Technische Informatik II

Größe: px
Ab Seite anzeigen:

Download "Technische Informatik II"

Transkript

1 Technische Informatik II Übung 3 Beispiellösung Aufgabe 1: Interrupt-System a. Eine bestimmte CPU führe beim Auftreten eines Interrupts folgende Aktionen aus: Sichern der Rücksprungadresse (alter Inhalt des Programmzählers) Sichern des Programmstatusworts (alter Inhalt des PSW-Registers) Sichern von weiteren 16 Registerinhalten (allgemeine Register) Jede Sicherung eines Registerinhalts benötigt einen Buszyklus, da die Sicherung selbst auf dem Stack erfolgt, der einen Teil des Hauptspeichers darstellt. Am Ende des Interrupt-Handlers (Interrupt Service Routine, ISR) ist ein Wiederherstellen der alten Registerinhalte (inkl. PC und PSW) nötig, was genau gleich lange dauert wie das Sichern. Wieviele Interrupts könnten maximal pro Sekunde verarbeitet werden unter der Annahme, dass der Bus mit einer Taktfrequenz von 100 MHz arbeitet und der Interrupt-Handler ausser für das Sichern der Register keine Zeit benötigt? Eine Sicherung benötigt total 18 Buszyklen, eine Wiederherstellung genau gleich viel. Der Zeitbedarf ist also total: 36 x 10 ns = 360 ns = 0,36 µs Damit sind maximal 1/0,36 µs = Interrupts/Sekunde verarbeitbar. a. Ein Drucker arbeitet mit einer Druckgeschwindigkeit von 16 Seiten pro Minute. Die Geschwindigkeit der Textausgabe auf den Drucker ist von der Anzahl der zu druckenden Zeichen pro Seite abhängig. Eine Seite enthält 90 Zeilen zu 70 Zeichen. In welchen Zeitabständen finden die Zeichenausgaben statt? 16 Seiten pro Minute = 0,2666 Seiten/s 90 Zeilen zu 70 Zeichen = 6300 Zeichen pro Seite Anzahl Zeichen pro Sekunde: 0,2666 * 6300 = 1680 Zeitabstand zwischen zwei Zeichenausgaben: 1 / 1680 = 595 µs b. Wir gehen von der Situation aus Teilaufgabe b) aus. Zur Beurteilung der Eignung der drei möglichen Ein-/Ausgabearten (polling, interrupt-gesteuert, DMA) soll die prozentuale CPU-Auslastung zu Hilfe gezogen werden. Es gelten folgende Rechenzeitbedarfe (teilweise abhängig vom eingesetzten E/A-Verfahren): Die Ausgabe eines einzelnen Zeichens benötigt Rechenoperationen von der Dauer von 15 µs (ausser bei DMA). Die Aktivierung des Interrupt-Handlers benötigt pro Interrupt 5 µs. Die Programmierung eines DMA-Kontrollers (einmal pro Druckseite) benötigt 200 µs (der Zeitbedarf für den abschliessenden Interrupt und seine Behandlung sei darin inbegriffen). Die Datenbereitstellungszeit für die DMA-Ausgabe beträgt 1 µs pro Zeichen. Technische Informatik II, Übung Februar 2008 Seite 1/5

2 Bestimmen Sie die resultierenden CPU-Auslastungen während einer Druckausgabe und beurteilen Sie die Eignung der drei möglichen Ein- /Ausgabearten (polling, interrupt-gesteuert und DMA) für diesen Einsatzzweck. Polling E/A: CPU-Auslastung = 100 % (busy waits!) Interrupt-gesteuert: Zeitbedarf pro Sekunde: 1680 x (15 + 5)µs = µs damit CPU-Auslastung = 3,4 % DMA: Zeitanteil DMA-Controllerprogr. pro Sekunde: x 200 µs = 53 µs Zeitbedarf für Einzeltransfers: 1680 x 1 µs = 1680 µs Zeitbedarf total: 53 µs µs = 1733 µs damit CPU-Auslastung = 0.17 % Beurteilung: Auf Polling basierte E/A würde den Rechner für den Benutzer unangenehm lange blockieren und wäre daher eine schlechte Wahl. Die interruptgesteuerte E/A ist akzeptabel und gut denkbar. Der Einsatz von DMA würde die CPU am wenigsten belasten und damit die freie verfügbare Rechenleistung maximieren. Aufgabe 2: Zugriffszeit Plattenspeicher Eine Festplatte besitze folgende Eckdaten: Suchzeit (seek time): 3 ms Drehzahl: 7200 rpm Sektoranzahl: 512 (= Anzahl Kreissektoren) Speicherkapazität eines logischen Sektors: 512 Byte Zylinderanzahl: 256 a. Wie groß ist die Datentransferrate für das Auslesen einer Spur, falls sich der Lese-/Schreibkopf bereits in der richtigen Spur und an der richtigen Position innerhalb der Spur befindet? Speicherkapazität pro Spur: 512 x 512 Byte = Byte = 256 KB Drehzahl: 7200 U/min = 120 s-1 damit Datentransferrate: 120 s-1 x 256 KB = KB/s = 30 MB/s BEMERKUNG: Angabe nach Konvention 1 MB = 1024 KB, 1 KB = 1024 Byte (Achtung: Bei Rechnernetzen gilt hingegen stets die metrische Festlegung, zum Beispiel 1 KBit/s = 1000 Bit/s.) b. Wie viele Daten müssen zusammenhängend gelesen werden, damit die eigentliche Datentransferzeit gleich groß wie die kumulierte Suchzeit und Rotationsverzögerung(rotational delay) ist? HINWEIS: Die Rotationsverzögerung (rotational delay) ist die mittlere Zeit, die beim Erreichen des Zylinders gewartet werden muss, bis der gewünschte Sektor beim Lesekopf vorbeikommt. Treffen Sie eine einfache (begründete!) Annahme. Rotationsverzögerung = halbe Umdrehungszeit = 1/240s = 4,16 ms Kumulierte Zeit: 3 ms + 4,16 ms = 7,16 ms Anzahl Byte = 7.16 ms x (120 s-1 * 512 * 512 Byte) = Byte = 220 KB BERMERKUNG: Dies ist möglich, da ohne Spurwechsel bis max. 256 KB lesbar sind. c. Die Festplatte besitze eine Spurwechselzeit von 0,1 ms. Die Spurwechselzeit ist diejenige Zeit, die benötigt wird, um den Lese-/Schreibkopf von der aktuellen zur Technische Informatik II, Übung Februar 2008 Seite 2/5

