Modul 4: IP und Subnetzbildung
|
|
|
- Melanie Brandt
- vor 9 Jahren
- Abrufe
Transkript
1 Modul 4: IP und Subnetzbildung 4.1 IPv4-Paket 4.2 Subnetzbildung Folie 1
2 Allgemeines IP ist ein verbindungsloser Nachrichtentransportdienst (ohne Fehlerkorrektur, ohne Empfangsbestätigung, ohne Sicherung der Reihenfolge der übertragenen Datenpakete und ohne eine spezielle Route festzulegen) Das IP Protokoll ist OSI Schicht 3 zuzuordnen, es definiert die IP Adressen und den Aufbau von IP Datenpaketen (Datagrammen) Folie 2
3 4.1 IPv4-Paket Folie 3
4 Aufbau IP-Header Version IHL TOS Gesamtlänge Priorität D T R C - Kennung Flags - DF MF Fragment Offset TTL Protokoll Kopfprüfsumme Absender IP-Adresse Empfänger IP-Adresse Optionen (falls gewünscht) Füllbits TCP-Header oder UDP-Header Nutzdaten (User Data) Folie 4
5 Aufbau des IP-Headers Version: zur Zeit 4, Version 6 wird eingeführt IHL: Internet-Header-Length, Länge in Einheiten zu 32 Bit-Oktetts (also 4 Bytes), normalerweise ist die IHL=5 (keine Optionen) ToS: Type of Service die ersten drei Bits geben den Prioritäten-Level an (0-7) -D: Anforderung low delay -T: Anforderung high throughput -R: Anforderung high reliability -C: Anforderung low cost Dieses Feld wird praktisch nicht mehr in dieser Weise benutzt, sondern dient der Definition von Quality-of-Service-Klassen bei Differentiated-Services Gesamtlänge: maximal = Bytes Folie 5
6 Aufbau des IP-Headers (Fortsetzung) Kennung: Flags: Fragment-Offset: TTL: Integerwert zur Identifizierung (Nummerierung) der einzelnen Fragmente eines Datagramms Steuerung der Fragmentierung DF=1 MF=1 do-not-fragment more-fragments-exist Position des Fragments im ursprünglichen Datagramm (modulo 8) wird vom Router dekrementiert; ist die vorgegebene Zeit abgelaufen, dann wird das Paket weggeworfen. Anmerkung: Historisch in Sekunden, daher TTL = Time-To-Live, heute keine Zeitangabe, sondern Hop-Zähler, d.h. Anzahl der Router auf dem Weg. (Standardstartwert= z.b. 64) Folie 6
7 Aufbau des IP-Headers (Fortsetzung) Protokoll: Wert zur Identifizierung des darüberliegenden Transportprotokolls 6=TCP 17=UDP Kopfprüfsumme: Optionen: Einfachstverfahren, nur für Kopffelder, um für den Router unnötig lange Bearbeitungszeiten zu vermeiden. Zur Unterstützung von Debugging-, Mess- und Sicherheitsfunktionen. z.b. Option 7: Router werden aufgefordert, ihre IP-Adresse im Optionsfeld zu hinterlegen. Folie 7
8 4.2 Adressierung Folie 8
9 IPv4 Adressen Darstellung der 32 Bit IP-Adresse durch 4 durch Punkte getrennte Dezimalzahlen (eine für jedes Byte) z.b =
10 Aufbau der IPv4-Internetadressen Adresslänge bei IPv4: 4 Byte bzw. 32 Bit Es gibt 2 32 = IPv4-Adressen; das ist zu wenig. Warum? IPv6: 128 Bit = = 3,4*10 38 IP-Adressen. Reicht das? Ursprüngliche Aufteilung der IP-Adresse in drei Teile: Klasse Netzadresse und Rechneradresse oder Hostadresse Beachte: Oft wird auch die Kombination aus Klasse + Netzadresse + Hostadresse 0 als Netzwerkadresse oder Netzwerk-Id bezeichnet. mit den Netzklassen A, B, C, D oder E. Frage: Wie könnte eine IP-Adresse (=32-Bit) in verschiedene Netzklassen aufgeteilt werden? Folie 10
11 Klassen von IPv4-Netzen Adressen der Klasse A: 1.Bit: Adressen der Klasse B: 1. und 2.Bit: Adressen der Klasse C Bit: Adressen der Klasse D: Bit: Adressen der Klasse E: Bit: "0" <Netzadresse (7 Bit)> <Rechneradresse (24 Bit)> "10" <Netzadresse (14 Bit)> <Rechneradresse (16 Bit)> "110" <Netzadresse (21 Bit)> < Rechneradresse (8 Bit)> "1110" <Multicastadresse (28 Bit)> "1111" + (28 Bit) für zukünftige Adressierung reserviert (28 Bit) Folie 11
12 Beispiel einer IP-Adresse der Klasse C Class C Schreibweisen: Netzadresse Rechneradresse in Bit-Schreibweise: / / / (unüblich!) in HexSchreibweise: C2 5F (unüblich!) übliche Schreibweise: Die Netzmaske gibt den Bereich der Netzadresse plus Klassenangabe an, dieser Bereich wird durch markiert (für das obige Beispiel ergibt sich dann: ) Folie 12
13 Frage: zu welchem Netz gehört die folgende IP-Adresse? Class C Setze Rechneradresse = 0 Netzadresse Rechneradresse Class C Netzadresse Rechneradresse Lösung: diese genannte IP-Adresse gehört zum Netz Folie 13
14 Ursprüngliche Einteilung der IP-Adressen in Klasse (1) Beispiel: Klasse A Netzmaske: Netzadresse:
15 Ursprüngliche Einteilung der IP-Adressen in Klasse (2) Beispiel: Klasse B Netzmaske: Netzadresse:
