Grundlagen von CUDA, Sprachtypische Elemente

Größe: px
Ab Seite anzeigen:

Download "Grundlagen von CUDA, Sprachtypische Elemente"

Transkript

1 Grundlagen von CUDA, Sprachtypische Elemente Stefan Maskanitz CUDA Grundlagen 1

2 Übersicht 1. Einleitung 2. Spracheigenschaften a. s, Blocks und Grids b. Speicherorganistion c. Fehlerbehandlung d. Sonstiges 3. Vergleich: CPU/GPU Code CUDA Grundlagen 2

3 EINLEITUNG CUDA Grundlagen 3

4 Voraussetzungen Es wird mindestens eine CUDA fähige Nvidia Grafikkarte benötigt. Dies sind alle Nvidia Modelle ab der G80 Reihe. Beispiele: Nvidia Geforce 8800 GTX Nvidia Geforce 9600 GT Nvidia Geforce 260 GTX CUDA Grundlagen - Einleitung 4

5 CUDA aktuell Zwei Wege, Code zu schreiben C für CUDA CUDA Driver API CUDA Grundlagen - Einleitung 5

6 CUDA zukünftig Mehrere Sprachen Anwendung C OpenCL C++ Fortran CUDA CUDA Grundlagen - Einleitung 6

7 C für CUDA Erweitert die Sprache C/C++ um einfache Sprachelemente, mit denen man Code für die Grafikkarte entwickeln kann Compiler: NVCC (gibt es mit dem SDK) Ermöglicht schnellen Einstieg CUDA Grundlagen - Einleitung 7

8 Trennung von Host und Device C Code wird auf dem Host (CPU) ausgeführt. CUDA Code wird auf einem physikalisch vom Host getrennten Device (GPU) ausgeführt. Host und Device verwalten ihren eigenen Speicher. Host muss die Device-Speicherverwaltung übernehmen Hierzu gehört Allokation, Deallokation und das Kopieren von Daten von und zum Device CUDA Grundlagen - Trennung Host/Device 8

9 CUDA Kernel Eine CUDA Funktion wird Kernel genannt. Ein Kernel muss so geschrieben sein, dass er von N verschiedenen s in beliebiger Reihenfolge ausgeführt werden kann. (SIMT) Dies ermöglicht eine einfache Skalierbarkeit Neuere GPU Modelle besitzen mehr Recheneinheiten, die den selben Code ausführen CUDA Grundlagen - Einleitung 9

10 s, Blocks und Grids SPRACHEIGENSCHAFTEN CUDA Grundlagen 10

11 s, Blocks und Grids CUDA Kernel werden von mehreren s ausgeführt. Grid Block Block CUDA Grundl. - s, Blocks und Grids 11

12 Konfiguration der Grids/Blocks Wird im Kernelaufruf festgelegt // Kernel definition global void VecAdd(float* A, float* B, float* C) { int main() { // Kernel invocation // <<<dimgrid, dimblock>>> VecAdd<<<1, N>>>(A, B, C); Max. 512 s pro Block o Technische Grenze: alle s eines Blocks sollen auf einem Prozessor ausgeführt werden Prozessorspeicher begrenzt CUDA Grundl. - s, Blocks und Grids 12

13 blockidx, blockdim, threadidx Kernel besitzen Variablen mit Informationen über den /Block, zu dem sie gehören // Kernel definition global void VecAdd(float* A, float* B, float* C) { int i = blockidx.x * blockdim.x + threadidx.x; C[i] = A[i] + B[i]; int main() { // Kernel invocation VecAdd<<<2, N/2>>>(A, B, C); CUDA Grundl. - s, Blocks und Grids 13

14 Beispiel für N = 4 Grid 0 Block 0 Block 1 0 (i=0) 1 (i=1) 0 (i=2) 1 (i=3) int i = blockidx.x * blockdim.x + threadidx.x; CUDA Grundl. - s, Blocks und Grids 14

15 Syncthreads() s in einem Block können ihre Speicherzugriffe verwalten Barriere, an der ein wartet, bis auch alle anderen s aus dem gleichen Block an ihr angekommen sind. global void VecAdd(float* A, float* B, float* C) { int i = blockidx.x * blockdim.x + threadidx.x; C[i] = A[i] + B[i]; syncthreads(); // CUDA Grundl. - s, Blocks und Grids 15

16 Speicherorganisation SPRACHEIGENSCHAFTEN CUDA Grundlagen 16

17 Lokaler Speicher 0 Lokaler Speicher global void foo(float* A, float* B) { int counter = 0; // CUDA Grundlagen - Speicherorganisation 17

18 Shared Speicher Block shared Speicher global void foo(float* A, float* B) { //... shared float As[BLOCK_SIZE][BLOCK_SIZE]; //... Schnell (ähnlich Registerzugriff bei CPU Code) Größe begrenzt: 16 KB CUDA Grundlagen - Speicherorganisation 18

19 Globaler Speicher Grid Grid globaler Speicher global void VecAdd(float* A, float* B, float* C) { //... int main() { //... cudamalloc((void **) &A_d, size); cudamemcpy(a_d,a_h,size,cudamemcpyhosttodevice); VecAdd<<<2, N/2>>>(A_d, B_d, C_d); Persistent über alle Kernel Aufrufe einer Anwendung CUDA Grundlagen - Speicherorganisation 19

20 Fehlerbehandlung SPRACHEIGENSCHAFTEN CUDA Grundlagen 20

21 cudagetlasterror() Ein Kernel gibt direkt keine Fehlermeldung aus. Man muss diese deshalb nach dem Aufruf mit cudagetlasterror() auslesen. int main() { //... VecAdd<<<2, N/2>>>(A_d, B_d, C_d); cudasynchronize(); printf("%s\n",cudageterrorstring(cudagetlasterror())); CUDA Grundlagen - Fehlerbehandlung 21

22 Device Emulation CUDA Code wird auf dem Host (CPU) ausgeführt Debugger des Hosts kann verwendet werden (z.b. für breakpoints, ) Device Code kann um Hostfunktionen ergänzt werden (z.b. printf, ) CUDA Grundlagen - Fehlerbehandlung 22