3 nächsten benachbarten Spur zu bewegen. Die Angabe der Suchzeit durch den Hersteller beruht auf gewissen Annahmen über den "Füllgrad" der Platte (d.h. genutzte Speicherkapazität im Verhältnis zu maximaler Speicherkapazität). Von welchem Füllgrad ist der Hersteller ausgegangen, wenn er die Suchzeit als 3 ms angibt? HINWEIS: Die Suchzeit ist die mittlere Zeit, um von einer beliebigen Zylinderposition A zu einer beliebigen Zylinderposition B im belegten Plattenbereich zu fahren. Treffen Sie eine einfache Annahme für die nötigen Suchbewegungen, d.h. die mittlere Distanz zwischen zwei aufeinander folgenden Positionen. Eine einfache Annahme für den Suchweg geht davon aus, dass in dem belegten Zylinderbereich im Mittel die Hälfte der Zylinder abgefahren werden muss. Eine ergänzende Annahme kann sein, dass keine Fragmentierung auf der Platte vorliegt (d.h. lückenlose Belegung). Die mittlere Anzahl Spurwechsel ergibt sich aus: 3 ms / 0,1 ms = 30 Da dies dem halben Bereich entspricht, ergibt sich ein Bereich von 60 Zylinder Dies entspricht 60/256 = 23,4% Füllgrad Wird von einem "lokalen* Verhalten ausgegangen, dann ist der zu fahrende Weg kleiner als die Hälfte des Bereichs. In diesem Fall würde sich ein höherer Füllgrad ergeben. d. Es gelten die Angaben aus der vorangegangenen Teilaufgabe. Bestimmen Sie den ungünstigsten Fall einer viel Zeit benötigenden Kopfpositionierung unter Berücksichtigung der gegebenen Plattengeometrie. Bestimmen Sie die für diesen Zugriff geltende Zugriffszeit. Ungünstigster Fall: Von Zylinder 1 auf Zylinder 256 fahren: 255 Spurwechsel Letzter Sektor in Spur wird gerade verpasst: Volle Rotationsverzögerung fällt an Gesamtzeit: 255 * 0,1 ms + 1/120 s = 33,8 ms (ca. 10-mal die mittlere Suchzeit!) Aufgabe 3: RAID a. Sie möchten einen Block auf einem RAID-Array speichern. Überlegen Sie sich für jeden der RAID-Level 0,1,3, 5 und 6: wie viele verschiedene Festplatten Sie minimal und maximal benötigen wie viel Speicherplatz insgesamt belegt wird wie hoch die Ausfalltoleranz ist wie sie die Lese- und Schreibgeschwindigkeiten (tief, normal, hoch) beurteilen. Stellen Sie die Ergebnisse in einer Matrix dar! Technische Informatik II, Übung Februar 2008 Seite 3/5

4 RAID- Level Minimale Anzahl Festplatten Benötigter Speicherplatz in Blöcken insgesamt RAID Block tief (Totalverlust beim Defekt einzelner Platte) RAID Blöcke RAID 2 (Parity) RAID 3 (Striping) Blöcke Blöcke RAID Blöcke RAID Blöcke Ausfalltoleranz Lese- Geschwindigkeit Schreib- Geschwindigkeit Normal Normal b. Einige Hersteller bieten über die erwähnten Standards weitere inoffizielle RAID- Level und RAID-ähnliche Konfigurationen an. Beispiele sind RAID 50, 51 sowie JBOD. Machen Sie eine Internet-Recherche und beantworten Sie folgende Fragen: Beschreiben Sie die drei Erweiterungen. Worin besteht der jeweilige Mehrwert? RAID50: Ein RAID 0-Array, welches aus mehreren striped RAID5 gebildet wird. RAID51: Spiegelung zweier RAID5 Arrays in der Art eines RAID1-Systems. JBOD: Just a Bunch of Disks, ein Bündel Fesplatten ohne RAID. Finden Sie noch weitere hersteller-spezifische RAID-Level? Zwei weitere inoffizielle Standards sind beispielsweise RAID 30 und RAID 45: z.b. RAID 30 wurde ursprünglich von AMI entwickelt. Es stellt eine Stripe- Variante von RAID 3 dar (das heißt ein RAID0 welches mehrere RAID3 zusammenfasst). Ein RAID 30-Verbund benötigt mindestens sechs Festplatten (zwei Legs mit je drei Festplatten). Es darf eine Festplatte in jedem Leg. z.b. Ein RAID 45-Verbund fasst, ähnlich dem RAID 55, mehrere RAID 4 mit einem RAID 5 zusammen. Man benötigt hierfür mindestens 3 RAID-4 Legs zu je 3 Festplatten und damit 9 Festplatten. Bei 9 Festplatten sind nur 4 Festplatten nutzbar, das Verhältnis verbessert sich allerdings mit der Anzahl der verwendeten Festplatten. RAID 45 wird daher nur in großen Festplattenverbünden eingesetzt. Die Datensicherheit ist sehr hoch, da mindestens drei beliebige Festplatten, zusätzlich eine Festplatten in jedem Leg und dazu noch ein komplettes Leg dürfen Technische Informatik II, Übung Februar 2008 Seite 4/5

