dev/nvi*, dass niemand sonst die Graphikkarten benutzt (Ausgabe 4 Zeilen) module load cuda module load gcc Nutzung von 4 GPUs auf gvs2 möglich! Große Bilder z.b. unter conference, location, December 8,
CUDA. Moritz Wild, Jan-Hugo Lupp. Seminar Multi-Core Architectures and Programming. Friedrich-Alexander-Universität Erlangen-Nürnberg
CUDA Seminar Multi-Core Architectures and Programming 1 Übersicht Einleitung Architektur Programmierung 2 Einleitung Computations on GPU 2003 Probleme Hohe Kenntnisse der Grafikprogrammierung nötig Unterschiedliche
Grundlagen von CUDA, Sprachtypische Elemente
Grundlagen von CUDA, Sprachtypische Elemente Stefan Maskanitz 03.07.2009 CUDA Grundlagen 1 Übersicht 1. Einleitung 2. Spracheigenschaften a. s, Blocks und Grids b. Speicherorganistion c. Fehlerbehandlung
Compute Unified Device Architecture CUDA
Compute Unified Device Architecture 06. Februar 2012 1 / 13 Gliederung 2 / 13 : Compute Unified Device Architecture entwickelt von Nvidia Corporation spezifiziert Software- und Hardwareeigenschaften Ziel:
GPGPU-Architekturen CUDA Programmiermodell Beispielprogramm. Einführung CUDA. Ralf Seidler. Friedrich-Alexander-Universität Erlangen-Nürnberg
Einführung CUDA Friedrich-Alexander-Universität Erlangen-Nürnberg PrakParRA, 18.11.2010 Outline 1 GPGPU-Architekturen 2 CUDA Programmiermodell 3 Beispielprogramm Outlook 1 GPGPU-Architekturen 2 CUDA Programmiermodell
Einführung. GPU-Versuch. Andreas Schäfer Friedrich-Alexander-Universität Erlangen-Nürnberg
GPU-Versuch [email protected] Friedrich-Alexander-Universität Erlangen-Nürnberg Praktikum Parallele Rechnerarchitekturen SS2014 Outline 1 Einführung 2 Outlook 1 Einführung 2 Eine kurze Geschichte
Praxiseinheit: Realisierung einer hardwarebeschleunigten Disparitätenberechnung zur automatischen Auswertung von Stereobildern
Praxiseinheit: Realisierung einer hardwarebeschleunigten Disparitätenberechnung zur automatischen Auswertung von Stereobildern Institut für Betriebssysteme und Rechnerverbund TU Braunschweig 25.10., 26.10.
GPGPU-Programming. Constantin Timm Informatik 12 TU Dortmund 2012/04/09. technische universität dortmund. fakultät für informatik informatik 12
12 GPGPU-Programming Constantin Timm Informatik 12 TU Dortmund 2012/04/09 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken ist im Allgemeinen nicht erlaubt. Motivation
OpenCL. Programmiersprachen im Multicore-Zeitalter. Tim Wiersdörfer
OpenCL Programmiersprachen im Multicore-Zeitalter Tim Wiersdörfer Inhaltsverzeichnis 1. Was ist OpenCL 2. Entwicklung von OpenCL 3. OpenCL Modelle 1. Plattform-Modell 2. Ausführungs-Modell 3. Speicher-Modell
Programmierung von Graphikkarten
Programmierung von Graphikkarten Stefan Lang Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Universität Heidelberg INF 368, Raum 532 D-69120 Heidelberg phone: 06221/54-8264 email: [email protected]
GPGPU-Architekturen CUDA Programmiermodell Beispielprogramm Organiosatorisches. Tutorial CUDA. Ralf Seidler