23 Sonstiges SPRACHEIGENSCHAFTEN CUDA Grundlagen 23

24 Device Funktion Kann zum Wiederverwenden von Code benutzt werden. Keine Rekursion möglich device int addiere(int a, int b) { return a+b; global void foo(float* A, float* B, float* C) { int a = 3; int b = 4; int c = addiere(a, b); // CUDA Grundlagen - Sonstiges 24

25 cudasynchronize() CUDA Kernel werden asynchron ausgeführt. Um auf Ergebnisse von Kernel Funktionen zu warten, kann man cudasynchronize() nutzen int main() { //... VecAdd<<<2, N/2>>>(A_d, B_d, C_d); cudasynchronize(); CUDA Grundlagen - Sonstiges 25

26 VERGLEICH: CPU/GPU CODE CUDA Grundlagen 26

27 Quadrieren // CPU Code int main() { int i = 0; float *zahlen_host; const int anz = 10; // Speicher reservieren zahlen_host = (float *)malloc( anz*sizeof(float) ); // Zahlen quadrieren for ( i=0; i<anz; i++ ) zahlen_host[i] = (float)i * (float)i; // GPU Code global void quadrieren(float *zahlen) { int idx = blockidx.x * blockdim.x + threadidx.x; // Zahl quadrieren zahlen[idx] = zahlen[idx] * zahlen[idx]; int main() { int i = 0; float *zahlen_host, *zahlen_device; const int anz = 10; // Speicher auf dem Host reservieren zahlen_host = (float *)malloc( anz*sizeof(float) ); // Zahlen im Host-Speicher ablegen for ( i=0; i<anz; i++ ) zahlen_host[i] = (float)i; // Speicher auf dem Device reservieren cudamalloc( (void **) &zahlen_device, anz*sizeof(float) ); // Kopieren der Zahlen zum Device cudamemcpy( zahlen_device, zahlen_host, anz*sizeof(float), cudamemcpyhosttodevice ); // Speicher freigeben free( zahlen_host ); // Quadrieren der Zahlen auf dem Device quadrieren<<< 2, 5 >>> ( zahlen_device ); // Kopieren der Zahlen zum Host cudamemcpy( zahlen_host, zahlen_device, anz*sizeof(float), cudamemcpydevicetohost ); // Speicher freigeben free( zahlen_host ); cudafree( zahlen_device ); CUDA Grundlagen - CPU/GPU Code 27

CUDA. Moritz Wild, Jan-Hugo Lupp. Seminar Multi-Core Architectures and Programming. Friedrich-Alexander-Universität Erlangen-Nürnberg

CUDA. Moritz Wild, Jan-Hugo Lupp. Seminar Multi-Core Architectures and Programming. Friedrich-Alexander-Universität Erlangen-Nürnberg CUDA Seminar Multi-Core Architectures and Programming 1 Übersicht Einleitung Architektur Programmierung 2 Einleitung Computations on GPU 2003 Probleme Hohe Kenntnisse der Grafikprogrammierung nötig Unterschiedliche

Mehr

Compute Unified Device Architecture CUDA

Compute Unified Device Architecture CUDA Compute Unified Device Architecture 06. Februar 2012 1 / 13 Gliederung 2 / 13 : Compute Unified Device Architecture entwickelt von Nvidia Corporation spezifiziert Software- und Hardwareeigenschaften Ziel:

Mehr

Masterpraktikum Scientific Computing

Masterpraktikum Scientific Computing Masterpraktikum Scientific Computing High-Performance Computing Thomas Auckenthaler Wolfgang Eckhardt Prof. Dr. Michael Bader Technische Universität München, Germany Outline Organisatorisches Entwicklung

Mehr

Praxiseinheit: Realisierung einer hardwarebeschleunigten Disparitätenberechnung zur automatischen Auswertung von Stereobildern

Praxiseinheit: Realisierung einer hardwarebeschleunigten Disparitätenberechnung zur automatischen Auswertung von Stereobildern Praxiseinheit: Realisierung einer hardwarebeschleunigten Disparitätenberechnung zur automatischen Auswertung von Stereobildern Institut für Betriebssysteme und Rechnerverbund TU Braunschweig 25.10., 26.10.

Mehr

Masterpraktikum Scientific Computing

Masterpraktikum Scientific Computing Masterpraktikum Scientific Computing High-Performance Computing Thomas Auckenthaler Wolfgang Eckhardt Technische Universität München, Germany Outline Entwicklung General Purpose GPU Programming (GPGPU)

Mehr

GPGPU-Programmierung

GPGPU-Programmierung 12 GPGPU-Programmierung 2013/04/25 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken ist im Allgemeinen nicht erlaubt. Motivation (1) General Purpose Computing on

Mehr

GPGPU-Programming. Constantin Timm Informatik 12 TU Dortmund 2012/04/09. technische universität dortmund. fakultät für informatik informatik 12

GPGPU-Programming. Constantin Timm Informatik 12 TU Dortmund 2012/04/09. technische universität dortmund. fakultät für informatik informatik 12 12 GPGPU-Programming Constantin Timm Informatik 12 TU Dortmund 2012/04/09 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken ist im Allgemeinen nicht erlaubt. Motivation

Mehr

GPGPU-Programmierung

GPGPU-Programmierung 12 GPGPU-Programmierung 2014/04/29 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken ist im Allgemeinen nicht erlaubt. Motivation (1) General Purpose Computing on

Mehr

OpenCL. Programmiersprachen im Multicore-Zeitalter. Tim Wiersdörfer

OpenCL. Programmiersprachen im Multicore-Zeitalter. Tim Wiersdörfer OpenCL Programmiersprachen im Multicore-Zeitalter Tim Wiersdörfer Inhaltsverzeichnis 1. Was ist OpenCL 2. Entwicklung von OpenCL 3. OpenCL Modelle 1. Plattform-Modell 2. Ausführungs-Modell 3. Speicher-Modell

Mehr

GPGPU-Architekturen CUDA Programmiermodell Beispielprogramm. Einführung CUDA. Ralf Seidler. Friedrich-Alexander-Universität Erlangen-Nürnberg