5 Aufgabe 4: Memory Mapped I/O und Memory Mapped Files Erklären Sie in je nur einem einzigen Satz die Konzepte Memory Mapped I/O und Memory Mapped Files. Memory Mapped I/O ist ein Verfahren, um mittels einfacher Zeigeroperationen im Hauptspeicher I/O-Register von elektronischen Bauteilen der angeschlossenen Hardware direkt anzusprechen. Memory Mapped Files: Falls zwei Prozesse Daten auf programmiertechnisch komfortablem Weg austauschen wollen, können Sie eine Datei per Systemaufruf in den Arbeitsspeicher einblenden und so gegenseitig verfügbar machen. Aufgabe 5: Disk Scheduling Strategien In der Vorlesung haben Sie verschiedene Disk Scheduling Strategien kennengelernt. a. Angenommen, die mittlere Länge der Auftragswarteschlange sei klein, d.h., sie enthält 0 oder 1 Element. Wie verhalten sich die Verfahren FCFS, SCAN und SSTF in diesem Fall? SCAN/CSCAN bewegen den Arm jeweils über die gesamten Plattenlänge. Wenn die beiden sehr häufig referenzierten Regionen nicht am Plattenrand befinden, entsteht durch die zusätzliche Suchzeit eine unnötige Verzögerung. b. Angenommen, auf einer Festplatte gebe es 2 sehr häufig referenzierte Regionen, welche weit auseinanderliegen. Vergleichen Sie die Verfahren FCFS, SSTF und SCAN/CSCAN. SSTF (Shortest-seek-time-first) minimiert grundsätzlich die Suchzeit und ist daher für dieses Szenario optimal. Technische Informatik II, Übung Februar 2008 Seite 5/5

Technische Informatik II

Technische Informatik II Institut für Technische Informatik und Kommunikationsnetze Technische Informatik II Übung 3: Input / Output Hinweis: Weitere Aufgaben zu diesem Thema finden sie in den Begleitbüchern zur Vorlesung. Aufgabe

Mehr

Ein- und Ausgabegeräte

Ein- und Ausgabegeräte Blockorientiert Jeder Block kann unabhängig gelesen und geschrieben werden. Festplatten, CD-ROMs, USB-Sticks, etc. Zeichenorientiert Keine Struktur, nicht adressierbar, Daten werden als Folge von Zeichen

Mehr

Betriebssysteme. Tutorium 12. Philipp Kirchhofer

Betriebssysteme. Tutorium 12. Philipp Kirchhofer Betriebssysteme Tutorium 12 Philipp Kirchhofer [email protected] http://www.stud.uni-karlsruhe.de/~uxbtt/ Lehrstuhl Systemarchitektur Universität Karlsruhe (TH) 3. Februar 2010 Philipp

Mehr

Lösung von Übungsblatt 4

Lösung von Übungsblatt 4 Lösung von Übungsblatt 4 Aufgabe 1 (Fesplatten) 1. Was versteht man bei Festplatten unter Sektoren (= Blöcken)? Die Spuren sind in kleine logische Einheiten (Kreissegmente) unterteilt, die Blöcke oder

Mehr

Kapitel 6 Anfragebearbeitung

Kapitel 6 Anfragebearbeitung LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Skript zur Vorlesung: Datenbanksysteme II Sommersemester 2014 Kapitel 6 Anfragebearbeitung Vorlesung: PD Dr. Peer Kröger

Mehr

Übung Datenbanksysteme II Physische Speicherstrukturen. Maximilian Jenders. Folien basierend auf Thorsten Papenbrock

Übung Datenbanksysteme II Physische Speicherstrukturen. Maximilian Jenders. Folien basierend auf Thorsten Papenbrock Übung Datenbanksysteme II Physische Speicherstrukturen Maximilian Jenders Folien basierend auf Thorsten Papenbrock Organisatorisches: Übung Datenbanksysteme II 2 Übung Maximilian Jenders ([email protected])

Mehr

Was machen wir heute? Betriebssysteme Tutorium 12. Organisatorisches. Frage 12.1.a. Programmieraufgaben Vorstellung. Antwort

Was machen wir heute? Betriebssysteme Tutorium 12. Organisatorisches. Frage 12.1.a. Programmieraufgaben Vorstellung. Antwort Was machen wir heute? Betriebssysteme Tutorium 12 1 Organisatorisches Philipp Kirchhofer [email protected] http://www.stud.uni-karlsruhe.de/~uxbtt/ Lehrstuhl Systemarchitektur Universität

Mehr

Übung Datenbanksysteme II Physische Speicherstrukturen. Thorsten Papenbrock

Übung Datenbanksysteme II Physische Speicherstrukturen. Thorsten Papenbrock Übung Datenbanksysteme II Physische Speicherstrukturen Thorsten Papenbrock Organisatorisches: Übung Datenbanksysteme II 2 Übung Thorsten Papenbrock ([email protected]) Tutoren Alexander