Friedrich-Alexander-Universität Erlangen-Nürnberg 05.10.2010 Outline 1 GPGPU-Architekturen 2 CUDA Programmiermodell 3 Beispielprogramm 4 Organiosatorisches Outlook 1 GPGPU-Architekturen 2 CUDA Programmiermodell
Parallele Programmierung mit GPUs
Parallele Programmierung mit GPUs Jutta Fitzek Vortrag im Rahmen des Moduls Parallele Programmierung, WS12/13, h_da Agenda GPUs: Historie GPU Programmierung Konzepte Codebeispiel Generelle Tipps & Tricks
Eine kurze Geschichte der Grafikkarten
3.1 Einführung Eine kurze Geschichte der Grafikkarten ursprünglich: Graphics Card steuert Monitor an Mitte 80er: Grafikkarten mit 2D-Beschleunigung angelehnt an Arcade- und Home-Computer frühe 90er: erste
Programmierbeispiele und Implementierung. Name: Michel Steuwer E-Mail: [email protected]
> Programmierbeispiele und Implementierung Name: Michel Steuwer E-Mail: [email protected] 2 > Übersicht > Matrix Vektor Multiplikation > Mandelbrotmenge / Apfelmännchen berechnen > Kantendetektion
Software Engineering für moderne parallele Plattformen 9. GPGPUs: Grafikkarten als Parallelrechner
Software Engineering für moderne parallele Plattformen 9. GPGPUs: Grafikkarten als Parallelrechner Dipl.-Inform. Korbinian Molitorisz M. Sc. Luis Manuel Carril Rodriguez KIT Universität des Landes Baden-Württemberg
OpenCL. OpenCL. Boris Totev, Cornelius Knap
OpenCL OpenCL 1 OpenCL Gliederung Entstehungsgeschichte von OpenCL Was, warum und überhaupt wieso OpenCL CUDA, OpenGL und OpenCL GPUs OpenCL Objekte Work-Units OpenCL Adressbereiche OpenCL API Codebeispiel
GPU-Programmierung: OpenCL
Seminar: Multicore Programmierung Sommerstemester 2009 04.06.2009 Inhaltsverzeichnis 1 GPU-Programmierung von Grafikkarten von GPU-Computing 2 Architektur Spracheigenschaften Vergleich mit CUDA Beispiel
General Purpose Computation on GPUs
General Purpose Computation on GPUs Matthias Schneider, Robert Grimm Universität Erlangen-Nürnberg {matthias.schneider, robert.grimm}@informatik.stud.uni-erlangen.de M. Schneider, R. Grimm 1 Übersicht
GPGPU Programming nvidia CUDA vs. AMD/ATI Stream Computing. Seminar HWS 08/09 by Erich Marth
Computing 1 Inhalt Einführung nvidia CUDA AMD Stream Computing CUDA vs. Stream Computing - Warum, Vorteile, Motivation - Überblick, API - Details, Beispiele - Überblick, API - Details, Beispiele - wesentliche
Yilmaz, Tolga MatNr: Mesaud, Elias MatNr:
Yilmaz, Tolga MatNr: 157317 Mesaud, Elias MatNr: 151386 1. Aufbau und Funktionsweise einer Grafikkarte 2. CPU vs. GPU 3. Software 4. Beispielprogramme Kompilierung und Vorführung 5. Wo wird Cuda heutzutage
Compute Unified Device Architecture (CUDA)
Compute Unified Device Architecture (CUDA) Thomas Koller 12. Februar 2012 Zusammenfassung Diese Ausarbeitung beschäftigt sich mit der Programmierung von Grafikkarten mittels CUDA. Bei bestimmten Berechnungen
Grafikkarten-Architektur
> Grafikkarten-Architektur Parallele Strukturen in der GPU Name: Sebastian Albers E-Mail: [email protected] 2 > Inhalt > CPU und GPU im Vergleich > Rendering-Pipeline > Shader > GPGPU > Nvidia Tesla-Architektur
Physikalische Berechnungen mit General Purpose Graphics Processing Units (GPGPUs)
