IT-Sicherheit: Kryptographie
|
|
|
- Adam Ackermann
- vor 9 Jahren
- Abrufe
Transkript
1 IT-Sicherheit: Kryptographie Kryptologie = Kryptographie + Kryptoanalyse! Kryptographie: Methoden zur Ver- und Entschlüsselung von Nachrichten und damit zusammenhängende Methoden! Kryptoanalyse: Entschlüsselung ohne Zugriff auf den Schlüssel! Kaum voneinander zu trennen! Kryptographie braucht Kryptoanalyse, um die Sicherheit der Verfahren beurteilen zu können 2
2 Terminologie! Klartext (plaintext): P! Chiffretext/Geheimtext/Kryptotext (ciphertext): C! Schlüssel (key): K! Nachricht (message): M! Wenn nicht wichtig, ob verschlüsselt oder nicht 3 Kryptoanalyse: Angriffsklassen! ciphertext-only attack:! Work on examples of ciphertext! Need to know some statistical properties of typical plaintext! known-plaintext attack:! Work on examples of ciphertext/plaintext pairs! chosen-plaintext attack:! generate a number of plaintexts! obtain the corresponding ciphertext! adaptive chosen-plaintext attack:! perform several chosen-plaintext attacks! use knowledge gained from previous ones in the preparation of new plaintext! Ziel: Schlüssel finden, oder jede andere Information, die beim Ent- (oder Ver-)schlüsseln neuen Textes hilft 4
3 Historische Kryptographie! Caesar-Chiffre: Jeder Buchstabe wird durch den drittnächsten ersetzt (cabo!"fder): ((x + 3) % 26)! Variante: rot13 ((Buchstabe + 13) modulo 26)! Problem: Verfahren muß geheimgehalten werden! Kerckhoffs-Prinzip: Kryptosystem bleibt sicher, wenn alles (auch das Verfahren) außer einem Schlüssel bekannt! Schlüssel leicht und oft zu tauschen! Erweiterte Caesar-Chiffre: Addend als Schlüssel! Nur 26 mögliche Schlüssel!"brute force zu einfach 5 Historie: Substitutionschiffre! Schlüssel ist Permutation K: A #"A! 26! > 4! verschiedene Schlüssel! Brute force ist bereits schwierig! Statistik-Angriff:! Häufigste Buchstaben suchen (Deutsch: E, N, I, S, R, A, )! Nach häufigen Digrammen/ Trigrammen suchen 6
4 Polyalphabetische Chiffren Vigenère -Chiffre:! K = k 0 k 1 k 2 k n-1! P = p 0 p 1 p 2 p m-1! c i = (p i + k (i % n) ) % 26! Statt Modulo-Addition kann XOR oder jeder andere Gruppen-Operator verwendet werden! Analyse: n finden; Angriff auf Stellen mit gleichem (i % n)! Verallgemeinerung: Änderung der Substitutionsregel bei jedem Zeichen 7 Perfekte Chiffren! Anforderung: Angreifer lernt nichts aus Chiffretext! Kenntnis eines Chiffretextes ändert nichts an der statistischen Wahrscheinlichkeit möglicher Klartexte! Lösung: One-time-pad! Schlüssel ist genauso lang wie Klartext! Wird nur einmal verwendet! c i = p i ^ k i (XOR jede andere Gruppe geht auch)! Problem: Wie Schlüssel transportieren?! Wiederverwendung gefährlich: 8