Mehr

KLAUSUR. zur Vorlesung Betriebssysteme SS Vorname Name Matrikelnummer

KLAUSUR. zur Vorlesung Betriebssysteme SS Vorname Name Matrikelnummer Johann Wolfgang Goethe-Universität Frankfurt am Main FB 15 Institut für Informatik Praktische Informatik PD Dr. R. Brause KLAUSUR zur Vorlesung Betriebssysteme SS 2004 Vorname Name Matrikelnummer I) Multiple

Mehr

Betriebssysteme I WS 2015/2016. Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404

Betriebssysteme I WS 2015/2016. Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404 Betriebssysteme I WS 2015/2016 Betriebssysteme / verteilte Systeme [email protected] Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 28. Januar 2016 Betriebssysteme / verteilte Systeme Betriebssysteme

Mehr

Konzepte und Methoden der Systemsoftware. Aufgabe 1: Polling vs Interrupts. SoSe bis P

Konzepte und Methoden der Systemsoftware. Aufgabe 1: Polling vs Interrupts. SoSe bis P SoSe 2014 Konzepte und Methoden der Systemsoftware Universität Paderborn Fachgebiet Rechnernetze Präsenzübung 3(Musterlösung) 2014-05-05 bis 2014-05-09 Aufgabe 1: Polling vs Interrupts (a) Erläutern Sie

Mehr

Programmierung. Rückblick. VWA - Programmierung Winter Algorithmus. Programmiersprache. Variable. Zuweisung. Bedingung.

Programmierung. Rückblick. VWA - Programmierung Winter Algorithmus. Programmiersprache. Variable. Zuweisung. Bedingung. Programmierung 1 Rückblick Algorithmus Programmiersprache Variable Zuweisung Bedingung Schleife (c) Peter Sturm, University of Trier 1 3 Aufgabe: Viele, viele bunte Smarties Rechengeschwindigkeit CPU 5

Mehr

Immediate Priority Ceiling

Immediate Priority Ceiling Vereinfachtes Protokoll: Immediate priority ceiling: Prozesse, die ein Betriebsmittel s belegen, bekommen sofort die Priorität ceil(s) zugewiesen. Anwendungsgebiet: Immediate Priority Ceiling Verwendung

Mehr

Klausuraufgaben: Hardware (1.) Notieren Sie die Namen der Schnittstellen!

Klausuraufgaben: Hardware (1.) Notieren Sie die Namen der Schnittstellen! Klausuraufgaben: Hardware - Seite 1 Klausuraufgaben: Hardware (1.) Notieren Sie die Namen der Schnittstellen! (2.) Beschriften Sie die Namen der Komponenten im PC! 9 Klausuraufgaben: Hardware - Seite 2

Mehr

SATA - SAS. Bandbreite ist nicht Performance. MB/s und GB/s sind wichtig für: Backbone Netzwerke Data-Streaming Disk-to-Disk Backup

SATA - SAS. Bandbreite ist nicht Performance. MB/s und GB/s sind wichtig für: Backbone Netzwerke Data-Streaming Disk-to-Disk Backup SATA - SAS Bandbreite ist nicht Performance MB/s und GB/s sind wichtig für: Backbone Netzwerke Data-Streaming Disk-to-Disk Backup IO/s sind wichtig für: Transaktionsorientierende Applikationen Datenbanken

Mehr

Physische Speicherstrukturen

Physische Speicherstrukturen Übung Datenbanksysteme II Physische Speicherstrukturen Leon Bornemann Folien basierend auf Thorsten Papenbrock, Maximilian Jenders Organisatorisches: Übung Datenbanksysteme II 2 Übung Leon Bornemann ([email protected])

Mehr

Betriebssysteme WS 2012/13 Peter Klingebiel, DVZ. Zusammenfassung Kapitel 4 - Datenträger/Dateiverwaltung

Betriebssysteme WS 2012/13 Peter Klingebiel, DVZ. Zusammenfassung Kapitel 4 - Datenträger/Dateiverwaltung Betriebssysteme WS 2012/13 Peter Klingebiel, DVZ Zusammenfassung Kapitel 4 - Datenträger/Dateiverwaltung Zusammenfassung Kapitel 4 Dateiverwaltung 1 Datei logisch zusammengehörende Daten i.d.r. permanent

Mehr

R.A.I.D. Redundant Array of Inexpensive ( oder Independent ) Disks Redundante Reihe billiger (oder unabhängiger ) Laufwerke

R.A.I.D. Redundant Array of Inexpensive ( oder Independent ) Disks Redundante Reihe billiger (oder unabhängiger ) Laufwerke R.A.I.D. Redundant Array of Inexpensive ( oder Independent ) Disks Redundante Reihe billiger (oder unabhängiger ) Laufwerke 1 Die Geschichte 1987 wurde an der kalifornischen Universität in Berkeley zum

Mehr

Lennard Main IAV2/2010 RDF Nürnberg

Lennard Main IAV2/2010 RDF Nürnberg 1 Redundanz JBOD RAID-Systeme Hot-Verfahren Bsp.: Erstellen eines RAID 0 2 Lateinisch redundare Zustand von Überschneidung oder Überfluss Fortlaufender Betrieb im Fehlerfall gewährleistet Bsp.: RAID 1

Mehr

Technische Informatik 1 - HS 2017

Technische Informatik 1 - HS 2017 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2017 Übung 11 Datum: 21. 22. 12. 2017 Virtueller Speicher 1 Performanz Gehen Sie von einem virtuellen