Fakultätsname XYZ Fachrichtung XYZ Institutsname XYZ, Professur XYZ Physikalische Berechnungen mit General Purpose Graphics Processing Units (GPGPUs) im Rahmen des Proseminars Technische Informatik Juni
Gliederung. Was ist CUDA? CPU GPU/GPGPU CUDA Anwendungsbereiche Wirtschaftlichkeit Beispielvideo
Gliederung Was ist CUDA? CPU GPU/GPGPU CUDA Anwendungsbereiche Wirtschaftlichkeit Beispielvideo Was ist CUDA? Nvidia CUDA ist eine von NvidiaGPGPU-Technologie, die es Programmierern erlaubt, Programmteile
Software Engineering für moderne, parallele Plattformen. 9. GPGPUs: Grafikkarten als Parallelrechner. Dr. Victor Pankratius
Software Engineering für moderne, parallele Plattformen 9. GPGPUs: Grafikkarten als Parallelrechner Dr. Victor Pankratius Dr. Victor Pankratius, Dipl.Inform. Frank Otto IPD Tichy Lehrstuhl für Programmiersysteme
Cuda Speicherhierarchie
Cuda Speicherhierarchie Threads eines Blocks können über Shared Memory kommunizieren Der Shared Memory ist klein aber sehr schnell Alle Threads können nur über Global Memory kommunizieren Der Global Memory
GPGPU mit NVIDIA CUDA
01.07.12 GPGPU mit NVIDIA CUDA General-Purpose on Formatvorlagecomputing des Graphics Processing durch Units Untertitelmasters mit KlickenCompute bearbeiten NVIDIA Unified Device Architecture Gliederung
Motivation (GP)GPU CUDA Zusammenfassung. CUDA und Python. Christian Wilms. Integriertes Seminar Projekt Bildverarbeitung
CUDA und Python Christian Wilms Integriertes Seminar Projekt Bildverarbeitung Universität Hamburg WiSe 2013/14 12. Dezember 2013 Christian CUDA und Python 1 Gliederung 1 Motivation 2 (GP)GPU 3 CUDA 4 Zusammenfassung
Multicore-Architekturen
Universität Erlangen- Nürnberg Technische Universität München Universität Stuttgart Multicore-Architekturen Vortrag im Rahmen der Ferienakademie 2009 Kurs 1: Programmierkonzepte für Multi-Core Rechner
RST-Labor WS06/07 GPGPU. General Purpose Computation On Graphics Processing Units. (Grafikkarten-Programmierung) Von: Marc Blunck
RST-Labor WS06/07 GPGPU General Purpose Computation On Graphics Processing Units (Grafikkarten-Programmierung) Von: Marc Blunck Ablauf Einführung GPGPU Die GPU GPU Architektur Die Programmierung Programme
GPU-Computing. Michael Vetter
GPU-Computing Universität Hamburg Scientific Visualization and Parallel Processing @ Informatik Climate Visualization Laboratory @ Clisap/CEN Übersicht Hintergrund und Entwicklung von GPGPU Programmierumgebungen
MESIF- (links) vs. MESI-Protokoll (rechts)
2.3 Beispiele für Multikern-Architekturen 2.3.1 Intel-Nehalem-Architektur MESIF- (links) vs. MESI-Protokoll (rechts) Annahme: Prozessor links unten und rechts oben haben Kopie MESIF : Nur Prozessor, dessen
Seminar GPU-Programmierung/Parallelverarbeitung
Seite iv Literaturverzeichnis 1) Bengel, G.; et al.: Masterkurs Parallele und Verteilte Systeme. Vieweg + Teubner, Wiesbaden, 2008. 2) Breshears, C.: The Art of Concurrency - A Thread Monkey's Guide to
OpenCL. Seminar Programmiersprachen im Multicore-Zeitalter Universität Siegen Tim Wiersdörfer [email protected].