16 Ursprüngliche Einteilung der IP-Adressen in Klasse (3) Beispiel: Klasse C Netzmaske: Netzadresse:
17 Spezielle IPv4-Adressen Netzwerkadresse: Hostteil =0 (Bezeichnung eines bestimmten Netzes) Beispiel: "Das Netz " gerichtete Broadcast-Adresse: Hostteil = 1 Bits Beispiel: "Broadcast an alle Rechner im Netz " begrenzte Broadcast-Adresse: nur 1 Bits Beispiel: Loopback-Adresse: Netz-Präfix = 127 (üblicherweise mit Hostteil 1, für Testzwecke) Beispiel: Private IP-Netze "Broadcast an alle Rechner im lokalen Netz" "an den eigenen Rechner" priv. Netz der Klasse A priv. Netz der Klasse B (16 mögl.) priv. Netz der Klasse C (256 mögl.) Konventionen: Router erhalten als Hostteil die Adresse 1 Folie 17
18 CIDR Class Inter-Domain Routing Die Adressen wurden immer knapper und der verbleibende Adressraum sollte besser genutzt werden (siehe RFC 1518 und 1519) Der Adressraum sollte flexibler aufgeteilt werden Es sollten mehr als 3 Netzgrößen möglich sein Angegeben werden immer Netzadresse und Netzmaske (mit Anzahl der Netzadressenbits) Beispiel: /26 Eigentlich bezeichnet diese Adresse die Adresse eines Klasse A Netzes, aber mit CIDR enthält die Adresse selbst keinen Anhaltspunkt mehr auf die Größe des Netzadressbereichs! Daher ist zusätzlich die Angabe der Netzmaske notwendig.
19 4.3 Subnetzbildung Folie 19
20 Aufgabenstellung: Eine Firma, die eine IPv4 Adresse hat, kann entsprechend der Netzklasse eine bestimmte Anzahl von Benutzern mit IPv4 Adressen versorgen => Die IP Adressen aller Benutzer (und damit auch aller Abteilungen) liegen in einem Netz => Alle Broadcasts gehen an alle Benutzer!!! Ein Router benötigt pro Interface eine eigene Netzadresse, sonst können die Daten nicht richtig zugestellt werden d.h. die Broadcastdomäne einer Firma kann nicht mit Hilfe von Routern aufgeteilt werden... Oder doch? Ist es also sinnvoll, wenn eine Firma mehrere kleinere Adressbereiche also z.b. die Adressen mehrerer Klasse C-Netze erhält? Oder gibt es andere Möglichkeiten??? Folie 20
21 Konkretes Beispiel: Eine Firma mit 1000 Mitarbeitern hat eine Klasse B Netzadresse. Wie kann eine Broadcastdomäne mit 1000 Endgeräten vermieden werden? Was kann diese Firma tun, um ihr internes Netz zu strukturieren? Folie 21
22 Lösung: IP Subnetz-Bildung (1) Grundsätzliche Funktionsweise: Lokale Erweiterung der Netzadresse Bits, die zur Kodierung der Rechneradresse vorgesehen sind, werden lokal zur Adressierung von Teilnetzen verwendet => innerhalb eines großen Netzes können mehrere kleine Netze adressiert werden Andererseits: Die Anzahl der anschließbaren Rechner wird reduziert Die Teilnetze werden Subnetze genannt und haben verschiedene Sub-Netzadressen Die Interfaces der Router erhalten dadurch unterschiedliche Sub- Netzadressen und die Daten können eindeutig weitergeleitet werden Die organisatorischen Einheiten innerhalb einer Firma (z.b. entsprechend den verschiedenen Abteilungen) können auf die Subnetze abgebildet werden (d.h. jede Abteilung kann ein Subnetz mit eigener Subnetzadresse erhalten) Folie 22
23 Lösung: IP Subnetz-Bildung (2) Definition eines Subnetzes durch eine Subnetz-Maske, wobei die Subnetzmaske die Bits der Netzadresse inklusive der Erweiterung anzeigt Die Subnetzmaske entspricht in Ihrer Funktionsweise der ursprünglichen Netzmaske Hinweis: Rechner, die direkt oder über Schicht 1 oder über Schicht 2 Komponenten verbunden werden, müssen im selben Subnetz liegen! Folie 23
24 Beispiel: Ein Klasse B Netz mit hat die IPv4 Adresse: Die ursprüngliche Netzmaske dafür lautet: Bits werden für die Subnetzadressierung verwendet d.h. es können bis zu 16 Subnetze gebildet werden Die Subnetzmaske lautet dann = /20 (= ) IP-Adresse: (= ) Lokale Interpretation: Rechner Nr. 4 im Subnetz Folie 24
25 Anwendungsbeispiel (1) Firma XYZ hat eine Klasse C Adresse mit der Netzadresse: ( ) Die ursprüngliche Netzmaske lautet: ( ) Dazu gehört die Broadcast-Adresse: ( ) Der 1. Rechner hat die Adresse: und der letzte Rechner hat die Adresse: Folie 25
26 Anwendungsbeispiel (2) In der Firma XYZ gibt es 5 Abteilungen: (z.b. Entwicklung, Marketing, Produktion,Vertrieb und Verwaltung...) Die IP-Adressen jeder Abteilung sollen ein gemeinsames Merkmal haben d.h. irgendwie gekennzeichnet sein. Lösung: Jede Abteilung erhält eine eigene Subnetzadresse. Für die Adressierung von 5 Netzen werden 3 Bit benötigt Welche Subnetzmaske ergibt sich bei dieser Subnetzbildung? Die Subnetzmaske lautet: ( ) Folie 26