Mehr

Redundant Array of Inexpensive Disks

Redundant Array of Inexpensive Disks 22.01.2010 1 2 3 4 5 Es war einmal im Jahre 1988... Prozessoren, Speicher besser und günstiger Festplatten: - Speicherplatz bleibt teuer - Zugriff bleibt langsam Moore s Law Amdahl s Law S = 1 (1 f )+(f

Mehr

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7)

Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) Vorlesung: Rechnerstrukturen, Teil 2 (Modul IP7) J. Zhang [email protected] Universität Hamburg AB Technische Aspekte Multimodaler Systeme

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Betriebssysteme Vorstellung

Betriebssysteme Vorstellung Am Anfang war die Betriebssysteme Vorstellung CPU Ringvorlesung SE/W WS 08/09 1 2 Monitor CPU Komponenten eines einfachen PCs Bus Holt Instruktion aus Speicher und führt ihn aus Befehlssatz Einfache Operationen

Mehr

Hardware und Gerätetreiber

Hardware und Gerätetreiber Hardware und Gerätetreiber Betriebssysteme Hermann Härtig TU Dresden Übersicht Übersicht Kommunikation zwischen Hardware und CPU Interrupts I/O-Ports I/O-Speicher Busse Verwaltung von Geräten Dynamisches

Mehr

Grundlagen der Datenbanksysteme 2 (M-DB2) Dr. Karsten Tolle

Grundlagen der Datenbanksysteme 2 (M-DB2) Dr. Karsten Tolle Grundlagen der Datenbanksysteme 2 (M-DB2) Dr. Karsten Tolle Vorwissen und so SQL Umgang mit MySQL (Workbench) Beispieldaten zum Spielen: http://download.geonames.org/export/dump/ 2 Tuningpotential DB-Interna;

Mehr

Busse. Dr.-Ing. Volkmar Sieh WS 2005/2006. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg

Busse. Dr.-Ing. Volkmar Sieh WS 2005/2006. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg Einleitung Bus-Konfiguration Bus-Arbitrierung Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2005/2006 Einleitung Bus-Konfiguration Bus-Arbitrierung

Mehr

Kapitel II. Rechnersysteme (1) Einführung: Hardware und Software. Bauteile eines einfachen PCs

Kapitel II. Rechnersysteme (1) Einführung: Hardware und Software. Bauteile eines einfachen PCs Kapitel II Einführung: Hardware und Software 1 Rechnersysteme (1) Computer haben viele verschiedene Devices: Input/Output Devices Speicher Prozessor(en) Monitor 2 Bauteile eines einfachen PCs Bus Rechnersysteme

Mehr

Paging. Einfaches Paging. Paging mit virtuellem Speicher

Paging. Einfaches Paging. Paging mit virtuellem Speicher Paging Einfaches Paging Paging mit virtuellem Speicher Einfaches Paging Wie bisher (im Gegensatz zu virtuellem Speicherkonzept): Prozesse sind entweder ganz im Speicher oder komplett ausgelagert. Im Gegensatz

Mehr

Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler

Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler 1 Überlegungen Wenn wir einige Seiten eines Programms in den Speicher laden, brauchen wir eine Strategie, welche Seiten als nächstes geladen werden

Mehr

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Wolfram Burgard

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Wolfram Burgard Systeme I: Betriebssysteme Kapitel 4 Prozesse Wolfram Burgard Version 18.11.2015 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

9. Verwaltung von Ein- und Ausgabegeräten

9. Verwaltung von Ein- und Ausgabegeräten 9. Verwaltung von Ein- und Ausgabegeräten 9.1 Ein- und Ausgabegeräte Es existiert eine Vielzahl unterschiedlicher Geräte und Anwendungen. Dadurch wird eine konsistente, allgemeingültige Lösung erschwert.

Mehr

Beispielhafte Prüfungsaufgaben zur Vorlesung Technische Informatik I Gestellt im Frühjahr 2012

Beispielhafte Prüfungsaufgaben zur Vorlesung Technische Informatik I Gestellt im Frühjahr 2012 Beispielhafte Prüfungsaufgaben zur Vorlesung Technische Informatik I Gestellt im Frühjahr 2012 Die beigefügte Lösung ist ein Vorschlag. Für Korrektheit, Vollständigkeit und Verständlichkeit wird keine

Mehr

Fakten statt Bauchgefühl: RAID Mathematik für Admins

Fakten statt Bauchgefühl: RAID Mathematik für Admins Fakten statt Bauchgefühl: RAID Mathematik für Admins Heinlein Professional Linux Support GmbH Holger Uhlig h.uhlig@heinlein support.de Agenda: Was will ich? MB/s vs. IOPS Berechnung von Durchsatz und IOPS

Mehr

Betriebssysteme Kap J, Teil C: Paging, Pagereplacement

Betriebssysteme Kap J, Teil C: Paging, Pagereplacement Betriebssysteme Kap J, Teil C: Paging, Pagereplacement 1 Welche Seite soll ausgelagert werden? Ein- / Auslagern benötigt Zeit Kontextwechsel erforderlich» Wechsel zu einem BS-Prozess, welcher für das Management

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Ein und Ausgabe Übersicht Grundbegriffe Hard Disks und Flash RAM Zugriff auf IO Geräte RAID Systeme SS 2012 Grundlagen der Rechnerarchitektur Ein und Ausgabe 2 Grundbegriffe