GPGPU-Architekturen CUDA Programmiermodell Beispielprogramm. Einführung CUDA. Ralf Seidler. Friedrich-Alexander-Universität Erlangen-Nürnberg Einführung CUDA Friedrich-Alexander-Universität Erlangen-Nürnberg PrakParRA, 18.11.2010 Outline 1 GPGPU-Architekturen 2 CUDA Programmiermodell 3 Beispielprogramm Outlook 1 GPGPU-Architekturen 2 CUDA Programmiermodell

Mehr

Yilmaz, Tolga MatNr: Mesaud, Elias MatNr:

Yilmaz, Tolga MatNr: Mesaud, Elias MatNr: Yilmaz, Tolga MatNr: 157317 Mesaud, Elias MatNr: 151386 1. Aufbau und Funktionsweise einer Grafikkarte 2. CPU vs. GPU 3. Software 4. Beispielprogramme Kompilierung und Vorführung 5. Wo wird Cuda heutzutage

Mehr

Einführung. GPU-Versuch. Andreas Schäfer Friedrich-Alexander-Universität Erlangen-Nürnberg

Einführung. GPU-Versuch. Andreas Schäfer Friedrich-Alexander-Universität Erlangen-Nürnberg GPU-Versuch andreas.schaefer@cs.fau.de Friedrich-Alexander-Universität Erlangen-Nürnberg Praktikum Parallele Rechnerarchitekturen SS2014 Outline 1 Einführung 2 Outlook 1 Einführung 2 Eine kurze Geschichte

Mehr

Programmierbeispiele und Implementierung. Name: Michel Steuwer E-Mail: michel.steuwer@wwu.de

Programmierbeispiele und Implementierung. Name: Michel Steuwer E-Mail: michel.steuwer@wwu.de > Programmierbeispiele und Implementierung Name: Michel Steuwer E-Mail: michel.steuwer@wwu.de 2 > Übersicht > Matrix Vektor Multiplikation > Mandelbrotmenge / Apfelmännchen berechnen > Kantendetektion

Mehr

Eine kurze Geschichte der Grafikkarten

Eine kurze Geschichte der Grafikkarten 3.1 Einführung Eine kurze Geschichte der Grafikkarten ursprünglich: Graphics Card steuert Monitor an Mitte 80er: Grafikkarten mit 2D-Beschleunigung angelehnt an Arcade- und Home-Computer frühe 90er: erste

Mehr

Software Engineering für moderne parallele Plattformen 9. GPGPUs: Grafikkarten als Parallelrechner

Software Engineering für moderne parallele Plattformen 9. GPGPUs: Grafikkarten als Parallelrechner Software Engineering für moderne parallele Plattformen 9. GPGPUs: Grafikkarten als Parallelrechner Dipl.-Inform. Korbinian Molitorisz M. Sc. Luis Manuel Carril Rodriguez KIT Universität des Landes Baden-Württemberg

Mehr

GPGPU-Architekturen CUDA Programmiermodell Beispielprogramm Organiosatorisches. Tutorial CUDA. Ralf Seidler

GPGPU-Architekturen CUDA Programmiermodell Beispielprogramm Organiosatorisches. Tutorial CUDA. Ralf Seidler Friedrich-Alexander-Universität Erlangen-Nürnberg 05.10.2010 Outline 1 GPGPU-Architekturen 2 CUDA Programmiermodell 3 Beispielprogramm 4 Organiosatorisches Outlook 1 GPGPU-Architekturen 2 CUDA Programmiermodell

Mehr

Programmierung von Graphikkarten

Programmierung von Graphikkarten Programmierung von Graphikkarten Stefan Lang Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Universität Heidelberg INF 368, Raum 532 D-69120 Heidelberg phone: 06221/54-8264 email: Stefan.Lang@iwr.uni-heidelberg.de

Mehr

Software Engineering für moderne, parallele Plattformen. 9. GPGPUs: Grafikkarten als Parallelrechner. Dr. Victor Pankratius

Software Engineering für moderne, parallele Plattformen. 9. GPGPUs: Grafikkarten als Parallelrechner. Dr. Victor Pankratius Software Engineering für moderne, parallele Plattformen 9. GPGPUs: Grafikkarten als Parallelrechner Dr. Victor Pankratius Dr. Victor Pankratius, Dipl.Inform. Frank Otto IPD Tichy Lehrstuhl für Programmiersysteme

Mehr

CUDA. Axel Jena, Jürgen Pröll. Multi-Core Architectures and Programming. Friedrich-Alexander-Universität Erlangen-Nürnberg Axel Jena, Jürgen Pröll 1

CUDA. Axel Jena, Jürgen Pröll. Multi-Core Architectures and Programming. Friedrich-Alexander-Universität Erlangen-Nürnberg Axel Jena, Jürgen Pröll 1 CUDA Axel Jena, Jürgen Pröll Multi-Core Architectures and Programming Axel Jena, Jürgen Pröll 1 Warum Tesla? Traditionelle Graphikkarten Getrennte Prozessoren für Vertex- / Pixelberechnungen - Nachteil:

Mehr

Parallele Programmierung mit GPUs

Parallele Programmierung mit GPUs Parallele Programmierung mit GPUs Jutta Fitzek Vortrag im Rahmen des Moduls Parallele Programmierung, WS12/13, h_da Agenda GPUs: Historie GPU Programmierung Konzepte Codebeispiel Generelle Tipps & Tricks

Mehr

Ferienakademie Erik Muttersbach

Ferienakademie Erik Muttersbach Ferienakademie 2009 - Erik Muttersbach 1. Einführung 2. Kernels, Threads, Blocks 3. CUDA Execution Model 4. Software Stack 5. Die CUDA Runtime API 6. Speichertypen/ Zugriff 7. Profiling und Optimierung

Mehr

Compute Unified Device Architecture (CUDA)

Compute Unified Device Architecture (CUDA) Compute Unified Device Architecture (CUDA) Thomas Koller 12. Februar 2012 Zusammenfassung Diese Ausarbeitung beschäftigt sich mit der Programmierung von Grafikkarten mittels CUDA. Bei bestimmten Berechnungen