5 Zufallszahlen! Wichtig für Sitzungsschlüssel etc.! Viele Angriffe basieren auf Ratbarkeit der Zufallszahlen! Optimal: Hardware-Zufallszahlen! Z.B. thermisches Rauschen! Fast so gut: Präzises Timing externer Ereignisse! /dev/random: Zufallsbits aus dem Entropie-Pool! (Pseudo-)Zufallsfunktionen:! Ergebnis ist ( so gut wie ) zufällig, aber (Funktion!) eindeutig! Können zur Nachbesserung externer Zufallsbits dienen 9 Kryptographischer Hash! MD5, SHA-1: Hash fester Größe aus variablen Strings! MD5: 128 bit! SHA-1: 160 bit H i = C(H i-1, M i ), nach Padding (Block: 512 bit)! Ziele:! Kollisionsresistent: schwer, x " y zu finden mit h(x) = h(y)! Urbildresistent: schwer, zu einem a ein y zu finden mit a = h(y)! (Urbild-2: schwer, zu einem x ein y " x zu finden mit h(x) = h(y))! Hash mit Schlüssel: Message Authentication Code (MAC)! HMAC K (M) = h(k ^ X 1 h(k ^ X 2 M)) (RFC2104) 10
6 Geburtstagsparadoxon! Von 23 Personen haben mit 50 % Wahrscheinlichkeit zwei am selben Tag Geburtstag! Allgemein: aus k möglichen Werten reichen k 1/2 für ca. 50 % Kollisionswahrscheinlichkeit! SHA-1: Möglichkeiten! 2 80 Versuche ergeben mit p # 0.5 Kollision ( Geburtstagsangriff )! Neue Angriffe auf SHA-1 reduzieren 2 80 auf 2 69! Immer noch besser als 2 64 (MD5) 11 Blockchiffren: DES und AES! Feste Blockgrößen und Schlüsselgrößen! DES: 64 bit pro Block, 56 bit pro Schlüssel! AES: 128 bit pro Block, 128, 192 oder 256 bit pro Schlüssel! Produktchiffre (rundenbasierte Algorithmen)! DES: 16 Runden, AES (Rijndael): Runden! DES gilt als unsicher, 3DES = E K1 (D K2 (E K3 (P))) (168 bit)! AES wurde als Nachfolger von DES entwickelt! Offenes Auswahlverfahren! Viele Kryptoanalyse-Versuche vor und nach der Auswahl 12
7 Nutzung von Blockchiffren! ECB (Electronic Codebook): Je n Bit des Klartextes werden einzeln für sich verschlüsselt! Problem: Redundanzen im Klartext werden im Chiffretext sichtbar! Kryptanalyst kann sich mit known-plaintext Bausteine schaffen! Wiederholte Nachrichten leicht zu erkennen! Lösung: Bisherige Ergebnisse einfließen lassen 13 ECB: Visualisierung 14
8 CBC: Cipherblock Chaining! Vor der Verschlüsselung wird P i mit C i-1 verändert (XOR)! Zum Schutz von P 1 wird zu Beginn eine Zufallszahl vorgegeben (Initialization Vector, IV)! Bitfehler zerstört Block und führt zu Bitfehler in Folgeblock 15 Exkurs: CBC-MAC (Message Authentication Code)! Integrität:! Hash über Nachricht! Kann nur mit Schlüssel K erstellt oder verifiziert werden 16
9 ! R i = E K (R i-1 ) Block-Chiffre als Pseudo- Zufallszahlengenerator! Geburtstagsparadox: nützlich für 2 n/2 Blöcke! OFM (Output Feedback Mode): C i = P i ^ R i (mit R i = E K (R i-1 ))! Stromchiffre: Bitfehler im Chiffretext erzeugen gleiche Anzahl von Bitfehlern im Klartext! Ohne Integritätsprüfung zu große Gefahr der Klartext-Manipulation! Achtung: Wiederverwendung von K/R 0 = " 17 Weitere Stromchiffren! CTR (Counter Mode): R i = E K (i + O), C i = P i ^ R i! Offset O wird wie IV mit Chiffretext übertragen! Vorteil: Direktzugriff in die Mitte des Stroms! CFB (Cipher Feedback Mode): C i = P i ^ E K (C i-1 )! Ein Bitfehler im Chiffretext erzeugt einen Bitfehler und zerstört den Folgeblock! C 0 wird als IV mit Chiffretext übertragen 18