OpenCL Seminar Programmiersprachen im Multicore-Zeitalter Universität Siegen Tim Wiersdörfer [email protected] Abstract: In diesem Dokument wird ein grundlegender Einblick in das relativ
1 Einleitung. 2 Parallelisierbarkeit von. Architektur
Beschleunigung von Aufgaben der parallelen Bildverarbeitung durch Benutzung von NVIDIA-Grafikkarten mit der Compute Unified Device Architecture (CUDA) Roman Glebov [email protected] Abstract Diese Arbeit
Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke,
Parallele Algorithmen mit OpenCL Universität Osnabrück, Henning Wenke, 2013-04-17 Kapitel I OpenCL Einführung Allgemeines Open Compute Language: API für einheitliche parallele Programmierung heterogener
OpenCL Implementierung von OpenCV Funktionen
Multi-Core Architectures and Programming OpenCL Implementierung von OpenCV Funktionen [email protected] Hardware/Software Co-Design August 18, 2011 1 Table of content 1 OpenCL
CUDA. 7. Vorlesung GPU Programmierung. Danke an Hendrik Lensch
CUDA 7. Vorlesung Thorsten Grosch Danke an Hendrik Lensch Parallele l Programmierung mit der GPU Bisher: GPU = OpenGL Pipeline mit Shadern Alles orientiert sich am Rendering Programme für Eckpunkte und
CUDA. Jürgen Pröll. Multi-Core Architectures and Programming. Friedrich-Alexander-Universität Erlangen-Nürnberg Jürgen Pröll 1
CUDA Jürgen Pröll Multi-Core Architectures and Programming Jürgen Pröll 1 Image-Resize: sequentiell resize() mit bilinearer Interpolation leicht zu parallelisieren, da einzelne Punkte voneinander unabhängig
Viele Rechenaufgaben können auf verschiedene CPUs und/oder Maschinen aufgeteilt und verteilt werden, um die Leistung zu steigern
3.2 Heterogene Multi-Core-Architekturen: Cell BE Viele Rechenaufgaben können auf verschiedene CPUs und/oder Maschinen aufgeteilt und verteilt werden, um die Leistung zu steigern Herkömmliche CPUs und Techniken
GPGPU-Architekturen CUDA CUDA Beispiel OpenCL OpenCL Beispiel. CUDA & OpenCL. Ralf Seidler. Friedrich-Alexander-Universität Erlangen-Nürnberg
CUDA und OpenCL Friedrich-Alexander-Universität Erlangen-Nürnberg 24. April 2012 Outline 1 GPGPU-Architekturen 2 CUDA 3 CUDA Beispiel 4 OpenCL 5 OpenCL Beispiel Outlook 1 GPGPU-Architekturen 2 CUDA 3 CUDA
GPU-Computing im Rahmen der Vorlesung Hochleistungsrechnen
GPU-Computing im Rahmen der Vorlesung Hochleistungsrechnen Universität Hamburg Scientific Visualization and Parallel Processing Übersicht Hintergrund und Entwicklung von GPGPU Programmierumgebungen & Werkzeuge
technische universität dortmund Lehrstuhl für Hochfrequenztechnik Übertragungssysteme
Lehrstuhl für Hochfrequenztechnik GPU-beschleunigte numerische Simulation faseroptischer Übertragungssysteme, Marius Helf, Peter Krummrich Übersicht Motivation Split-Step p Fourier Methode Ansätze für
Hochleistungsrechnen Grafikkartenprogrammierung. Prof. Dr. Thomas Ludwig Universität Hamburg Informatik Wissenschaftliches Rechnen
Hochleistungsrechnen Grafikkartenprogrammierung Prof. Dr. Thomas Ludwig Universität Hamburg Informatik Wissenschaftliches Rechnen Übersicht Hintergrund und Entwicklung von GPGPU Programmierumgebungen &
Rechnerarchitektur (RA)
12 Rechnerarchitektur (RA) Sommersemester 2015 Foliensatz 6: Grafikprozessoren und GPGPU-Programmierung Michael Engel Informatik 12 michael.engel@tu-.. http://ls12-www.cs.tu-.de/daes/ Tel.: 0231 755 6121
Intels Tick-Tock-Prinzip
2.3 Beispiele für Multikern-Architekturen 2.3.1 Von Intel-Nehalem- bis Haswell-Architektur Intels Tick-Tock-Prinzip Gleiche Mikroarchitektur und Prozess-Technologiesprung (Tick) Neue Mikroarchitektur (Tock)