Mehr

CUDA. 7. Vorlesung GPU Programmierung. Danke an Hendrik Lensch

CUDA. 7. Vorlesung GPU Programmierung. Danke an Hendrik Lensch CUDA 7. Vorlesung Thorsten Grosch Danke an Hendrik Lensch Parallele l Programmierung mit der GPU Bisher: GPU = OpenGL Pipeline mit Shadern Alles orientiert sich am Rendering Programme für Eckpunkte und

Mehr

GPGPU Programming nvidia CUDA vs. AMD/ATI Stream Computing. Seminar HWS 08/09 by Erich Marth

GPGPU Programming nvidia CUDA vs. AMD/ATI Stream Computing. Seminar HWS 08/09 by Erich Marth Computing 1 Inhalt Einführung nvidia CUDA AMD Stream Computing CUDA vs. Stream Computing - Warum, Vorteile, Motivation - Überblick, API - Details, Beispiele - Überblick, API - Details, Beispiele - wesentliche

Mehr

Proseminar. GPU-Computing Cuda vs. OpenCL. SS 2013 Alexander Stepanov

Proseminar. GPU-Computing Cuda vs. OpenCL. SS 2013 Alexander Stepanov Proseminar GPU-Computing Cuda vs. OpenCL SS 2013 Alexander Stepanov Inhaltsverzeichnis 1. Einführung: Warum GPU Computing? CPU vs. GPU GPU Architektur 2. CUDA Architektur Beispiel Matrix Multiplikation

Mehr

Parallelisierung der Matrixmultiplikation

Parallelisierung der Matrixmultiplikation Ein Beispiel für parallele Algorithmen Ivo Hedtke hedtke@math.uni-jena.de www.minet.uni-jena.de/~hedtke/ ehem. Hiwi am Lehrstuhl für Wissenschaftliches Rechnen (Prof. Dr. Zumbusch) Institut für Angewandte

Mehr

Cuda Speicherhierarchie

Cuda Speicherhierarchie Cuda Speicherhierarchie Threads eines Blocks können über Shared Memory kommunizieren Der Shared Memory ist klein aber sehr schnell Alle Threads können nur über Global Memory kommunizieren Der Global Memory

Mehr

MESIF- (links) vs. MESI-Protokoll (rechts)

MESIF- (links) vs. MESI-Protokoll (rechts) 2.3 Beispiele für Multikern-Architekturen 2.3.1 Intel-Nehalem-Architektur MESIF- (links) vs. MESI-Protokoll (rechts) Annahme: Prozessor links unten und rechts oben haben Kopie MESIF : Nur Prozessor, dessen

Mehr

Prinzipieller Aufbau der Architektur eines Multikern- Prozessors. Programmierung Standard-Mulitkern-Prozessoren mit OpenMP

Prinzipieller Aufbau der Architektur eines Multikern- Prozessors. Programmierung Standard-Mulitkern-Prozessoren mit OpenMP 3.1 Einführung Multi-Core-Architekturen Motivation Multikern-Prozessoren Prinzipieller Aufbau der Architektur eines Multikern- Prozessors Programmierung Standard-Mulitkern-Prozessoren mit OpenMP Programmierung

Mehr

Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke,

Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke, Parallele Algorithmen mit OpenCL Universität Osnabrück, Henning Wenke, 2013-04-17 Kapitel I OpenCL Einführung Allgemeines Open Compute Language: API für einheitliche parallele Programmierung heterogener

Mehr

Rechnerarchitektur (RA)

Rechnerarchitektur (RA) 12 Rechnerarchitektur (RA) Sommersemester 2015 Foliensatz 6: Grafikprozessoren und GPGPU-Programmierung Michael Engel Informatik 12 michael.engel@tu-.. http://ls12-www.cs.tu-.de/daes/ Tel.: 0231 755 6121

Mehr

Architektur und Programmierung von Grafik- und Koprozessoren

Architektur und Programmierung von Grafik- und Koprozessoren Architektur und Programmierung von Grafik- und Koprozessoren General Purpose Programmierung auf Grafikprozessoren Stefan Zellmann Lehrstuhl für Informatik, Universität zu Köln SS2018 Host Interface Ausführungszeit

Mehr

CUDA by Example. Paralleles Rechnen auf der Grafikkarte. Leipzig, Paul Jähne SethosII

CUDA by Example. Paralleles Rechnen auf der Grafikkarte. Leipzig, Paul Jähne SethosII CUDA by Example Paralleles Rechnen auf der Grafikkarte Leipzig, 31.03.2017 Paul Jähne SethosII 1 Warum? 2 Aufbau CPU geringe Latenz große Zwischenspeicher besser für serielle Ausführung GPU hohe Rechenleistung

Mehr

CUDA. Jürgen Pröll. Multi-Core Architectures and Programming. Friedrich-Alexander-Universität Erlangen-Nürnberg Jürgen Pröll 1

CUDA. Jürgen Pröll. Multi-Core Architectures and Programming. Friedrich-Alexander-Universität Erlangen-Nürnberg Jürgen Pröll 1 CUDA Jürgen Pröll Multi-Core Architectures and Programming Jürgen Pröll 1 Image-Resize: sequentiell resize() mit bilinearer Interpolation leicht zu parallelisieren, da einzelne Punkte voneinander unabhängig

Mehr

Gliederung. Was ist CUDA? CPU GPU/GPGPU CUDA Anwendungsbereiche Wirtschaftlichkeit Beispielvideo

Gliederung. Was ist CUDA? CPU GPU/GPGPU CUDA Anwendungsbereiche Wirtschaftlichkeit Beispielvideo Gliederung Was ist CUDA? CPU GPU/GPGPU CUDA Anwendungsbereiche Wirtschaftlichkeit Beispielvideo Was ist CUDA? Nvidia CUDA ist eine von NvidiaGPGPU-Technologie, die es Programmierern erlaubt, Programmteile

Mehr

Paralleler Cuckoo-Filter. Seminar: Implementierungstechniken für Hauptspeicherdatenbanksysteme Jeremias Neth München, 21.