10 Angriffe gegen Stromchiffren! Modifizierte Wiedereinspielung (vor allem OFB/CTR)! Ist Struktur des Klartextes bekannt, reicht evtl. ein Bitfehler! Schutz: Integritätsprüfung! Bei Wiederverwendung der IV/K-Kombination:! E(A) ^ E(B) = (A ^ R) ^ (B ^ R) = A ^ B! Schutz: K oft genug wechseln (und IV nie wiederholen) 19 Kombination MAC/Verschlüsselung! Stromchiffre braucht immer Integritätsprüfung! Kombination möglich?! OCB: Offset Codebook! Offline nachlesen, bitte! Problem: Patentiert! i verwendet stattdessen CTR + CBC-MAC! Details: RFC
11 Nächste Termine Mo, Uhr: Vertiefung Krypto Do, Uhr: Kryptographische Algorithmen, continued Übungsblatt 5 bald auf Stud.IP, s.: 21
Hashfunktionen und MACs
3. Mai 2006 Message Authentication Code MAC: Message Authentication Code Was ist ein MAC? Der CBC-MAC Der XOR-MAC Kryptographische Hashfunktionen Iterierte Hashfunktionen Message Authentication Code Nachrichten
Konstruktion von MACs. Message Authentication Codes. Sicherheitsmodell CBC-MAC
Message Authentication Codes Entspricht Hashfunktionen mit geheimen Schlüsseln. h : K M H, MAC = h k (m). h parametrisierte Hashfunktion. m Nachricht. k geheimer Schlüssel. Mit der Nachricht m wird h k
Message Authentication Codes. Konstruktion von MACs. Hash-then-Encrypt. Sicherheitsmodell
Message Authentication Codes Entspricht Hashfunktionen mit geheimen Schlüsseln. h : K M H, MAC = h k (m). h parametrisierte Hashfunktion. m Nachricht. k geheimer Schlüssel. Mit der Nachricht m wird h k
Kryptographie für CTFs
Kryptographie für CTFs Eine Einführung KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kitctf.de Einführung Cryptography is the practice and study of techniques for secure communication
Klassische Verschlüsselungsverfahren
Klassische Verschlüsselungsverfahren Matthias Morak 10. Dezember 2008 Inhaltsverzeichnis 1 Einleitung 2 1.1 Definitionen........................................ 2 1.2 Geschichte.........................................
monoalphabetisch: Verschiebechiffren (Caesar), multiplikative Chiffren polyalphabetisch: Vigenère-Chiffre
Was bisher geschah Kryptographische Systeme (M, C, K, E, D) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes
Kryptologie. K l a u s u r WS 2006/2007, Prof. Dr. Harald Baier
Kryptologie K l a u s u r WS 2006/2007, 2007-02-01 Prof. Dr. Harald Baier Name, Vorname: Matrikelnummer: Hinweise: (a) Als Hilfsmittel ist nur der Taschenrechner TI-30 zugelassen. Weitere Hilfsmittel sind
Grundlagen der Verschlüsselung und Authentifizierung (1)
Grundlagen der Verschlüsselung und Authentifizierung (1) Proseminar im SS 2010 Friedrich-Alexander-Universität Erlangen-Nürnberg 18.05.2010 1 Motivation
Vorlesung Sicherheit
Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 17.04.2014 1 / 26 Logistisches Überschneidungsfreiheit Vorlesung: nachfragen Übungsblatt nicht vergessen Frage: Wie viele würden korrigiertes Übungsblatt nutzen?