Mehr

Speichergeräte und -verbünde

Speichergeräte und -verbünde Speichergeräte und -verbünde Hochleistungs-Ein-/Ausgabe Michael Kuhn Wissenschaftliches Rechnen Fachbereich Informatik Universität Hamburg 2016-04-08 Michael Kuhn Speichergeräte und -verbünde 1 / 48 1

Mehr

Von der Platte zur Anwendung (Platte, Treiber, Dateisystem)

Von der Platte zur Anwendung (Platte, Treiber, Dateisystem) (Platte, Treiber, Dateisystem) 1. Einleitung 2. Dateisysteme 2.1. Logisches Dateisystem 2.2. Dateiorganisationsmodul 2.3. Basis Dateisystem 3. Festplattentreiber 3.1. Funktionsweise 3.2. Scheduling Verfahren

Mehr

Übungspaket 1 Grundlagen: von der Hardware zum Programmieren

Übungspaket 1 Grundlagen: von der Hardware zum Programmieren Übungspaket 1 Grundlagen: von der Hardware zum Programmieren Übungsziele: Skript: 1. Die Bedeutung des Programmierens für mein Studium und meine spätere Berufstätigkeit 2. Was ist eine erfolgreiche Lernstrategie?

Mehr

Übungspaket 1 Grundlagen: von der Hardware zum Programmieren

Übungspaket 1 Grundlagen: von der Hardware zum Programmieren Übungspaket 1 Grundlagen: von der Hardware zum Programmieren Übungsziele: Skript: 1. Die Bedeutung des Programmierens für mein Studium und meine spätere Berufstätigkeit 2. Was ist eine erfolgreiche Lernstrategie?

Mehr

RAID Redundant Array of Independent [Inexpensive] Disks

RAID Redundant Array of Independent [Inexpensive] Disks RAID Redundant Array of Independent [Inexpensive] Disks Stefan Wexel Proseminar Algorithms and Data Structures im WS 2011/2012 Rheinisch-Westfälische Technische Hochschule Aachen Lehrstuhl für Informatik

Mehr

Ein und Ausgabe. von Neumann Konzept enthält folgende Komponenten: Rechenwerk Steuerwerk Speicher Eingabewerk Ausgabewerk (siehe 1.

Ein und Ausgabe. von Neumann Konzept enthält folgende Komponenten: Rechenwerk Steuerwerk Speicher Eingabewerk Ausgabewerk (siehe 1. Ein und Ausgabe von Neumann Konzept enthält folgende Komponenten: Rechenwerk Steuerwerk Speicher Eingabewerk Ausgabewerk (siehe 1. Vorlesung) v. Neumann Architektur Eingabewerk Speicher Ausgabewerk Rechenwerk

Mehr

Busse. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2008/2009

Busse. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2008/2009 Busse Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2008/2009 Busse 1/40 2008-10-13 Übersicht 1 Einleitung 2 Bus-Konfiguration

Mehr

1. Welche Speichereinheiten werden belegt, wenn die folgenden Strategien eingesetzt werden?

1. Welche Speichereinheiten werden belegt, wenn die folgenden Strategien eingesetzt werden? Sommersemester 009 Konzepte und Methoden der Systemsoftware Universität Paderborn Fachgebiet Rechnernetze Hausübung 05 Abgabe am 0.07.009 (Kästen D) Aufgabe : Speicherzuteilung (6++=8 Punkte) Es sei der

Mehr

Cache Grundlagen. Schreibender Cache Zugriff. SS 2012 Grundlagen der Rechnerarchitektur Speicher 22

Cache Grundlagen. Schreibender Cache Zugriff. SS 2012 Grundlagen der Rechnerarchitektur Speicher 22 Cache Grundlagen Schreibender Cache Zugriff SS 212 Grundlagen der Rechnerarchitektur Speicher 22 Eine einfache Strategie Schreibt man nur in den Cache, werden Cache und darunter liegender Speicher inkonsistent.

Mehr

Fragenkatalog Computersysteme Test 25. April 2008

Fragenkatalog Computersysteme Test 25. April 2008 Fragenkatalog Computersysteme Test 25. April 2008 Wolfgang Schreiner [email protected] 6. April 2008 Der Test besteht aus 4 Fragen aus dem folgenden Katalog (mit eventuell leichten

Mehr

Dateisysteme. Erweiterte Anforderungen an Speicher

Dateisysteme. Erweiterte Anforderungen an Speicher Erweiterte Anforderungen an Speicher Mehr Speicher als adressierbar ist. Daten sollen nach Beendigung des Prozesses zur Verfügung stehen Mehrere Prozesse sollen auf die Daten zugreifen können. Nutzung

Mehr

4.3 Hintergrundspeicher

4.3 Hintergrundspeicher 4.3 Hintergrundspeicher Registers Instr./Operands Cache Blocks Memory Pages program 1-8 bytes cache cntl 8-128 bytes OS 512-4K bytes Upper Level faster Disk Tape Files user/operator Mbytes Larger Lower

Mehr

5 Kernaufgaben eines Betriebssystems (BS)

5 Kernaufgaben eines Betriebssystems (BS) 5 Kernaufgaben eines Betriebssystems (BS) Betriebssystem ist eine Menge von Programmen, die die Abarbeitung anderer Programme auf einem Rechner steuern und überwachen, insbesondere verwaltet es die Hardware-Ressourcen

Mehr

Theorie der Programmiersprachen

Theorie der Programmiersprachen slide 1 Vorlesung Theorie der Programmiersprachen Prof. Dr. Ulrich Ultes-Nitsche Forschungsgruppe Departement für Informatik Universität Freiburg slide 2 Heute Komponenten eines Computers Speicher Die