Paralleler Cuckoo-Filter. Seminar: Implementierungstechniken für Hauptspeicherdatenbanksysteme Jeremias Neth München, 21. Paralleler Cuckoo-Filter Seminar: Implementierungstechniken für Hauptspeicherdatenbanksysteme Jeremias Neth München, 21. November 2017 1 Paralleler Cuckoo-Filter Cuckoo-Hashtabelle Serieller Cuckoo-Filter

Mehr

GPUs. Arbeitsbereich Wissenschaftliches Rechnen Fachbereich Informatik Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg

GPUs. Arbeitsbereich Wissenschaftliches Rechnen Fachbereich Informatik Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg GPUs Arbeitsbereich Wissenschaftliches Rechnen Fachbereich Informatik Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg Vorgelegt von: Johannes Coym E-Mail-Adresse: 4coym@informatik.uni-hamburg.de

Mehr

Der Goopax Compiler GPU-Programmierung in C++ ZKI AK-Supercomputing, Münster, 27.03.2014, Ingo Josopait

Der Goopax Compiler GPU-Programmierung in C++ ZKI AK-Supercomputing, Münster, 27.03.2014, Ingo Josopait Der Goopax Compiler GPU-Programmierung in C++ AMD R9 290X: 5.6 TFLOPS (SP MulAdd) Programmierung ~10000 Threads Entwicklungsumgebungen Entwicklungsumgebungen CUDA, OpenCL Compiler: kernel GPU Maschinencode

Mehr

GPU-Programmierung: OpenCL

GPU-Programmierung: OpenCL Seminar: Multicore Programmierung Sommerstemester 2009 04.06.2009 Inhaltsverzeichnis 1 GPU-Programmierung von Grafikkarten von GPU-Computing 2 Architektur Spracheigenschaften Vergleich mit CUDA Beispiel

Mehr

GPU Architektur CUDA - OpenCL

GPU Architektur CUDA - OpenCL GPU Architektur und Programmiermöglichkeiten für GPGPU-Anwendungen kernel void matsq( global const float *mat, global float *out ) { int dim = get_global_size(0); //Matrix dimension int i = get_global_id(0);

Mehr

Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke,

Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke, Parallele Algorithmen mit OpenCL Universität Osnabrück, Henning Wenke, 203-04-24 Was bisher geschah Host Device Platform Führt aus Führt aus Device Context Applikation Java, C++, Kernel (OpenCL C) Memory

Mehr

Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke, 2013-05-08

Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke, 2013-05-08 Parallele Algorithmen mit OpenCL Universität Osnabrück, Henning Wenke, 2013-05-08 Aufräumen Ressourcen in umgekehrter Abhängigkeitsreihenfolge freigeben Objekte haben Reference-Count (RC), initial 1 clrelease

Mehr

Parallelisierung auf CUDA

Parallelisierung auf CUDA Parallelisierung auf CUDA Seminar Multi-Core Architectures and Programming 1 Übersicht RSA-Faktorisierung Image Flooding 2 RSA-Faktorisierung Erster Ansatz Implementierung des Pollard-Rho Algorithmus (sequentiell)

Mehr

Globale Variablen Diverses. Globale Variablen. Globale Variablen

Globale Variablen Diverses. Globale Variablen. Globale Variablen lokale Variablen Variablen bisher nur am Anfang von Funktionen auch erlaubt: am Anfang innerer Codeblöcke (innerhalb geschweifter Klammern) in C99 und als gcc-erweiterung: an beliebiger Stelle innerhalb

Mehr

Software Entwicklung 1

Software Entwicklung 1 Software Entwicklung 1 Annette Bieniusa Peter Zeller AG Softech FB Informatik TU Kaiserslautern Speichermanagement Wie viel Speicher braucht ein Programm? Wofür wird Speicher benötigt? Wie ist der Speicher

Mehr

Parallelisierung mit Hilfe grafischer Prozessoren 318

Parallelisierung mit Hilfe grafischer Prozessoren 318 Parallelisierung mit Hilfe grafischer Prozessoren 318 Schon sehr früh gab es diverse Grafik-Beschleuniger, die der normalen CPU Arbeit abnahmen. Die im März 2001 von Nvidia eingeführte GeForce 3 Series

Mehr

Intels Tick-Tock-Prinzip

Intels Tick-Tock-Prinzip 2.3 Beispiele für Multikern-Architekturen 2.3.1 Von Intel-Nehalem- bis Haswell-Architektur Intels Tick-Tock-Prinzip Gleiche Mikroarchitektur und Prozess-Technologiesprung (Tick) Neue Mikroarchitektur (Tock)

Mehr

1 Einleitung. 2 Parallelisierbarkeit von. Architektur

1 Einleitung. 2 Parallelisierbarkeit von. Architektur Beschleunigung von Aufgaben der parallelen Bildverarbeitung durch Benutzung von NVIDIA-Grafikkarten mit der Compute Unified Device Architecture (CUDA) Roman Glebov roman@glebov.de Abstract Diese Arbeit

Mehr

Motivation (GP)GPU CUDA Zusammenfassung. CUDA und Python. Christian Wilms. Integriertes Seminar Projekt Bildverarbeitung

Motivation (GP)GPU CUDA Zusammenfassung. CUDA und Python. Christian Wilms. Integriertes Seminar Projekt Bildverarbeitung CUDA und Python Christian Wilms Integriertes Seminar Projekt Bildverarbeitung Universität Hamburg WiSe 2013/14 12. Dezember 2013 Christian CUDA und Python 1 Gliederung 1 Motivation 2 (GP)GPU 3 CUDA 4 Zusammenfassung

Mehr

PGI Accelerator Model

PGI Accelerator Model PGI Accelerator Model Philip Höhlein, Nils Werner Supervision: R. Membarth, P. Kutzer, F. Hannig Hardware-Software-Co-Design Universität Erlangen-Nürnberg Philip Höhlein, Nils Werner 1 Übersicht Motivation

Mehr

CUDA Workshop. Ausblick. Daniel Tenbrinck

CUDA Workshop. Ausblick. Daniel Tenbrinck CUDA Workshop Ausblick Daniel Tenbrinck Computer Vision and Pattern Recognition Group Institut für Informatik Westfälische Wilhelms-Universität Münster 03.Juli 2009 Folie: 1 / 10 Daniel Tenbrinck CUDA