GPUs. Arbeitsbereich Wissenschaftliches Rechnen Fachbereich Informatik Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg
GPUs Arbeitsbereich Wissenschaftliches Rechnen Fachbereich Informatik Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg Vorgelegt von: Johannes Coym E-Mail-Adresse: [email protected]
Vertiefungsrichtung Rechnerarchitektur
srichtung () ( für ) Prof. Dietmar Fey Ziele der srichtung RA Vertiefen des Verständnis vom Aufbau, Funktionsweise von Rechnern und Prozessoren Modellierung und Entwurf von Rechnern und Prozessoren ()
Automatische OpenCL-Code-Analyse zur Bestimmung von Speicherzugriffsmustern
Automatische OpenCL-Code-Analyse zur Bestimmung von Speicherzugriffsmustern Bachelorarbeit Moritz Lüdecke 8. Juli 2014 INSTITUT FÜR TECHNISCHE INFORMATIK - LEHRSTUHL FÜR RECHNERARCHITEKTUR UND PARALLELVERARBEITUNG
Architektur moderner GPUs. W. Sczygiol - M. Lötsch
Architektur moderner GPUs W. Sczygiol - M. Lötsch Überblick Chipentwicklung Aktuelle Designs Nvidia: NV40 (ATI: R420) Vertex-Shader Pixel-Shader Shader-Programmierung ROP - Antialiasing Ausblick Referenzen
Propädeutikum. Dipl.-Inf. Frank Güttler
Propädeutikum 2015 Vorbereitungskurs Informatikstudium Erfolgreich Studieren Programmieren (C-Kurs) [email protected] Universität Leipzig Institut für Informatik Technische Informatik
Digital Image Interpolation with CUDA
Digital Image Interpolation with CUDA Matthias Schwarz & Martin Rustler Hardware-Software-Co-Design Universität Erlangen-Nürnberg [email protected] [email protected]
GPU-BESCHLEUNIGTE PACKUNGSOPTIMIERUNG. André Müller, Johannes J. Schneider, Elmar Schömer
GPU-BESCHLEUNIGTE PACKUNGSOPTIMIERUNG André Müller, Johannes J. Schneider, Elmar Schömer BETRACHTETES PACKPROBLEM gegeben N = 5, 6,,50 harte Kugeln in Dimension d mit ganzzahligen Radien r i = 1,2,,N gesucht
Parallelisierung der Matrixmultiplikation
Ein Beispiel für parallele Algorithmen Ivo Hedtke [email protected] www.minet.uni-jena.de/~hedtke/ ehem. Hiwi am Lehrstuhl für Wissenschaftliches Rechnen (Prof. Dr. Zumbusch) Institut für Angewandte
http://www.uniregensburg.de/edv/kurs_info/brf09510/hpc/cuda/cuda.pdf 27. Januar 2016
Cuda - Compute Unied Device Architecture Dipl. Math. F. Braun Universität Regensburg Rechenzentrum http://www.uniregensburg.de/edv/kurs_info/brf09510/hpc/cuda/cuda.html http://www.uniregensburg.de/edv/kurs_info/brf09510/hpc/cuda/cuda.pdf
Zum Aufwärmen nocheinmal grundlegende Tatsachen zum Rechnen mit reelen Zahlen auf dem Computer. Das Rechnen mit Gleitkommazahlen wird durch den IEEE
Zum Aufwärmen nocheinmal grundlegende Tatsachen zum Rechnen mit reelen Zahlen auf dem Computer. Das Rechnen mit Gleitkommazahlen wird durch den IEEE 754 Standard festgelegt. Es stehen sogenannte einfach
Transparente Nutzung von Multi-GPU Cluster unter Java/OpenMP
Transparente Nutzung von Multi-GPU Cluster unter Java/OpenMP Dipl. Inf. Thorsten Blaß Programming Systems Group Martensstraße 3 91058 Erlangen Ausblick Motivation Einführung Java/OpenMP (JaMP) JaMP Sprache
GPGPUs am Jülich Supercomputing Centre
GPGPUs am Jülich Supercomputing Centre 20. April 2012 Jochen Kreutz Jülich Supercomputing Centre (JSC) Teil des Forschungszentrums Jülich und des Institute for Advanced Simulation (IAS) betreibt Supercomputer
Linux-Cluster mit Raspberry Pi. Dr. René Richter Sächsische Studienakademie Dresden rene.richter@ba-dresden rene.richter@namespace-cpp.