Mehr

Betriebssysteme I WS 2014/2015. Betriebssysteme / verteilte Systeme [email protected] Tel.: 0271/740-4050, Büro: H-B 8404

Betriebssysteme I WS 2014/2015. Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Betriebssysteme I WS 2014/2015 Betriebssysteme / verteilte Systeme [email protected] Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 15. Januar 2015 Betriebssysteme / verteilte Systeme Betriebssysteme

Mehr

Betriebssysteme. Thomas Fahringer. Institut für Informatik Universität Innsbruck. VO Betriebssysteme

Betriebssysteme. Thomas Fahringer. Institut für Informatik Universität Innsbruck. VO Betriebssysteme Grundzüge der Informatik IV: Betriebssysteme Thomas Fahringer Institut für Informatik Universität Innsbruck V [email protected] 1 Kapitel I Betriebssysteme: Aufgaben und Überblick V 2 Was ist

Mehr

Lösung von Übungsblatt 3

Lösung von Übungsblatt 3 Lösung von Übungsblatt 3 Aufgabe 1 (Rechnerarchitektur) 1. Welche drei Komponenten enthält der Hauptprozessor? Rechenwerk, Steuerwerk und Speicher. 2. Welche drei digitalen Busse enthalten Rechnersysteme

Mehr

Anleitung zur Installation von SATA- Festplatten und zur RAID-Konfiguration

Anleitung zur Installation von SATA- Festplatten und zur RAID-Konfiguration Anleitung zur Installation von SATA- Festplatten und zur RAID-Konfiguration 1. Anleitung für Installation von TA-Festplatten... 2 1.1 Serial ATA- (SATA-) Festplatteninstallation... 2 2. Anleitung zur RAID-Konfiguration...

Mehr

Hard & Software Raid

Hard & Software Raid Hard & Software Raid Werner von Siemens Schule Präsentation Inhaltsverzeichnis Hardware Raid Raid 0 Raid 1 Parity Raid 0+1 & 2 Raid 3 & 4 Raid 5 & 6 Raid 7 Software Raid Fragen, Schlusswort 2 Hardware

Mehr

myavr Programmierung in C

myavr Programmierung in C myavr Programmierung in C Stefan Goebel Februar 2017 Stefan Goebel myavr Programmierung in C Februar 2017 1 / 12 Grundgerüst... braucht man immer! #include // Register- und Konstantendefinitionen

Mehr

PRÄSENTATION MAGNETISCHE FESTPLATTEN. Proseminar Speicher- und Dateisysteme. Björn Fries 10. / 11.03.2011

PRÄSENTATION MAGNETISCHE FESTPLATTEN. Proseminar Speicher- und Dateisysteme. Björn Fries 10. / 11.03.2011 PRÄSENTATION MAGNETISCHE FESTPLATTEN Proseminar Speicher- und Dateisysteme Björn Fries GLIEDERUNG (1) Einleitung o Was ist eine Festplatte? o Aufgabe und Einsatz (2) Technischer Aufbau a. Physikalischer

Mehr

Anzeigen des Ereignisprotokolls (Windows) Anzeigen aller Fehler im Anwendungsprotokoll (Windows)

Anzeigen des Ereignisprotokolls (Windows) Anzeigen aller Fehler im Anwendungsprotokoll (Windows) 1. Shellprogrammierung (17.10.) Jeweils unter cmd und Powershell Öffnen einer Konsole Anzeigen des aktuellen Verzeichnisses Anzeigen der Dateien im Verzeichnis c:\windows\system32 Seitenweises Anzeigen

Mehr

Mikrocomputertechnik. Thema: Der Aufbau des XC888-Mikrocontrollers -Teil 1 -

Mikrocomputertechnik. Thema: Der Aufbau des XC888-Mikrocontrollers -Teil 1 - Mikrocomputertechnik Thema: Der Aufbau des XC888-Mikrocontrollers -Teil 1 - Mikroprozessor-Achritekturen Folie 2 Mikroprozessor-Achritekturen Klassifizierung anhand Wortbreite CPU-Architektur und Busleitungen

Mehr

Abschlussklausur. Betriebssysteme. Bewertung: 22. November Name: Vorname: Matrikelnummer:

Abschlussklausur. Betriebssysteme. Bewertung: 22. November Name: Vorname: Matrikelnummer: Abschlussklausur Betriebssysteme 22. November 2016 Name: Vorname: Matrikelnummer: Mit meiner Unterschrift bestätige ich, dass ich die Klausur selbständig bearbeite und dass ich mich gesund und prüfungsfähig

Mehr

1C02. RAID Performance Grundlagen. Wozu überhaupt über I/O Performance nachdenken?

1C02. RAID Performance Grundlagen. Wozu überhaupt über I/O Performance nachdenken? 1C2 RAID Performance Grundlagen Hermann Brunner Angerwiese 15 85567 Grafing Te l 8 92 / 328 29 Fax 8 92 / 328 42 [email protected] www.brunner-consulting.de RAID Performance Grundlagen 1 Wozu

Mehr

Systemsoftware (SYS) Fakultät für Informatik WS 2007/2008 Christian Baun. Übungsklausur

Systemsoftware (SYS) Fakultät für Informatik WS 2007/2008 Christian Baun. Übungsklausur Hochschule Mannheim Systemsoftware (SYS) Fakultät für Informatik WS 2007/2008 Christian Baun Übungsklausur Aufgabe 1: Definieren Sie den Begriff der Systemsoftware. Nennen Sie die Aufgaben und Komponenten