Mehr

einlesen n > 0? Ausgabe Negative Zahl

einlesen n > 0? Ausgabe Negative Zahl 1 Lösungen Kapitel 1 Aufgabe 1.1: Nassi-Shneiderman-Diagramm quadratzahlen Vervollständigen Sie das unten angegebene Nassi-Shneiderman-Diagramm für ein Programm, welches in einer (äußeren) Schleife Integer-Zahlen

Mehr

Übersicht. Speichertypen. Speicherverwaltung und -nutzung. Programmieren in C

Übersicht. Speichertypen. Speicherverwaltung und -nutzung. Programmieren in C Übersicht Speichertypen Speicherverwaltung und -nutzung Speichertypen Beim Laden eines Programms in den Speicher (Programmausführung) kommen 3 verschiedene Speicherbereiche zum Einsatz: Text Segment (Code

Mehr

Übungen zu Softwaresysteme I Jürgen Kleinöder Universität Erlangen-Nürnberg Informatik 4, 2004 E-Uebung3.fm

Übungen zu Softwaresysteme I Jürgen Kleinöder Universität Erlangen-Nürnberg Informatik 4, 2004 E-Uebung3.fm E 3. Übung E 3. Übung Besprechung 1. Aufgabe Aufgabe 3: malloc Debugger gdb E.1 1. Include, Deklarationen #include #include void append_element(int value); int remove_element(void);

Mehr

1 Fehler in Bibliotheksfunktionen. 1 Überblick. 2 Ziele der Aufgabe. Besprechung der 1. Aufgabe

1 Fehler in Bibliotheksfunktionen. 1 Überblick. 2 Ziele der Aufgabe. Besprechung der 1. Aufgabe U3 3. Übung U3 3. Übung U3-1 Fehlerbehandlung U3-1 Fehlerbehandlung Besprechung der 1. Aufgabe Fehlerbehandlung Infos zur Aufgabe 3: malloc-implementierung U3.1 Fehler können aus unterschiedlichsten Gründen

Mehr

CUDA. (Compute Unified Device Architecture) Thomas Trost. May 31 th 2016

CUDA. (Compute Unified Device Architecture) Thomas Trost. May 31 th 2016 CUDA (Compute Unified Device Architecture) Thomas Trost May 31 th 2016 Introduction and Overview platform and API for parallel computing on GPUs by NVIDIA relatively straightforward general purpose use

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren Speicherverwaltung und Parameterübergabe Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/fischer Gültigkeitsbereich von

Mehr

Informatik II SS Inhalt. Objektlebensdauer (2/3) Objektlebensdauer (1/3)

Informatik II SS Inhalt. Objektlebensdauer (2/3) Objektlebensdauer (1/3) Inhalt Informatik II SS 2004 Teil 6: Sprachen, Compiler und Theorie 5 Lebensdauer von Objekten Speichermanagement Weiterführende Spracheigenschaften und Bindungen Implementierung von statischen Gültigkeitsbereichen

Mehr

Projektseminar Parallele Programmierung

Projektseminar Parallele Programmierung HTW Dresden WS 2017/2018 Organisatorisches Praktikum, 4 SWS Do. 15:10-18:30 Uhr, Z136c, 2 Doppelstunden Labor Z 136c ist Donnerstag 15:10-18:30 reserviert, gemeinsam mit anderen Projektseminaren Selbständige

Mehr

GPU-BESCHLEUNIGTE PACKUNGSOPTIMIERUNG. André Müller, Johannes J. Schneider, Elmar Schömer

GPU-BESCHLEUNIGTE PACKUNGSOPTIMIERUNG. André Müller, Johannes J. Schneider, Elmar Schömer GPU-BESCHLEUNIGTE PACKUNGSOPTIMIERUNG André Müller, Johannes J. Schneider, Elmar Schömer BETRACHTETES PACKPROBLEM gegeben N = 5, 6,,50 harte Kugeln in Dimension d mit ganzzahligen Radien r i = 1,2,,N gesucht

Mehr

Automatische OpenCL-Code-Analyse zur Bestimmung von Speicherzugriffsmustern

Automatische OpenCL-Code-Analyse zur Bestimmung von Speicherzugriffsmustern Automatische OpenCL-Code-Analyse zur Bestimmung von Speicherzugriffsmustern Bachelorarbeit Moritz Lüdecke 8. Juli 2014 INSTITUT FÜR TECHNISCHE INFORMATIK - LEHRSTUHL FÜR RECHNERARCHITEKTUR UND PARALLELVERARBEITUNG

Mehr

Typ : void* aktuelle Parameter Pointer von beliebigem Typ

Typ : void* aktuelle Parameter Pointer von beliebigem Typ 2. Funktionen - Prototypvereinbarung typangabe funktionsname(parameterliste); - Funktionsdefinition typ funktionsname(parameterliste){ Anweisung - Funktionstyp -> Typ der Funktionswertes zulaessige Typangaben

Mehr

Speicherklassen (1) Lokale Variablen

Speicherklassen (1) Lokale Variablen Speicherklassen (1) Lokale Variablen Lokale Variablen beschränken sich auf die Funktionen, in denen sie definiert werden Sind in der Funktion gekapselt können also nur in der Funktion verändert werden

Mehr

Rheinisch-Westfälische Technische Hochschule Aachen. Seminararbeit

Rheinisch-Westfälische Technische Hochschule Aachen. Seminararbeit Rheinisch-Westfälische Technische Hochschule Aachen Seminararbeit Analyse von General Purpose Computation on Graphics Processing Units Bibliotheken in Bezug auf GPU-Hersteller. Gregori Kerber Matrikelnummer

Mehr

Multi-Core Architectures and Programming. Bilateral Grid Filter

Multi-Core Architectures and Programming. Bilateral Grid Filter Multi-Core Architectures and Programming Bilateral Grid Filter - Parallelisierung mit CUDA - C. Kugler und E. Sert Inhalt Motivation Bilateral Filter (Exkurs) Bilateral Grid Filter Portierung auf Grafikkarte

Mehr

Parallelisierungspotentiale mit CUDA-Streams 387

Parallelisierungspotentiale mit CUDA-Streams 387 CUDA-Streams 386 Bislang wurden überwiegend alle CUDA-Aktivitäten sequentiell durchgeführt, abgesehen davon, dass die Kernel-Funktionen parallelisiert abgearbeitet werden und der Aufruf eines Kernels asynchron