Kryptologie. Bernd Borchert. Univ. Tübingen, SS Vorlesung. Doppelstunde 3
Kryptologie Bernd Borchert Univ. Tübingen, SS 2017 orlesung Doppelstunde 3 isuelle Kryptographie Sie sehen an den mitgebrachten Folien: + = HALLO! Man kann es aber auch so sehen: die Information wird in
Betriebsarten von Blockchiffren. ECB Electronic Code Book Mode. Padding. ECB Electronic Code Book Mode
Betriebsarten von Blockchiffren Blocklänge ist fest und klein. Wie große Mengen an Daten verschlüsseln? Blockchiffre geeignet verwenden: ECB Mode (Electronic Code Book) CBC Mode (Cipher Block Chaining)
Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln):
Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes
9. Einführung in die Kryptographie
9. Einführung in die Kryptographie Grundidee: A sendet Nachricht nach B über unsicheren Kanal. Es soll verhindert werden, dass ein Unbefugter Kenntnis von der übermittelten Nachricht erhält. Grundbegriffe:
Übungen zur Vorlesung Systemsicherheit
Übungen zur Vorlesung Systemsicherheit Symmetrische Kryptographie Tilo Müller, Reinhard Tartler, Michael Gernoth Lehrstuhl Informatik 1 + 4 17. November 2010 c (Lehrstuhl Informatik 1 + 4) Übungen zur
Projekt u23 Symmetrische Kryptografie, Betriebsmodi von Blockchiffren
Symmetrische Kryptografie Betriebsmodi von Blockchiffren und was man sonst damit machen kann Martin e.v. https://koeln.ccc.de 12. Oktober 2015 Definition Krypto-System Tupel (M, C, K, E, D) Message, Ciphertext,
Betriebssysteme und Sicherheit Sicherheit. Florian Kerschbaum TU Dresden Wintersemester 2011/12
Betriebssysteme und Sicherheit Sicherheit Florian Kerschbaum TU Dresden Wintersemester 2011/12 Begriffe Kryptographie: Geheimschrift Nachrichten schreiben ohne das sie von einem Anderen gelesen (verändert)
Name:... Vorname:... Matrikel-Nr.:... Studienfach:...
Stefan Lucks Medien Bauhaus-Univ. Weimar Probeklausur Name:.............................. Vorname:........................... Matrikel-Nr.:....................... Studienfach:........................ Wichtige
Kryptographische Systeme (M, C, K, E, D) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln):
Was bisher geschah Kryptographische Systeme (M, C, K, E, D) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes
CodeMeter. Ihr Führerschein zum Kryptographie-Experten. Rüdiger Kügler Professional Services
CodeMeter Ihr Führerschein zum Kryptographie-Experten Rüdiger Kügler Professional Services [email protected] Alvaro Forero Security Expert [email protected] 04.09.2014 Ihr Führerschein zum
Kryptographie für CTFs
Kryptographie für CTFs Eine Einführung KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kitctf.de Einführung Cryptography is the practice and study of techniques for secure communication
Denn es geh t um ihr Geld: Kryptographie
Denn es geht um ihr Geld: Kryptographie Ilja Donhauser Inhalt Allgemeines Symmetrisch Asymmetrisch Hybridverfahren Brute Force Primzahlen Hashing Zertifikate Seite 2 Allgemeines Allgemeines Wissenschaft
Message Authentication Codes
Message Authentication Codes Fabian Eltz / Matthias Schubert Seminar Kryptographie und Datensicherheit WS 06/07 Nested 1. Message Authentication Code () 2. 3. Nested 4. 5. 6. 7. 8. 9. - F. Eltz, M. Schubert
In beiden Fällen auf Datenauthentizität und -integrität extra achten.
Stromchiffren Verschlüsseln eines Stroms von Daten m i (Bits/Bytes) mithilfe eines Schlüsselstroms k i in die Chiffretexte c i. Idee: Im One-Time Pad den zufälligen Schlüssel durch eine pseudo-zufällige
Folie 1. Kryptographie
Folie 1 Kryptographie Klassische Verfahren Etwas Theorie Folie 2 Übersicht Moderne symmetrische Chiffren AES-Entscheidung Die Kunst der Anwendung Fazit Folie 3 Klassische Verfahren Skytala: Vor rund 2.500
2.4 Diskussion und Literaturempfehlungen Lessons Learned A ufgaben Literatur... 62
Inhaltsverzeichnis 1 Einführung in die Kryptografie und Datensicherheit... 1 1.1 Überblick über die Kryptografie (und dieses Buch)... 1 1.2 Symmetrische Kryptografie... 4 1.2.1 Grundlagen... 4 1.2.2 Die
9.5 Blockverschlüsselung
9.5 Blockverschlüsselung Verschlüsselung im Rechner: Stromverschlüsselung (stream cipher): kleine Klartexteinheiten (Bytes, Bits) werden polyalphabetisch verschlüsselt Blockverschlüsselung (block cipher):
Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik
Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Zwecke der Krytographie Techniken Symmetrische Verschlüsselung( One-time Pad,
IT-Sicherheitsmanagement Teil 7: Symmetrische Verschlüsselung
IT-Sicherheitsmanagement Teil 7: Symmetrische Verschlüsselung 08.05.17 1 Literatur [7-1] Schäfer, Günter: Netzsicherheit. dpunkt, 2003 [7-2] Stallings, William: Sicherheit im Internet. Addison-Wesley,
IT-Security. Teil 12: Symmetrische Verschlüsselung
IT-Security Teil 12: Symmetrische Verschlüsselung 20.09.18 1 Literatur [8-1] Schäfer, Günter: Netzsicherheit. dpunkt, 2003 [8-2] Stallings, William: Sicherheit im Internet. Addison-Wesley, 2001 [8-3] Beutelspacher,
Übersicht. Vorlesung Netzsicherheit. Schutzziele Welche Schutzziele will ich? Wie sind diese definierbar?