27 Anwendungsbeispiel (3) Die Subnetzmaske lautet: Bit des Rechneradresseraums werden für eine Erweiterung der Netzadresse verwendet Wie lauten die Subnetzadressen der Abteilungen? Die Abteilungen erhalten die folgenden Adressen: = = = = = Folie 27
28 Anwendungsbeispiel (4) Alle Subnetze haben die gleiche Subnetzmaske Jedes Subnetz hat eine eigene Subnetzadresse UND eine eigene Broadcastadresse Pro Abteilung bleiben 5 Bits für die Adressierung der Rechner => 2 5 = 32 Zustände Aber: der Zustand ist bereits für die Netzadresse verwendet und der Zustand für die Broadcast- Adresse => es können = 30 Rechner pro Abteilung adressiert werden. Welche beiden Randbedingungen sind grundsätzlich bei einer Subnetzbildung zu beachten? Die Anzahl der benötigen Subnetze UND die Anzahl der Rechner im größten Subnetz! Folie 28
29 Anwendungsbeispiel (5) IP-Adresse der 1. Abteilung: = mit der Broadcast-Adresse: = IP-Adresse der 2. Abteilung: = mit der Broadcast-Adresse: = IP-Adresse der 3. Abteilung: = mit der Broadcast-Adresse: = IP-Adresse der 4. Abteilung: = mit der Broadcast-Adresse: = IP-Adresse der 5. Abteilung: = mit der Broadcast-Adresse: = Folie 29
30 Weiteres Anwendungsbeispiel: Eine große Firma hat eine Klasse A Netzadresse ( z.b ) Diese Firma hat 100 verschiedene Standorte mit jeweils ca. 10 Abteilungen Wie würden Sie in diesem Fall vorgehen? Folie 30
Prof. Dr. Kerstin Uhde Hochleistungsnetze u. Mobilkommunikation. Hochschule Bonn-Rhein-Sieg. Modul 4: IPv4
Modul 4: IPv4 4.1 IPv4-Adressierung 4.2 IPv4-Paket 4.3 Subnetzbildung 4.4 Address Resolution Protocol (ARP) 4.5 Internet Control Message Protocol (ICMP) Folie 1 Allgemeines IP ist ein verbindungsloser
Adressierung eines Kommunikationspartners in der TCP/IP-Familie
Adressierung eines Kommunikationspartners in der TCP/IP-Familie! Wenn Daten geroutet werden, müssen sie: 1. zu einem bestimmten Netzwerk 2. zu einem bestimmten Host in diesem Netzwerk 3. zu einem bestimmten
Hochschule Bonn-Rhein-Sieg. Prof. Dr. Kerstin Uhde Hochleistungsnetze u. Mobilkommunikation. Modul 5: IPv6. Netze, BCS, 2.
Modul 5: IPv6 Folie 1 IPv6 Motivation: Adressknappheit durch starkes Abwachsen des Internet (abgemildert durch verschiedene kurzfristige Lösungsansätze) in wesentlichen Teilen seit 1998 standardisiert
Lösung von Übungsblatt 10. (Router, Layer-3-Switch, Gateway)
Lösung von Übungsblatt 10 Aufgabe 1 (Router, Layer-3-Switch, Gateway) 1. Welchen Zweck haben Router in Computernetzen? (Erklären Sie auch den Unterschied zu Layer-3-Switches.) Router verbinden logische
2.1 Adressierung im Internet
2.1 Adressierung im Internet Netzwerkadressen IPv4 4 Byte-Namen 32 Bit (IPv4) Adresse 128.10.2.30 besteht aus 4 Oktetts Schreibweise ist dotted dezimal Jedes Oktett entspricht einem Byte (0-255) 10000000.00001010.000000010.00011110
Lösung von Übungsblatt 10. (Router, Layer-3-Switch, Gateway)
Lösung von Übungsblatt 10 Aufgabe 1 (Router, Layer-3-Switch, Gateway) 1. Welchen Zweck haben Router in Computernetzen? (Erklären Sie auch den Unterschied zu Layer-3-Switches.) Router verbinden logische
2.1 Adressierung im Internet
2.1 Adressierung im Internet Netzwerkadressen IPv4 4 Byte-Namen 32 Bit (IPv4) Adresse 128.10.2.30 besteht aus 4 Oktetts Schreibweise ist dotted dezimal Jedes Oktett entspricht einem Byte (0-255) 10000000.00001010.000000010.00011110
Vermittlungsschicht im Internet - Bsp. Forschungseinrichtungen DFN als Provider für Hochschulen und Universitäten Kopplung von Providernetzen zum
Vermittlungsschicht im Internet - Bsp. Forschungseinrichtungen DFN als Provider für Hochschulen und Universitäten Kopplung von Providernetzen zum Internet - IP definiert Regeln, wie Pakete von Sender zum
Übungsblatt 4. (Router, Layer-3-Switch, Gateway) Aufgabe 2 (Kollisionsdomäne, Broadcast- Domäne)
Übungsblatt 4 Aufgabe 1 (Router, Layer-3-Switch, Gateway) 1. Welchen Zweck haben Router in Computernetzen? (Erklären Sie auch den Unterschied zu Layer-3-Switches.) 2. Welchen Zweck haben Layer-3-Switches
Übungsblatt 10. (Router, Layer-3-Switch, Gateway) Aufgabe 2 (Adressierung in der Vermittlungsschicht)
Übungsblatt 10 Aufgabe 1 (Router, Layer-3-Switch, Gateway) 1. Welchen Zweck haben Router in Computernetzen? (Erklären Sie auch den Unterschied zu Layer-3-Switches.) 2. Welchen Zweck haben Layer-3-Switches