Mehr

Übersicht 1. Anzeigegeräte 2. Framebuffer 3. Grundlagen 3D Computergrafik 4. Polygongrafik, Z-Buffer 5. Texture-Mapping/Shading 6. GPU 7. Programmierbare Shader 1 LCD/TFT Technik Rotation der Licht-Polarisationsebene

Mehr

GPGPU Architectures - Compiler Techniques and Applications SS 2012

GPGPU Architectures - Compiler Techniques and Applications SS 2012 Seminar on GPGPU Architectures - Compiler Techniques and Applications SS 2012 Embedded Systems Group Department of Computer Science University of Kaiserslautern Preface The widespread use of so-called

Mehr

Programmiertechnik. Teil 4. C++ Funktionen: Prototypen Overloading Parameter. C++ Funktionen: Eigenschaften

Programmiertechnik. Teil 4. C++ Funktionen: Prototypen Overloading Parameter. C++ Funktionen: Eigenschaften Programmiertechnik Teil 4 C++ Funktionen: Prototypen Overloading Parameter C++ Funktionen: Eigenschaften Funktionen (Unterprogramme, Prozeduren) fassen Folgen von Anweisungen zusammen, die immer wieder

Mehr

Digital Image Interpolation with CUDA

Digital Image Interpolation with CUDA Digital Image Interpolation with CUDA Matthias Schwarz & Martin Rustler Hardware-Software-Co-Design Universität Erlangen-Nürnberg matthias.schwarz@e-technik.stud.uni-erlangen.de martin.rustler@e-technik.stud.uni-erlangen.de

Mehr

Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke,

Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke, Parallele Algorithmen mit OpenCL Universität Osnabrück, Henning Wenke, 2013-05-29 Kapitel Parallelität [1]: Parallel Programming (Rauber, Rünger, 2007) [2]: Algorithms Sequential & Parallel A Unified Approach

Mehr

Betriebssysteme. Tafelübung 4. Speicherverwaltung. Olaf Spinczyk.

Betriebssysteme. Tafelübung 4. Speicherverwaltung. Olaf Spinczyk. Betriebssysteme Tafelübung 4. Speicherverwaltung http://ess.cs.tu-dortmund.de/de/teaching/ss217/bs/ Olaf Spinczyk olaf.spinczyk@tu-dortmund.de http://ess.cs.tu-dortmund.de/~os AG Eingebettete Systemsoftware

Mehr

GPGPU-Architekturen CUDA CUDA Beispiel OpenCL OpenCL Beispiel. CUDA & OpenCL. Ralf Seidler. Friedrich-Alexander-Universität Erlangen-Nürnberg

GPGPU-Architekturen CUDA CUDA Beispiel OpenCL OpenCL Beispiel. CUDA & OpenCL. Ralf Seidler. Friedrich-Alexander-Universität Erlangen-Nürnberg CUDA und OpenCL Friedrich-Alexander-Universität Erlangen-Nürnberg 24. April 2012 Outline 1 GPGPU-Architekturen 2 CUDA 3 CUDA Beispiel 4 OpenCL 5 OpenCL Beispiel Outlook 1 GPGPU-Architekturen 2 CUDA 3 CUDA

Mehr

Betriebssysteme. Agenda. Tafelübung 4. Speicherverwaltung. Olaf Spinczyk.

Betriebssysteme. Agenda. Tafelübung 4. Speicherverwaltung. Olaf Spinczyk. Betriebssysteme Tafelübung 4. Speicherverwaltung http://ess.cs.tu-dortmund.de/de/teaching/ss217/bs/ Olaf Spinczyk olaf.spinczyk@tu-dortmund.de http://ess.cs.tu-dortmund.de/~os AG Eingebettete Systemsoftware

Mehr

2.6 Graphikprozessoren

2.6 Graphikprozessoren 12 2.6 Graphikprozessoren Peter Marwedel Informatik 12 TU Dortmund 2012/04/16 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken ist im Allgemeinen nicht erlaubt.

Mehr

Betriebssysteme. Tafelübung 4. Speicherverwaltung. Olaf Spinczyk.

Betriebssysteme. Tafelübung 4. Speicherverwaltung. Olaf Spinczyk. Betriebssysteme Tafelübung 4. Speicherverwaltung https://ess.cs.tu-dortmund.de/de/teaching/ss2018/bs/ Olaf Spinczyk olaf.spinczyk@tu-dortmund.de https://ess.cs.tu-dortmund.de/~os AG Eingebettete Systemsoftware

Mehr

Zum Aufwärmen nocheinmal grundlegende Tatsachen zum Rechnen mit reelen Zahlen auf dem Computer. Das Rechnen mit Gleitkommazahlen wird durch den IEEE

Zum Aufwärmen nocheinmal grundlegende Tatsachen zum Rechnen mit reelen Zahlen auf dem Computer. Das Rechnen mit Gleitkommazahlen wird durch den IEEE Zum Aufwärmen nocheinmal grundlegende Tatsachen zum Rechnen mit reelen Zahlen auf dem Computer. Das Rechnen mit Gleitkommazahlen wird durch den IEEE 754 Standard festgelegt. Es stehen sogenannte einfach

Mehr

2.6 Graphikprozessoren

2.6 Graphikprozessoren 12 2.6 Graphikprozessoren Peter Marwedel Informatik 12 TU Dortmund 2014 年 04 月 24 日 Diese Folien enthalten Graphiken mit Nutzungseinschränkungen. Das Kopieren der Graphiken ist im Allgemeinen nicht erlaubt.