Übersicht Schutzziele Welche Schutzziele will ich? Wie sind diese definierbar? Vorlesung Netzsicherheit : Meet and 1 Angriffe Was kann ein Angreifer tun? Wie sieht ein Angreifermodell aus? Kryptographische
EINIGE GRUNDLAGEN DER KRYPTOGRAPHIE
EINIGE GRUNDLAGEN DER KRYPTOGRAPHIE Steffen Reith [email protected] 22. April 2005 Download: http://www.thi.uni-hannover.de/lehre/ss05/kry/folien/einleitung.pdf WAS IST KRYPTOGRAPHIE? Kryptographie
Alice (A) und Bob (B) wollen sicher kommunizieren (vgl. Schutzziele) Oskar (O) versucht, die Schutzziele zu durchbrechen
Vorlesung am 21.04.2015 3 Symmetrische Verschlüsselung Alice (A) und Bob (B) wollen sicher kommunizieren (vgl. Schutzziele) Oskar (O) versucht, die Schutzziele zu durchbrechen Passiver Angri : Abhören
Socrative-Fragen aus der Übung vom
Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Übungsleiter: Björn Kaidel, Alexander Koch Stammvorlesung Sicherheit im Sommersemester 2016 Socrative-Fragen aus der Übung vom 28.04.2016
Praktikum IT-Sicherheit
IT-Sicherheit Praktikum IT-Sicherheit - Versuchshandbuch - Aufgaben Kryptografie II In diesem zweiten Versuch zur Kryptografie gehen wir etwas genauer auf die Art und Weise der Verschlüsselung mit der
Übung zur Vorlesung Sicherheit Übung 1. Thomas Agrikola
Übung zur Vorlesung Sicherheit Übung 1 Thomas Agrikola [email protected] 04.05.2017 1 / 36 Literatur zur Vorlesung Jonathan Katz, Yehuda Lindell. Introduction to Modern Cryptography. ISBN 1-584-88551-3.