Der Internet Layer. Internet layer/ip. Internet Protocol (IP) Internet Control Message Protocol (ICMP) Routing Information Protocol (RIP)
Der Internet Layer Internet Protocol (IP) Internet Control Message Protocol (ICMP) Routing Information Protocol (RIP) Open Shortest Path First Protocol (OSPF) Address Resolution Protocol (ARP) Reverse
IP (Internet Protocol)
IP (Internet Protocol) Einführung Das Internet Protokoll ist auf der Schicht 3 des OSI-Referenzmodells angesiedelt. Diese Schicht heißt Vermittlungsschicht. Dies ist auch die Aufgabe von IP. IP hat eine
Übungsblatt 4. (Router, Layer-3-Switch, Gateway) Aufgabe 2 (Kollisionsdomäne, Broadcast- Domäne)
Übungsblatt 4 Aufgabe 1 (Router, Layer-3-Switch, Gateway) 1. Welchen Zweck haben Router in Computernetzen? (Erklären Sie auch den Unterschied zu Layer-3-Switches.) 2. Welchen Zweck haben Layer-3-Switches
Kommunikationsnetze. Praxis Internet. Version 4.0
Kommunikationsnetze Praxis Internet Michael Rotert E-Mail: [email protected] Version 4.0 Inhalt Einführung (Teil 1) Lokale Netze (LAN) Topologie, Komponenten Ethernet Punkt-zu-Punkt über Ethernet Virtuelle
Referat über IP-Adressen
Klasse: SIT04 Datum: 25. August 2002 Referat über IP-Adressen Vergabe, Aufbau, Netzklassen, Einfache Subnetze Von : Günter Peters, Nicolai Schwan Lehrer: Herr Titsch Note: Inhaltsverzeichnis IP-Adressen
Netzwerkprotokolle. Physikalische Verbindungsebene Datenübertragungsebene
TCP/IP-Familie Netzwerkprotokolle Protokoll Verfahrensvorschrift Der komplexe Vorgang der Kommunikation wird im Netzwerk auf mehrere aufeinander aufbauende Schichten verteilt, wobei es neben dem OSI-Modell
9. Vorlesung Netzwerke
Dr. Christian Baun 9. Vorlesung Netzwerke Hochschule Darmstadt SS2012 1/48 9. Vorlesung Netzwerke Dr. Christian Baun Hochschule Darmstadt Fachbereich Informatik [email protected] Dr. Christian Baun
2.1 Adressierung im Internet
2.1 Adressierung im Internet Netzwerkadressen IPv4 4 Byte-Namen 32 Bit (IPv4) Adresse 128.10.2.30 besteht aus 4 Oktetts Schreibweise ist dotted dezimal Jedes Oktett entspricht einem Byte (0-255) 10000000.00001010.000000010.00011110
Internetprotokoll und Adressvergabe
Seminar: Internet Protokoll Internetprotokoll und Adressvergabe Autoren: Elmar Berghöfer Sebastian Gieselmann Übersicht Allgemeines Adressierung Paketmodell Header Probleme & Problemlösungen Quellen Internet
Vorlesung: Netzwerke (TK) WS 2009/10 Input für Praktikum: Versuch Nr. 2 IP-Netze / Router und Subnetting
Vorlesung: Netzwerke (TK) WS 2009/10 Input für Praktikum: Versuch Nr. 2 IP-Netze / Router und Subnetting Prof. Dr. Michael Massoth [Stand: 09.11.2009] 7-1 Problem: Adressierung 7-2 7-2 MAC-Adresse (Erinnerung)
IP Internet Protokoll
IP Internet Protokoll Adressierung und Routing fürs Internet von Stephan Senn Inhalt Orientierung: Die Netzwerkschicht (1min) Aufgabe des Internet Protokolls (1min) Header eines Datenpakets (1min) Fragmentierung
Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2018
Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2018 Übungsblatt 7 4. Juni 8. Juni 2018 Hinweis: Mit * gekennzeichnete Teilaufgaben sind ohne Lösung vorhergehender Teilaufgaben lösbar. Aufgabe
Gruppen Di-T14 / Mi-T25
Gruppen Di-T14 / Mi-T25 Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (SS 16) Michael Schwarz Institut für Informatik Technische Universität München 31.05 / 01.06.2016 1/2 Subnetting IPv6
IPv4 - Internetwork Protocol
IPv4 - Internetwork Protocol Connectionless Pakete werden abgeschickt, eine Bestätigung erfolgt NICHT! Networklayer Erfüllt die Aufgaben der 3. ISO-Schicht Aufbau # Bits Abkürzung Inhalt 4 Vers Version
Rechnernetze Übung 8 15/06/2011. Schicht 7 Schicht 6 Schicht 5 Schicht 4 Schicht 3 Schicht 2 Schicht 1. Switch. Repeater
Rechnernetze Übung 8 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Juni 2011 Schicht 7 Schicht 6 Schicht 5 Schicht 4 Schicht 3 Schicht 2 Schicht 1 Repeater Switch 1 Keine Adressen 6Byte
Von PetA. Datum 25.8.2006 Version 1.0 PetA
Von Vorwort: Dieses Dokument befasst sich im Großteil mit den Internet Adressen von IPv4. Zum Schluss wird noch kurz auf IPv6 Adressen eingegangen. Um alles richtig verstehen zu können, muss man sich mit
Rechnernetze I SS Universität Siegen Tel.: 0271/ , Büro: H-B Stand: 18.