Mehr

1 wsort - Datenstrukturen (1. Möglichkeit)

1 wsort - Datenstrukturen (1. Möglichkeit) U4 4. Übung U4 4. Übung Aufgabe 2: qsort - Fortsetzung Dynamische Speicherallokation Fehlerbehandlung Reloaded Infos zur Aufgabe 4: malloc-implementierung U4.1 U4-1 Aufgabe 2: Sortieren mittels qsort U4-1

Mehr

GPGPU mit NVIDIA CUDA

GPGPU mit NVIDIA CUDA 01.07.12 GPGPU mit NVIDIA CUDA General-Purpose on Formatvorlagecomputing des Graphics Processing durch Units Untertitelmasters mit KlickenCompute bearbeiten NVIDIA Unified Device Architecture Gliederung

Mehr

Grundlagen der OO- Programmierung in C#

Grundlagen der OO- Programmierung in C# Grundlagen der OO- Programmierung in C# Technische Grundlagen 1 Dr. Beatrice Amrhein Überblick Visual Studio: Editor und Debugging Die Datentypen Methoden in C# Die Speicherverwaltung 2 Visual Studio 3

Mehr

Lösung der zweidimensionalen Wirbeltransportgleichung auf NVIDIA Grafikkarten - Bachelorarbeit -

Lösung der zweidimensionalen Wirbeltransportgleichung auf NVIDIA Grafikkarten - Bachelorarbeit - Lösung der zweidimensionalen Wirbeltransportgleichung auf NVIDIA Grafikkarten - Bachelorarbeit - Seminar des Fachgebiets Optimierung bei partiellen Differentialgleichungen 13. Januar 2011 Gliederung 1

Mehr

2. Programmierung in C

2. Programmierung in C 2. Programmierung in C Inhalt: Überblick über Programmiersprachen, Allgemeines zur Sprache C C: Basisdatentypen, Variablen, Konstanten Operatoren, Ausdrücke und Anweisungen Kontrollstrukturen (Steuerfluss)

Mehr

Funktionen. mehrfach benötigte Programmteile nur einmal zu schreiben und mehrfach aufzurufen

Funktionen. mehrfach benötigte Programmteile nur einmal zu schreiben und mehrfach aufzurufen Funktionen Funktionen erlauben, dem Programmcode hierarchisch zu strukturieren ein Hauptprogramm steuert dabei die Abfolge von Schritten, die einzelnen Schritte können durch Funktionen realisiert werden

Mehr

Untersuchungen zur Abstraktion der GPU-Programmierung in Java am Beispiel Fluid-Simulation

Untersuchungen zur Abstraktion der GPU-Programmierung in Java am Beispiel Fluid-Simulation Masterarbeit Fakultät Informatik Untersuchungen zur Abstraktion der GPU-Programmierung in Java am Beispiel Fluid-Simulation Matthias Klaÿ Kleiberweg 4 86199 Augsburg Tel: 0821 431552 E-Mail: matthias.klass

Mehr

Kontrollfragen Mikrocontroller Programmiersprache C H1203 Felix Rohrer

Kontrollfragen Mikrocontroller Programmiersprache C H1203 Felix Rohrer Block 1 1. Welcher Wert hat w? int w = 034; 28 (Dezimal) 034 wird als Octal interpretiert 34oct = 28dec 2. Wie lauten die Ergebnisse? unsigned int a = 3, b = 5, c = 7; unsigned int x, y, z; x = a == 3;

Mehr

Physikalische Berechnungen mit General Purpose Graphics Processing Units (GPGPUs)

Physikalische Berechnungen mit General Purpose Graphics Processing Units (GPGPUs) Fakultätsname XYZ Fachrichtung XYZ Institutsname XYZ, Professur XYZ Physikalische Berechnungen mit General Purpose Graphics Processing Units (GPGPUs) im Rahmen des Proseminars Technische Informatik Juni

Mehr

Parallelisierung mit Hilfe grafischer Prozessoren 323

Parallelisierung mit Hilfe grafischer Prozessoren 323 Parallelisierung mit Hilfe grafischer Prozessoren 323 Schon sehr früh gab es diverse Grafik-Beschleuniger, die der normalen CPU Arbeit abnahmen. Die im März 2001 von Nvidia eingeführte GeForce 3 Series

Mehr

Interaktive Globale Beleuchtung nach dem Antiradiance-Verfahren mittels der Open Computing Language (OpenCL)

Interaktive Globale Beleuchtung nach dem Antiradiance-Verfahren mittels der Open Computing Language (OpenCL) Interaktive Globale Beleuchtung nach dem Antiradiance-Verfahren mittels der Open Computing Language (OpenCL) Verteidigung der Belegarbeit Andreas Stahl Zielstellung Globales Beleuchtungsverfahren für die

Mehr

Betriebssysteme Teil 3: Laufzeitsystem für Programme

Betriebssysteme Teil 3: Laufzeitsystem für Programme Betriebssysteme Teil 3: Laufzeitsystem für Programme 23.10.15 1 Literatur [3-1] Stack: http://fbim.fh-regensburg.de/~hab39652/pg1/skriptum/ ausdruecke/maschinenmodell.html [3-2] https://de.wikipedia.org/wiki/dynamischer_speicher

Mehr

C/C++-Programmierung

C/C++-Programmierung 1 C/C++-Programmierung Speicherverwaltung, 0, const Sebastian Hack Christoph Mallon (hack mallon)@cs.uni-sb.de Fachbereich Informatik Universität des Saarlandes Wintersemester 2009/2010 2 Speicherverwaltung

Mehr

Enblend - Portierung auf die GPU

Enblend - Portierung auf die GPU Multi-Core Architectures and Programming Enblend - Portierung auf die GPU Hardware/Software Co-Design September 25, 2009 1 Inhalt 1 Motivation 2 Enblend-Algorithmus 3 Beschleunigung mittels Cuda 4 Benchmark

Mehr

OpenCL. Multi-Core Architectures and Programming (Seminar) Apelt, Nicolas / Zöllner, Christian

OpenCL. Multi-Core Architectures and Programming (Seminar) Apelt, Nicolas / Zöllner, Christian OpenCL Multi-Core Architectures and Programming (Seminar) Apelt, Nicolas / Zöllner, Christian Hardware-Software-Co-Design Universität Erlangen-Nürnberg Apelt, Nicolas / Zöllner, Christian 1 Was ist OpenCL?

Mehr

Objekterkennung mit künstlichen neuronalen Netzen

Objekterkennung mit künstlichen neuronalen Netzen Objekterkennung mit künstlichen neuronalen Netzen Frank Hallas und Alexander Butiu Universität Erlangen Nürnberg, Lehrstuhl für Hardware/Software CoDesign Multicorearchitectures and Programming Seminar,

Mehr