Linux-Cluster mit Raspberry Pi Dr. René Richter Sächsische Studienakademie Dresden rene.richter@ba-dresden [email protected] Lange Nacht der Wissenschaften 2013 Moore s Law Moore s Law (1965)
SS08, LS12, Friedrich-Alexander-Universität Erlangen Florian Hänel, Frederic Pollmann HS Multicore Architectures and Programming GPU EVOLUTION
SS08, LS12, Friedrich-Alexander-Universität Erlangen Florian Hänel, Frederic Pollmann HS Multicore Architectures and Programming GPU EVOLUTION (until Geforce 7 Series) 1 ÜBERSICHT Grafikpipeline Verlagerung
2. Der ParaNut-Prozessor "Parallel and more than just another CPU core"
2. Der ParaNut-Prozessor "Parallel and more than just another CPU core" Neuer, konfigurierbarer Prozessor Parallelität auf Daten- (SIMD) und Thread-Ebene Hohe Skalierbarkeit mit einer Architektur neues
Evaluation. Einleitung. Implementierung Integration. Zusammenfassung Ausblick
Christopher Schleiden Bachelor Kolloquium 15.09.2009 Einleitung Evaluation Implementierung Integration Zusammenfassung Ausblick Einleitung laperf Lineare Algebra Bibliothek für C++ Möglichkeit zur Integration
Lösung der zweidimensionalen Wirbeltransportgleichung auf NVIDIA Grafikkarten - Bachelorarbeit -
Lösung der zweidimensionalen Wirbeltransportgleichung auf NVIDIA Grafikkarten - Bachelorarbeit - Seminar des Fachgebiets Optimierung bei partiellen Differentialgleichungen 13. Januar 2011 Gliederung 1
MULTICORE- UND GPGPU- ARCHITEKTUREN
MULTICORE- UND GPGPU- ARCHITEKTUREN Korbinian Pauli - 17. November 2011 Seminar Multicore Programmierung, WS11, Universität Passau 2 Einleitung Klassisches Problem der Informatik: riesige Datenmenge! Volkszählung
Präprozessor und make. einfache Makros Makros nehmen eine Textersetzung vor. Erst nach der Ersetzung muss gültiger C-Code vorliegen.
Bevor der eigentliche Kompilier-Vorgang stattfindet, wird vom sogenannten eine Vorverarbeitung durchgeführt. Hierbei werden zum Beispiel Kommentare entfernt, aber auch explizite Anweisungen an den verarbeitet.
Entwicklung algorithmischer Skelette für CUDA am Beispiel von Affintiy Propagation
Entwicklung algorithmischer Skelette für CUDA am Beispiel von Affintiy Propagation Christoph Winter Fakultät für Informatik und Mathematik Ostbayerische Technische Hochschule Regensburg 93049 Regensburg
Einführung in die Parallele Programmierung
Einführung in die Parallele Programmierung K. Benkert 1, A. Stock 2 1 High Performance Computing Centre Stuttgart www.hlrs.de Universität Stuttgart 2 Institut für Aerodynamik und Gasdynamik (IAG) www.iag.uni-stuttgart.de
Neue Dual-CPU Server mit Intel Xeon Scalable Performance (Codename Purley/Skylake-SP)
Neue Dual-CPU Server mit Intel Xeon Scalable Performance (Codename Purley/Skylake-SP) @wefinet Werner Fischer, Thomas-Krenn.AG Webinar, 17. Oktober 2017 Intel Xeon Scalable Performance _ Das ist NEU: Neue
Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke, 2013-05-08
Parallele Algorithmen mit OpenCL Universität Osnabrück, Henning Wenke, 2013-05-08 Aufräumen Ressourcen in umgekehrter Abhängigkeitsreihenfolge freigeben Objekte haben Reference-Count (RC), initial 1 clrelease
Thema: Hardware-Shader
Seminar Grafikprogrammierung Thema: Hardware-Shader Christian Bauer 03.07.08 Überblick Entwicklung Die Shader im Detail Programmierung GPGPU Zusammenfassung & Ausblick 1/19 Entwicklung (1) Früher: Berechnung
Seminarvortrag: Direktivenbasierte Programmierung von Beschleunigern mit OpenMP 4.5 und OpenACC 2.5 im Vergleich
Seminarvortrag: Direktivenbasierte Programmierung von Beschleunigern mit Direktivenbasierte Programmierung von Beschleunigern mit Agenda Einführung / Motivation Überblick zu OpenMP und OpenACC Asynchronität