Rechnernetze I SS 2013 Universität Siegen [email protected] Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 18. Juli 2013 Betriebssysteme / verteilte Systeme Rechnernetze I (1/13) i Rechnernetze
IP-Adressen und Ports
IP-Adressen und Ports Eine Einführung Tina Umlandt Universität Hamburg 2. August 2011 Überblick Präsentationsablauf 1 IP = Internetwork protocol Schematische Darstellung über die Layer IP-Datenpaket (IPv4)
HBF IT-Systeme. BBU-NPA Übung 4 Stand: 27.10.2010
BBU-NPA Übung 4 Stand: 27.10.2010 Zeit Laborübung 90 min IP-Adressierung und e Aufbau einer IP-Adresse Jeder Rechner in einem Netzwerk muß eine eindeutige IP-Adresse besitzen. Die IP-Adresse von IPv4 ist
Peer-to-Peer- Netzwerke
Peer-to-Peer- Netzwerke Christian Schindelhauer Sommersemester 2006 2. Vorlesung 27.04.2006 [email protected] 1 Organisation Web-Seite http://cone.informatik.uni-freiburg.de/ teaching/vorlesung/peer-to-peer-s96/
Verbindungslose Netzwerk-Protokolle
Adressierung Lokales Netz jede Station kennt jede Pakete können direkt zugestellt werden Hierarchisches Netz jede Station kennt jede im lokalen Bereich Pakete können lokal direkt zugestellt werden Pakete
Übung 7. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T1 / Di-T11 SS 2016) Dennis Fischer
Übung 7 Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T1 / Di-T11 SS 2016) Dennis Fischer Technische Universität München Fakultät für Informatik 06.06.2016 / 07.06.2016 1/7 Aufgabe
Die IP-Adressierung. IP-Adresse Netz- / Hostadressteil Einteilung der Adressen Subnetting Arbeit des Routers Fragmentierung IPv6
Die IP-Adressierung IP-Adresse Netz- / Hostadressteil Einteilung der Adressen Subnetting Arbeit des Routers Fragmentierung IPv6 1 Post-Adresse / IP-Adresse Post-Paket IP-Paket 193.135.244.14 Herr Hans
Version: Das Versionsfeld gibt an ob es sich um IPv4 oder um IPv6 handelt.
Folie 1 Folie 2 Folie 3 Version: Das Versionsfeld gibt an ob es sich um IPv4 oder um IPv6 handelt. IHL (IP Header Length) Im IHL-Feld wird ein vielfaches von 32 Bit angegeben. Die Summe gibt die Größe
Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2017
Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2017 Übungsblatt 7 19. Juni 23. Juni 2017 Hinweis: Mit * gekennzeichnete Teilaufgaben sind ohne Lösung vorhergehender Teilaufgaben lösbar. Aufgabe
Institut für Informatik der Ludwig-Maximilians-Universität München Prof. Dr. D. Kranzlmüller, Dr. N. gentschen Felde. Probeklausur
Institut für Informatik der Ludwig-Maximilians-Universität München Prof. Dr. D. Kranzlmüller, Dr. N. gentschen Felde Probeklausur Rechnernetze und verteilte Systeme Teilnehmerdaten bitte gleich zu Beginn
IPv4- und IPv6 Header Analyse und Vergleich
IPv4- und IPv6 Header Analyse und Vergleich Von Jan Arends EPRO WS 13/14 Das neue Internetprotokoll 01/27/2019 IPv4- und IPv6 Header 1 Agenda Analyse des IPv4 Headers Analyse des IPv6 Headers mit vergleich
Internetanwendungstechnik (Übung)
Internetanwendungstechnik (Übung) IPv6 Stefan Bissell, Gero Mühl Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Kommunikations- und Betriebssysteme (KBS) Einsteinufer 17, Sekr.