Kryptographische Hashfunktionen
Kryptographische Hashfunktionen Proseminar/Seminar Kryptographie und Datensicherheit SoSe 2009 Universität Potsdam Jan Jantzen Seminar Kyptographie und Datensicherheit SoSe 09 1 Gliederung Datenintegrität
Einführung in die Kryptographie
Ä Johannes Buchmann Einführung in die Kryptographie Dritte, erweiterte Auflage Inhaltsverzeichnis 1. Einleitung 1 2. Ganze Zahlen 3 2.1 Grundlagen 3 2.2 Teilbarkeit 4 2.3 Darstellung ganzer Zahlen 5 2.4
Angewandte Kryptographie
14.02.2017 Angewandte Kryptographie 1 Angewandte Kryptographie Rüdiger Kügler Security Expert [email protected] 14.02.2017 Angewandte Kryptographie 2 Legendäre Fehler Verschlüsseltes Geschlecht
Lösungen zu. Grundlagen der Kryptologie SS Hochschule Konstanz. Dr.-Ing. Harald Vater. Giesecke & Devrient GmbH Prinzregentenstraße 159
Lösungen zu Grundlagen der Kryptologie SS 008 Hochschule Konstanz Dr.-Ing. Harald Vater Giesecke & Devrient GmbH Prinzregentenstraße 159 D-81677 München Tel.: +49 89 4119-1989 E-Mail: [email protected]
Password: Mein Geheimnis in Händen Dritter
Password: Mein Geheimnis in Händen Dritter 4. April 2014 Die Staatsanwaltschaft Verden (Aller) ist bei Ermittlungen im Internet auf einen Datensatz von rund 18 Millionen Mailadressen und zugehörigen Passworten
IT-Sicherheit Kapitel 2 Symmetrische Kryptographie
IT-Sicherheit Kapitel 2 Symmetrische Kryptographie Dr. Christian Rathgeb Sommersemester 2014 1 Politik und Geschichte Die klassische Kryptographie wurde seit Jahrhunderten benutzt, um militärische und
Hintergründe zur Kryptographie
3. Januar 2009 Creative Commons by 3.0 http://creativecommons.org/licenses/by/3.0/ CAESAR-Chiffre Vigenère CAESAR-Chiffre Vigenère Einfache Verschiebung des Alphabets Schlüsselraum: 26 Schlüssel Einfaches
Kryptografische Hashfunktionen
Kryptografische Hashfunktionen Andreas Spillner Kryptografie, SS 2018 Wo verwenden wir kryptografische Hashfunktionen? Der Hashwert H(x) einer Nachricht x wird oft wie ein Fingerabdruck von x vewendet.
Wiederholung: Informationssicherheit Ziele
Wiederholung: Informationssicherheit Ziele Vertraulichkeit : Schutz der Information vor unberechtigtem Zugriff bei Speicherung, Verarbeitung und Übertragung Methode: Verschüsselung symmetrische Verfahren
Name:... Vorname:... Matrikel-Nr.:... Studienfach:...
Christian Forler DHBW Mosbach 2. April 2015 Klausur Name:.............................. Vorname:........................... Matrikel-Nr.:....................... Studienfach:........................ Wichtige
Einführung in die. Kryptographie WS 2016/ Lösungsblatt
Technische Universität Darmstadt Fachgebiet Theoretische Informatik Prof. Johannes Buchmann Thomas Wunderer Einführung in die Kryptographie WS 6/ 7. Lösungsblatt 8..6 Ankündigungen Arithmetik modulo n
Netzwerktechnologien 3 VO
Netzwerktechnologien 3 VO Univ.-Prof. Dr. Helmut Hlavacs [email protected] Dr. Ivan Gojmerac [email protected] Bachelorstudium Medieninformatik SS 2012 Kapitel 8 - Netzwerksicherheit 8.1 Was ist
Inhaltsverzeichnis. Wolfgang Ertel. Angewandte Kryptographie. ISBN (Buch): ISBN (E-Book):
Inhaltsverzeichnis Wolfgang Ertel Angewandte Kryptographie ISBN (Buch): 978-3-446-42756-3 ISBN (E-Book): 978-3-446-43196-6 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-42756-3
Kryptografie. Seite 1 Sicherheit in Rechnernetzen Prof. Dr. W. Kowalk
Seite 1 Sicherheit in Rechnernetzen Prof. Dr. W. Kowalk Klassen von Unsicherheit in Informatik 'richtig' rechnen Daten vor der Zerstörung bewahren Vor unberechtigtem Zugriff schützen Daten Daten Systeme
Mobilkommunikationsnetze. - IEEE Security -
- IEEE 802.11 Security - Andreas Mitschele-Thiel 1 Sicherheitsziele Vertraulichkeit Schutz gegen unbefugtes Abhören des Datenverkehrs auch durch authentifizierte Nutzer untereinander! Integrität Schutz
Authentikation und digitale Signatur
TU Graz 23. Jänner 2009 Überblick: Begriffe Authentikation Digitale Signatur Überblick: Begriffe Authentikation Digitale Signatur Überblick: Begriffe Authentikation Digitale Signatur Begriffe Alice und
Symmetrische und Asymmetrische Kryptographie. Technik Seminar 2012
Symmetrische und Asymmetrische Kryptographie Technik Seminar 2012 Inhalt Symmetrische Kryptographie Transpositionchiffre Substitutionchiffre Aktuelle Verfahren zur Verschlüsselung Hash-Funktionen Message
Einführung in die Kryptographie
Johannes Buchmann Einführung in die Kryptographie Fünfte Auflage \ - ' '' "'-'"*' : ) ^ Springer Inhaltsverzeichnis 1. Einleitung, : 1 2. Ganze Zahlen 3 2.1 Grundlagen 3 2.2 Teilbarkeit 4 2.3 Darstellung
Vorlesung IT-Sicherheit FH Frankfurt Sommersemester 2007
Vorlesung IT-Sicherheit FH Frankfurt Sommersemester 27 Dr. Volker Scheidemann Kapitel 3: Kryptografie Allgemeine Kryptosysteme Standards für symmetrische Verschlüsselung: DES und AES Kryptografie mit öffentlichen
Einführung in die Kryptographie
Johannes Buchmann Einführung in die Kryptographie 6., überarbeitete Auflage ~ Springer Spektrum Inhaltsverzeichnis 1 Grundlagen........................................ 1.1 Ganze Zahlen...................................