Mehr

Wichtige Rechnerarchitekturen

Wichtige Rechnerarchitekturen Wichtige Rechnerarchitekturen Teil 5 INMOS Transputer, CSP/Occam 1 INMOS Transputer 1983 vorgestellt von der Firma INMOS (Bristol) (Entwicklung seit 1978) Der Name Transputer entstand als Kunstwort aus

Mehr

Übungsblatt 7. (Datentransferrate und Latenz)

Übungsblatt 7. (Datentransferrate und Latenz) Übungsblatt 7 Aufgabe 1 (Datentransferrate und Latenz) Der preußische optische Telegraf (1832-1849) war ein telegrafisches Kommunikationssystem zwischen Berlin und Koblenz in der Rheinprovinz. Behördliche

Mehr

Grundlagen der Rechnerarchitektur. Ein und Ausgabe

Grundlagen der Rechnerarchitektur. Ein und Ausgabe Grundlagen der Rechnerarchitektur Ein und Ausgabe Übersicht Grundbegriffe Hard Disks und Flash RAM Zugriff auf IO Geräte RAID Systeme SS 2012 Grundlagen der Rechnerarchitektur Ein und Ausgabe 2 Grundbegriffe

Mehr

Verlässliche Systeme

Verlässliche Systeme Verlässliche Systeme RAID, Teil 2 Rachid El Abdouni Khayari Universität der Bundeswehr München, Neubiberg, Fakultät für Informatik, Institut für Technische Informatik Herbsttrimester 2004 Datenorganisation

Mehr

Systeme I: Betriebssysteme Übungsblatt 3

Systeme I: Betriebssysteme Übungsblatt 3 Institut für Informatik Arbeitsgruppe Autonome Intelligente Systeme Freiburg, 10 November 2015 Systeme I: Betriebssysteme Übungsblatt 3 Aufgabe 1 (1,5 Punkte) Betrachten Sie die Befehle du, df, mount Lesen

Mehr

CPU Speicher I/O. Abbildung 11.1: Kommunikation über Busse

CPU Speicher I/O. Abbildung 11.1: Kommunikation über Busse Kapitel 11 Rechnerarchitektur 11.1 Der von-neumann-rechner Wir haben uns bisher mehr auf die logischen Bausteine konzentriert. Wir geben jetzt ein Rechnermodell an, das der physikalischen Wirklichkeit

Mehr

Kapitel 7 Physische Datenorganisation. Speicherhierarchie Hintergrundspeicher / RAID B-Bäume Hashing R-Bäume. Register. Cache.

Kapitel 7 Physische Datenorganisation. Speicherhierarchie Hintergrundspeicher / RAID B-Bäume Hashing R-Bäume. Register. Cache. Kapitel 7 Physische Datenorganisation Speicherhierarchie Hintergrundspeicher / RAID B-Bäume Hashing R-Bäume 1 Überblick: Speicherhierarchie Register Cache Hauptspeicher Plattenspeicher Archivspeicher A.

Mehr

Ein- Ausgabeeinheiten

Ein- Ausgabeeinheiten Kapitel 5 - Ein- Ausgabeeinheiten Seite 121 Kapitel 5 Ein- Ausgabeeinheiten Am gemeinsamen Bus einer CPU hängt neben dem Hauptspeicher die Peripherie des Rechners: d. h. sein Massenspeicher und die Ein-

Mehr

Einführung. Anwendung. logischer Adreßraum. Kontrollfluß (Thread) = CPU führt Instruktionen aus. Was charakterisiert einen Kontrollfluß?

Einführung. Anwendung. logischer Adreßraum. Kontrollfluß (Thread) = CPU führt Instruktionen aus. Was charakterisiert einen Kontrollfluß? Kontrollflüsse Einführung 1 Motivation Kontrollfluß Anwendung logischer Adreßraum Kontrollfluß (Thread) = führt Instruktionen aus Was charakterisiert einen Kontrollfluß? Programmzähler Registerinhalte

Mehr

1 Prozesse und Scheduling (12 Punkte)

1 Prozesse und Scheduling (12 Punkte) 1 Prozesse und Scheduling (12 Punkte) a) UNIX Shell-Operatoren (insgesamt 4 Punkte) 1. Operator (1,5 Punkte) Beschreiben Sie die Funktionsweise des Operators. 2. Operator Beispiel (1 Punkt) Geben Sie für

Mehr

Technische Informatik 1 - Übung & 22. Dezember Philipp Miedl

Technische Informatik 1 - Übung & 22. Dezember Philipp Miedl Technische Informatik 1 - Übung 11 21. & 22. Dezember 2017 Philipp Miedl Philipp Miedl 21.12.2017 22.12.2017 1 Motivation Aufteilen des Hauptspeichers auf mehrere Prozesse Philipp Miedl 21.12.2017 22.12.2017

Mehr

Implementierung von Dateisystemen

Implementierung von Dateisystemen Implementierung von Dateisystemen Teil 3 Prof. Dr. Margarita Esponda WS 2011/2012 1 NFS-Protokoll Verteiltes File System Teil des Solaris- und SunOS-Betriebssystems transparenter Zugriff auf nicht lokale

Mehr

Klausur zum Kurs Betriebssysteme (1802) am 18. September 2010

Klausur zum Kurs Betriebssysteme (1802) am 18. September 2010 Fakultät für Mathematik und Informatik Lehrgebiet Kooperative Systeme Prof. Dr. Jörg M. Haake Klausur zum Kurs Betriebssysteme (1802) am 18. September 2010 Klausurort: Vorname Name: Adresse: Matrikelnummer:

Mehr