7. Foliensatz Computernetze
Prof. Dr. Christian Baun 7. Foliensatz Computernetze Frankfurt University of Applied Sciences WS1718 1/50 7. Foliensatz Computernetze Prof. Dr. Christian Baun Frankfurt University of Applied Sciences (1971
Thema IPv6. Geschichte von IPv6
Geschichte von IPv6 IPv6 ist der Nachfolger des aktuellen Internet Protokolls IPv4, welches für die Übertragung von Daten im Internet zuständig ist. Schon Anfang der 90er Jahre wurde klar, dass die Anzahl
10.Vorlesung Grundlagen der Informatik
Dr. Christian Baun 10.Vorlesung Grundlagen der Informatik Hochschule Darmstadt WS1112 1/40 10.Vorlesung Grundlagen der Informatik Dr. Christian Baun Hochschule Darmstadt Fachbereich Informatik [email protected]
Vernetzte Systeme Network Layer Vermittlungsschicht Schicht 3 Netzwerk Schicht
Network Layer Vermittlungsschicht Schicht 3 Netzwerk Schicht Vorüberlegungen: Die Aufgabe der Netzwerkschicht ist die Wegefindung (Routing). OSI- Schichtenmodell. Exemplarisch wollen wir dies mit Hilfe
Das Internet-Protocol. Aufteilung von Octets. IP-Adressformat. Class-A Netzwerke. Konventionen für Hostadressen
Das Internet-Protocol Das Internet Protocol (IP) geht auf das Jahr 1974 zurück und ist die Basis zur Vernetzung von Millionen Computern und Geräten weltweit. Bekannte Protokolle auf dem Internet Protokoll
IP-Adressen und Subnetze
IP-Adressen und Subnetze 1 Die IP Adressstruktur Die IP-Adresse dient zur eindeutigen Identifizierung eines Rechners im Netzwerk ( Internet und Intranet ). Eine IP-Adresse hat immer folgende Struktur :
Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 6 (27. Mai 31. Mai 2013)
Technische Universität München Lehrstuhl Informatik VIII Prof. Dr.-Ing. Georg Carle Dipl.-Ing. Stephan Günther, M.Sc. Nadine Herold, M.Sc. Dipl.-Inf. Stephan Posselt Tutorübung zur Vorlesung Grundlagen
Abschlussklausur. Netzwerke. 13. Juli Legen Sie bitte Ihren Lichtbildausweis und Ihren Studentenausweis bereit.
Abschlussklausur Netzwerke 13. Juli 2012 Name: Vorname: Matrikelnummer: Studiengang: Hinweise: Tragen Sie zuerst auf allen Blättern (einschlieÿlich des Deckblattes) Ihren Namen, Ihren Vornamen und Ihre
Erkenntnisleitende Fragestellungen zu CIDR, VLSM, Subnetting und Netzgrundlagen
Erkenntnisleitende Fragestellungen zu CIDR, VLSM, Subnetting und Netzgrundlagen 1 Was stellt die Schlüsselfunktion der Vermittlungsschichtprotokolle dar? 2 Welche IP Version verwenden wir noch? 3 Welche
Internet Protokoll (IP) und network adresses
Patrick Mai / Sebastian Elsner Internetprotokolle / Internetprotokoll (IP) 1 / 56 Internet Protokoll (IP) und network adresses Seminar Internet-Protokolle November 2002 Patrick Mai / Sebastian Elsner [email protected]
2 Konfiguration des Netzwerks
2 Konfiguration des Netzwerks In diesem Kapitel lernen Sie denaufbauvonip-adressenkennenfürdieip-versionen4und6(lpi1:109.1). die Vermittlung (Routing) von IP-Paketen kennen(lpi 1: 109.2). Netzwerkkarten
Domain Name Service (DNS)
Domain Name Service (DNS) Aufgabe: den numerischen IP-Adressen werden symbolische Namen zugeordnet Beispiel: 194.94.127.196 = www.w-hs.de Spezielle Server (Name-Server, DNS) für Listen mit IP-Adressen
Grundlagen der Rechnernetze. Internetworking
Grundlagen der Rechnernetze Internetworking Übersicht Grundlegende Konzepte Internet Routing Limitierter Adressbereich SS 2012 Grundlagen der Rechnernetze Internetworking 2 Grundlegende Konzepte SS 2012
Kurzeinführung in TCP/IP. Sebastian Drexler 21.06.2004
Kurzeinführung in TCP/IP Sebastian Drexler 21.06.2004 Überblick Historisches TCP/IP-Referenzmodell Transportschichtprotokolle TCP UDP Internetschichtprotokolle IPv4 ICMP ARP und RARP Zusammenfassung 21.06.2004
IP-Adresse und Netzmaske:
IP-Adresse und Netzmaske: 1.) Gehört 134.169.34.218 in das Netz 134.169.34.192/26? Antwort: Wir sehen eine Netzmaske der Größe 26 (das ist das Zeichen /26). Das soll heißen: Das Netzwerk hat eine 26 Bit
Adressen im Internet (Wdh.)
Subnetze und Routen Subnetze werden benötigt, um die nutzbaren IP-Adressen weiter zu strukturieren. Die Diskriminierung erfolgt über die Netzmaske. Zwischen Subnetzen muss per Gateway bzw. Router vermittelt
Systeme II 4. Die Vermittlungsschicht
Systeme II 4. Die Vermittlungsschicht Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Version 07.06.2016 1 Adressierung und Hierarchisches Routing
Prof. Dr. R. Sethmann Übungen: Datum: Rechnernetze und Telekommunikation
Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 Σ Punkte 10 10 10 10 10 50 20 10 20 10 20 20 200 erreichte Pkt. Name: Semester: Matrikel-Nr.: Bitte beachten Sie: Schreiben Sie Ihren Namen, Semester und Matrikel-Nr.