Evolution of GPUs. Die Entwicklung der Graphics Processing Units. Marvin Kampf und Michael Moese. Seminar: Multi-Core Architectures and Programming
Evlutin f GPUs Die Entwicklung der Graphics Prcessing Units Marvin Kampf und Michael Mese Seminar: Multi-Cre Architectures and Prgramming Was bedeutet Entwicklung hin zur GPU? Hinzufügen vn Prgrammierbarkeit
Cell Broadband Engine & CellSs: ein Programmiermodel für den Cell Prozessor
Cell Broadband Engine & CellSs: ein Programmiermodel für den Cell Prozessor Hardware-Software-Co-Design Universität Erlangen-Nürnberg [email protected] [email protected] [email protected]
Prozessor- und Rechnerarchitekturen (Master)
Prozessor- und Rechnerarchitekturen (Master) Themen am 28.06.17: Semesterrückblick, Terminplanung Ihrer Vorträge ProRecArc17_V10 Ulrich Schaarschmidt HS Düsseldorf, SS 2017 V1 (5.4.): Termine + mögliche
Übersicht 1. Anzeigegeräte 2. Framebuffer 3. Grundlagen 3D Computergrafik 4. Polygongrafik, Z-Buffer 5. Texture-Mapping/Shading 6. GPU 7. Programmierbare Shader 1 LCD/TFT Technik Rotation der Licht-Polarisationsebene
Predator G3. Premium Design. Advanced Technology. Immersive entertainment
- 1 - Desktop PCs Predator G3 Der neue Acer Predator G3 - Designed für Gaming und HD- Entertainment. Angetrieben von der neuesten CPU-Generation und von High-End Grafikkarten lässt er keine Wünsche offen
Ansätze 4. GPU. Echtzeit- Raytracing. Polygon- Rendering. Computerspiele Sommer (c) 2013, Peter Sturm, Universität Trier 1
4. GPU Ansätze Echtzeit- Raytracing Modell und Materialeigenschaften auf Raytracer Kontinuierliche Darstellung Polygon- Rendering CPU wählt darzustellende Polygone aus Render Pipeline (c) 2013, Peter Sturm,
Mehrprozessorarchitekturen
Mehrprozessorarchitekturen (SMP, UMA/NUMA, Cluster) Arian Bär 12.07.2004 12.07.2004 Arian Bär 1 Gliederung 1. Einleitung 2. Symmetrische Multiprozessoren (SMP) Allgemeines Architektur 3. Speicherarchitekturen
Untersuchung und Vorstellung moderner Grafikchiparchitekturen
Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Untersuchung und Vorstellung moderner Grafikchiparchitekturen Hauptseminar Technische
Algorithmen für moderne Rechnerarchitekturen
Jörn Fischer [email protected] Willkommen zur Vorlesung Algorithmen für moderne Rechnerarchitekturen Vorstellung Zu meiner Person... 2 ALR - Jörn Fischer - [email protected] Büro: A113a Überblick
OpenGL. (Open Graphic Library)
OpenGL (Open Graphic Library) Agenda Was ist OpenGL eigentlich? Geschichte Vor- und Nachteile Arbeitsweise glscene OpenGL per Hand Debugging Trend Was ist OpenGL eigentlich? OpenGL ist eine Spezifikation
Bachelorthesis. Marc-Ruben Lorbeer. Analyse der NVIDIA CUDA-Architektur für die Implementierung von Signal- und Bildverarbeitungsalgorithmen
Bachelorthesis Marc-Ruben Lorbeer Analyse der NVIDIA CUDA-Architektur für die Implementierung von Signal- und Bildverarbeitungsalgorithmen Fakultät Technik und Informatik Department Informations- und Elektrotechnik
MITK-OpenCL: Eine Erweiterung für das Medical Imaging Interaction Toolkit
MITK-OpenCL: Eine Erweiterung für das Medical Imaging Interaction Toolkit Jan Hering 1,2, Ingmar Gergel 1, Susanne Krömker 2, Hans-Peter Meinzer 1, Ingmar Wegner 1 1 Abt. Medizinische und Biologische Informatik,
Deklarationen in C. Prof. Dr. Margarita Esponda
Deklarationen in C 1 Deklarationen Deklarationen spielen eine zentrale Rolle in der C-Programmiersprache. Deklarationen Variablen Funktionen Die Deklarationen von Variablen und Funktionen haben viele Gemeinsamkeiten.
Praktikum: Paralleles Programmieren für Geowissenschaftler
Praktikum: Paralleles Programmieren für Geowissenschaftler Prof. Thomas Ludwig, Hermann Lenhart, Ulrich Körner, Nathanael Hübbe [email protected] OpenMP Einführung I: Allgemeine Einführung Prozesse