Vorlesung Sicherheit
Vorlesung Sicherheit Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 20.04.2014 1 / 28 Überblick 1 Blockchiffren Erinnerung Angriffe auf Blockchiffren 2 Formalisierung
Grundlagen der Kryptographie
Grundlagen der Kryptographie Seminar zur Diskreten Mathematik SS2005 André Latour [email protected] 1 Inhalt Kryptographische Begriffe Primzahlen Sätze von Euler und Fermat RSA 2 Was ist Kryptographie?
Kurze Einführung in kryptographische Grundlagen.
Kurze Einführung in kryptographische Grundlagen. Was ist eigentlich AES,RSA,DH,ELG,DSA,DSS,ECB,CBC [email protected] GPG-Fingerprint: D19E 04A8 8895 020A 8DF6 0092 3501 1A32 491A 3D9C git clone
Betriebsarten für Blockchiffren
Betriebsarten für Blockchiffren Prof. Dr. Rüdiger Weis TFH Berlin Sommersemester 2008 Betriebsarten für Blockchiffren Was ist eine Betriebsart (engl. Mode of Operation )? Blockchiffre wird genutzt, um
Einführung in die Kryptographie
Springer-Lehrbuch Einführung in die Kryptographie Bearbeitet von Johannes Buchmann 6., überarb. Auflage 2016. Taschenbuch. XXXVi, 330 S. Softcover ISBN 978 3 642 39774 5 Format (B x L): 16,8 x 24 cm Gewicht:
Altfragenkatalog zu Einführung Kryptographie und IT-Sicherheit
Altfragenkatalog zu Einführung Kryptographie und IT-Sicherheit Salzburg 21.12.2018 1.) Diskutieren sie die verschiedenen Kategorien des Brechens eines Verschlüsselungs- Algorithmus. Zu welcher Kategorie
Übungen zur Vorlesung Systemsicherheit
Übungen zur Vorlesung Systemsicherheit Symmetrische Kryptographie Tilo Müller, Reinhard Tartler, Michael Gernoth Lehrstuhl Informatik 4 10. November 2010 c (Lehrstuhl Informatik 4) Übungen zur Vorlesung
Kryptographie und Komplexität
Kryptographie und Komplexität Einheit 2 Kryptoanalyse einfacher Verschlüsselungssysteme 1. Kryptosysteme & Sicherheit 2. Buchstabenorientierte Kryptosysteme 3. Blockbasierte Kryptosysteme 4. One-Time Pads
Übungen zu. Grundlagen der Kryptologie SS 2008. Hochschule Konstanz. Dr.-Ing. Harald Vater. Giesecke & Devrient GmbH Prinzregentenstraße 159
Übungen zu Grundlagen der Kryptologie SS 2008 Hochschule Konstanz Dr.-Ing. Harald Vater Giesecke & Devrient GmbH Prinzregentenstraße 159 D-81677 München Tel.: +49 89 4119-1989 E-Mail: [email protected]
Verlässliche Verteilte Systeme 1. Prof. Dr. Felix Gärtner. Basiswissen Kryptographie
Verlässliche Verteilte Systeme 1 Angewandte IT Robustheit und IT Sicherheit Vorlesung im Wintersemester 2004/2005 Prof. Dr. Felix Gärtner Basiswissen Kryptographie Lehr und Forschungsgebiet Informatik
Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester 2013.
Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz IKS Institut für Kryptographie und Sicherheit Stammvorlesung Sicherheit im Sommersemester 2013 Übungsblatt 2 Aufgabe 1. Wir wissen,
Übung zur Vorlesung Sicherheit. Florian Böhl
Übung zur Vorlesung Sicherheit Florian Böhl [email protected] Sicherheit Literatur zur Vorlesung Jonathan Katz, Yehuda Lindell. Introduction to Modern Cryptography. ISBN 1-584-88551-3. http://www.cs.umd.edu/~jkatz/imc.html
Kryptographie I Symmetrische Kryptographie
Kryptographie I Symmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2009/10 Krypto I - Vorlesung 01-12.10.2009 Verschlüsselung, Kerckhoffs, Angreifer,
Kryptographie. ein erprobter Lehrgang. AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ. LSR für NÖ, 28. April 2011 Alfred Nussbaumer
Kryptographie ein erprobter Lehrgang AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ 1 Variante: Kryptographie in 5 Tagen Ein kleiner Ausflug in die Mathematik (Primzahlen, Restklassen,
Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung)
Was bisher geschah Sicherheitsziele: Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) von Information beim Speichern und
Kryptographie I Symmetrische Kryptographie
Kryptographie I Symmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2012/13 Krypto I - Vorlesung 01-08.10.2012 Verschlüsselung, Kerckhoffs, Angreifer,
Kryptographie I Symmetrische Kryptographie
Kryptographie I Symmetrische Kryptographie Eike Kiltz 1 Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2011/12 1 Basierend auf Folien von Alexander May. Krypto I - Vorlesung 01-10.10.2011
Grundlagen der Kryptographie
Grundlagen der Kryptographie Geschichte Einfache Verschlüsselungsverfahren Symmetrische Verschlüsselungsverfahren Asymmetrische Verschlüsselungsverfahren Authentisierung H. Lubich Sicherheit in Datennetzen
Kapitel 9: Kryptographie: DES. Java SmartCards, Kap. 9 (1/19)
Kapitel 9: Kryptographie: DES Java SmartCards, Kap. 9 (1/19) Symmetrische Verschlüsselung (Secret key) Verfahren: DES, Triple-DES, AES, IDEA, Blowfish,... 1 Schlüssel K für Ver-/Entschlüsselung C = E K
Einführung in die Kryptographie
Johannes Buchmann Einführung in die Kryptographie Fünfte Auflage ~ Springer Inhaltsverzeichnis 1. Einleitung... 1 2. Ganze Zahlen............................................. 3 2.1 Grundlagen... 3 2.2
Systeme I: Betriebssysteme Kapitel 9 Sicherheit. Wolfram Burgard
Systeme I: Betriebssysteme Kapitel 9 Sicherheit Wolfram Burgard Version 07.02.2017 1 Quellen Teile dieses Kapitels basieren auf dem Skript zur Vorlesung Sicherheit am Karlsruher Institut für Technologie,
Kryptographie und IT-Sicherheit
Joachim Swoboda Stephan Spitz Michael Pramateftakis Kryptographie und IT-Sicherheit Grundlagen und Anwendungen Mit 115 Abbildungen STUDIUM VIEWEG+ TEUBNER 1 Ziele und Wege der Kryptographie 1 1.1 Historische
IT-Sicherheitsmanagement Teil 11: Symmetrische Verschlüsselung
IT-Sicherheitsmanagement Teil 11: Symmetrische Verschlüsselung 16.06.16 1 Literatur [11-1] Schäfer, Günter: Netzsicherheit. dpunkt, 2003 [11-2] Stallings, William: Sicherheit im Internet. Addison-Wesley,