Netzwerke Teil 7: TCP/IP - Teil I
Netzwerke Teil 7: TCP/IP - Teil I 16.10.13 1 Übersicht Geschichte des Internets Internet-Protokoll (IP) Transportprotokolle TCP und UDP 2 Geschichte des Internets (Auszug) I 1969 4 Hosts 1971 ARPANET 1972
Kommunikationsnetzwerke
Kommunikationsnetzwerke Subnets Holger Wache SS 2007 Die sieben Ebenen des OSI Modell zur Beschreibung der einzelnen Netzwerkschichten 7 Schichten von Kabel bis Applikation Wird selten voll ausgeführt
Internet Protokoll. Die Funktionen von IP umfassen:
Internet Protokoll Das Internet Protocol (IP) stellt die Basisdienste für die Übermittlung von Daten in TCP/IP Netzen bereit und ist im RFC 791 spezifiziert. Hauptaufgaben des Internet Protokolls sind
Technische Grundlagen
Technische Grundlagen Allgemeines über Computernetze Die Beschreibung der Kommunikation in Computernetzwerken erfolgt in der Regel über Standards. Das Ziel aller Standardisierungsbemühungen sind offene
Vorlesung SS 2001: Sicherheit in offenen Netzen
Vorlesung SS 2001: Sicherheit in offenen Netzen 2.7 Internet Protocol Next Generation - IPv6 Prof. Dr. Christoph Meinel Informatik, Universität Trier & Institut für Telematik, Trier Prof. Dr. sc. nat.
Beispiel TCP-/IP-Datenübertragung
TCP/IP Beispiel TCP-/IP-Datenübertragung Einfach mal Sniffen (im Raum LAN/Filius) --> Installieren Sie das Programm WireShark http://www.wireshark.org/ Lauschen Sie Ihre Netzwerkkarte aus! (10 Sek) Vorsicht!
Vorlesung SS 2001: Sicherheit in offenen Netzen
Vorlesung SS 2001: Sicherheit in offenen Netzen 2.1 Internet Protocol - IP Prof. Dr. Christoph Meinel Informatik, Universität Trier & Institut für Telematik, Trier Prof. Dr. sc. nat. Christoph Meinel,
IPv6 Zusammenfassung. 24. März
IPv6 Zusammenfassung 24. März 2009 Das IPv6 ist der Nachfolger der gegenwärtigen Version 4 des Internet Protokolls. Beide Protokolle sind Standards für die Vermittlungsschicht des OSI Modells und regeln
CCNA Exploration Network Fundamentals. Chapter 6 Subnetze
CCNA Exploration Network Fundamentals Chapter 6 Subnetze Chapter 6: Zu erwerbende Kenntnisse Wissen über: Rechnen / Umrechnen im binären Zahlensystem Strukturteile einer IP-Adresse Spezielle IPv4-Adressen
Praktikum Rechnernetze Aufgabe 3: Messung mit dem Protokollanalyzer
Praktikum Rechnernetze Aufgabe 3: Messung mit dem Protokollanalyzer 16. Mai 2001 Niels-Peter de Witt Matrikelnr. 2083921 Karsten Wolke Matrikelnr. 2083967 Helge Janicke Matrikelnr. 2083973 1 Rechnernetze
Rechnernetze I SS 2014. Universität Siegen [email protected] Tel.: 0271/740-4050, Büro: H-B 8404. Stand: 3.
Rechnernetze I SS 2014 Universität Siegen [email protected] Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 3. Juli 2014 Betriebssysteme / verteilte Systeme Rechnernetze I (1/10) i Rechnernetze
Computernetzwerke. Von den Grundlagen zur Funktion und Anwendung. von Rüdiger Schreiner. 2., überarbeitete Auflage. Hanser München 2007
Computernetzwerke Von den Grundlagen zur Funktion und Anwendung von Rüdiger Schreiner 2, überarbeitete Auflage Hanser München 2007 Verlag CH Beck im Internet: wwwbeckde ISBN 978 3 446 41030 5 Zu Inhaltsverzeichnis
Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2017
Grundlagen Rechnernetze und Verteilte Systeme IN0010, SoSe 2017 Übungsblatt 8 26. Juni 30. Juni 2017 Hinweis: Mit * gekennzeichnete Teilaufgaben sind ohne Lösung vorhergehender Teilaufgaben lösbar. Aufgabe
Konsequenz für Forwarding Tabellen
Konsequenz für Forwarding Tabellen Subnetznummer : 128. 96. 34. 0 Subnetzmaske : 255.255.255.128 128. 96. 34. 15 H1 128. 96. 34. 1 128. 96. 34.130 R1 Interface 1 Interface 2 128. 96. 34.128 255.255.255.128
Abschlussklausur. Computernetze. 14. Februar Legen Sie bitte Ihren Lichtbildausweis und Ihren Studentenausweis bereit.
Abschlussklausur Computernetze 14. Februar 2014 Name: Vorname: Matrikelnummer: Tragen Sie auf allen Blättern (einschlieÿlich des Deckblatts) Ihren Namen, Vornamen und Ihre Matrikelnummer ein. Schreiben
10. Foliensatz Betriebssysteme und Rechnernetze
Prof. Dr. Christian Baun 10. Foliensatz Betriebssysteme und Rechnernetze FRA-UAS SS2018 1/48 10. Foliensatz Betriebssysteme und Rechnernetze Prof. Dr. Christian Baun Frankfurt University of Applied Sciences
SUBNETTING & SUPERNETTING
SUBNETTING & SUPERNETTING Subnetting & Supernetting SUBNETTING 2 Theorie 2 Warum Subnetting? 2 Wie funktioniert Subnetting? 3 Schreibweise von IP-Adresse und Subnetzmaske 4 Aufbau einer IP Adresse 4 Classful
Themenschwerpunkt: Rechnernetze und Netzwerkdesign
Themenschwerpunkt: Rechnernetze und Netzwerkdesign Aufgabe 1: Nennen Sie den wesentlichen Vorteil eines Netzwerkes mit Bus-Topologie? Lösung: Wesentlicher Vorteil der Bus-Topologie ist der geringe Verkabelungsaufwand
Übersicht. Geschichte des Internets Internet-Protokoll (IP) Transportprotokolle TCP und UDP. Netzwerke WS 2013/14 - Teil 7/TCP-IP I
Übersicht Geschichte des Internets Internet-Protokoll (IP) Transportprotokolle TCP und UDP 2 Geschichte des Internets (Auszug) I 1969 4 Hosts 1971 ARPANET 1972 Telnet 1973 FTP (File Transfer Protocol)
Was bringt die Zukunft
Was bringt die Zukunft Alles, was erfunden werden kann, wurde bereits erfunden. Charles Duell, Chef des amerikanischen Patentamtes, 1899 Ich denke, dass es einen Weltmarkt für vielleicht fünf Computer
Thema: Internet Protokoll Version 6 IPv6 (IPng)
Thema: Internet Protokoll Version 6 IPv6 (IPng) Gliederung 1. Wozu IPv6? 2.Geschichte von IPv6 3.IPv4 Header 4. IPv6 Header 5.IPv4 vs. IPv6 6. IPv6 Adresstypen 7. Sicherheit von IPv6 8. Migration von IPv4
Tele-Prof II als Router betreiben. IP-Adresse
Tele-Prof II als Router betreiben Wollen Sie TELE-Prof II als Router betreiben, so ist etwas Grundkenntnis über, Subnetmask und Gateway erforderlich. In den folgenden Zeilen eine kurze Erklärung. IP-Adresse
Netzwerke. Teil 4. Adressierung und. Netzwerkklassen 11.09.2011. BLS Greifswald. Netzwerk-Adressierung (1)
Netzwerke Teil 4 Adressierung und Netzwerkklassen 11.09.2011 BLS Greifswald Folie 1/26 Netzwerk-Adressierung (1) Ein Protokoll der Netzwerkschicht muss grundsätzlich gewährleisten, das jeder Knoten mit
Grundlagen der Rechnernetze. Internetworking
Grundlagen der Rechnernetze Internetworking Übersicht Grundlegende Konzepte Internet Routing Limitierter Adressbereich SS 2012 Grundlagen der Rechnernetze Internetworking 2 Grundlegende Konzepte SS 2012
Einführung in IP, ARP, Routing. Wap WS02/03 Ploner, Zaunbauer
Einführung in IP, ARP, Routing Wap WS02/03 Ploner, Zaunbauer - 1 - Netzwerkkomponenten o Layer 3 o Router o Layer 2 o Bridge, Switch o Layer1 o Repeater o Hub - 2 - Layer 3 Adressierung Anforderungen o
Hochgeschwindigkeitsnetze Teil A - IP Networking
Fachhochschule Würzburg-Schweinfurt Sommersemester 2008 Prüfung im Fach Hochgeschwindigkeitsnetze Teil A - IP Networking (Prof. Dr.-Ing. Ludwig Eckert) Datum: 22.07.2008, 11.00 Uhr, Raum 5103 Dauer: 30
PROJEKTIEREN DER HW UND DER VERBINDUNGEN...
Inhaltsverzeichnis 1 PROJEKTIEREN DER HW UND DER VERBINDUNGEN... 2 1.1 KONFIGURATION DER HW... 2 1.2 KONFIGURATION DER VERBINDUNGEN... 3 1.2.1 Konfiguration UDP- Verbindung...3 1.2.2 Konfiguration TCP
Überblick. Fragmentierung IPv4. IPv6. Aufbau ICMP Adress Auflösung
Überblick Fragmentierung IPv4 Aufbau ICMP Adress Auflösung IPv6 TCP/IP Referenzmodell Das Internet Kommunikation im Internet Versenden von Paketen mit maximaler Größe von 65k möglich Durchschnittlich 1500
Themen. Transportschicht. Internet TCP/UDP. Stefan Szalowski Rechnernetze Transportschicht
Themen Transportschicht Internet TCP/UDP Transportschicht Schicht 4 des OSI-Modells Schicht 3 des TCP/IP-Modells Aufgaben / Dienste: Kommunikation von Anwendungsprogrammen über ein Netzwerk Aufteilung
Adressierung und Routing
Adressierung und Routing Dr. Hannes P. Lubich Bank Julius Bär Zürich IP Next Generation - Adressierung und Routing (1) Eckpunkte der Adressierungsarchitektur Adresse bezeichnet ein Interface eindeutig
Internetprotokoll TCP / IP
Internetprotokoll TCP / IP Inhaltsverzeichnis TCP / IP - ALLGEMEIN... 2 TRANSPORTPROTOKOLLE IM VERGLEICH... 2 TCP / IP EIGENSCHAFTEN... 2 DARPA MODELL... 3 DIE AUFGABEN DER EINZELNEN DIENSTE / PROTOKOLLE...
Kontrollfragen Die nötigen Netzwerkgrundlagen
Kontrollfragen Die nötigen Netzwerkgrundlagen ISO/OSI Referenzmodell Ordnung muss sein... Das ISO/OSI-Referenzmodell besteht bekanntlich aus sieben unterschiedlichen Schichten. Welche der offerierten Varianten
07 - Arbeitsunterlagen
07 - Arbeitsunterlagen DVT GK12.2 2016 IP-Adressen und Netzmasken 0 Strukturierte Phase 1. Teil Arbeitsauftrag Stammgruppe Aufgabe I: Ordnen Sie sich einer Stammgruppe von 3 Personen zu. Die Mitglieder
