Vorlesung Sicherheit
|
|
|
- Juliane Dörte Geisler
- vor 9 Jahren
- Abrufe
Transkript
1 Vorlesung Sicherheit Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester / 28
2 Überblick 1 Blockchiffren Erinnerung Angriffe auf Blockchiffren 2 Formalisierung von Sicherheit (symmetrischer Verschlüsselung) Sicherheitsdefinition Beispiele Sicherheit von Feistel 3 Zusammenfassung symmetrische Verschlüsselung 4 Hashfunktionen Motivation 2 / 28
3 Überblick 1 Blockchiffren Erinnerung Angriffe auf Blockchiffren 2 Formalisierung von Sicherheit (symmetrischer Verschlüsselung) Sicherheitsdefinition Beispiele Sicherheit von Feistel 3 Zusammenfassung symmetrische Verschlüsselung 4 Hashfunktionen Motivation 3 / 28
4 Erinnerung Stromchiffren: Simulation eines OTP Blockchiffren: E-Funktion, Betriebsmodi Enc Vor-/Nachteile ECB, CBC, CTR(, GCM) DES: Struktur (Feistel: F E) DES-Problem: kurze Schlüssel 2DES (unsicherer als man erwarten würde), 3DES, AES 4 / 28
5 Erinnerung Feistelstruktur DES-Feistelstruktur (links Anfang, rechts Ende) (Wikipedia) 5 / 28
6 Überblick 1 Blockchiffren Erinnerung Angriffe auf Blockchiffren 2 Formalisierung von Sicherheit (symmetrischer Verschlüsselung) Sicherheitsdefinition Beispiele Sicherheit von Feistel 3 Zusammenfassung symmetrische Verschlüsselung 4 Hashfunktionen Motivation 6 / 28
7 Lineare Kryptoanalyse Grundidee: finde F 2 -lineare Abhängigkeiten zwischen den Bits von X und Y := E(K, X ) Beispiel: X 1 + X 7 + Y 3 + Y = K 3 + K 17 mod 2 Idealer Fall: K aus bekannten (X, Y )-Paaren herleitbar Bei Feistel-Verfahren (n Runden) indirekter Angriff möglich: 1 Finde lineare Abhängigkeiten zwischen F-Ein- und -Ausgabe 2 Erweitere Abhängigkeiten auf die ersten n 1 Feistel-Runden 3 Vollständige Suche über letzten Rundenschlüssel K (n) überprüfe K (n) -Kandidaten mittels linearer Abhängigkeit 5 Wenn K (n) gefunden, suche nach K (n 1), danach K (n 2), usw. Bricht FEAL, bei DES besser als vollständige Suche (benötigt aber riesige Anzahl an Klartext-Chiffrat-Paaren) 7 / 28
8 Differentielle Kryptoanalyse Grundidee: betrachte Ausgabedifferenzen out := Y Y in Abhängigkeit von Eingabedifferenzen in := X X Bei bestimmten Eingabedifferenzen (z.b. von S-Boxen) manche Ausgabedifferenzen wahrscheinlicher als andere Bei Feistel-Verfahren Angriff ähnlich wie bei linearer Analyse: 1 Finde wahrscheinliche Paare in out zwischen Eingabe und Ausgabe von vorletzter Runde 2 Vollständige Suche über letzten Rundenschlüssel K (n) überprüfe K (n) -Kandidaten auf in out -Konsistenz DES resistent gegen differentielle Analyse, FEAL nicht 8 / 28
9 Überblick 1 Blockchiffren Erinnerung Angriffe auf Blockchiffren 2 Formalisierung von Sicherheit (symmetrischer Verschlüsselung) Sicherheitsdefinition Beispiele Sicherheit von Feistel 3 Zusammenfassung symmetrische Verschlüsselung 4 Hashfunktionen Motivation 9 / 28
10 Überblick 1 Blockchiffren Erinnerung Angriffe auf Blockchiffren 2 Formalisierung von Sicherheit (symmetrischer Verschlüsselung) Sicherheitsdefinition Beispiele Sicherheit von Feistel 3 Zusammenfassung symmetrische Verschlüsselung 4 Hashfunktionen Motivation 10 / 28
11 Motivation Diskussion: Was soll eigentlich erreicht werden? Der Einfachheit halber Beschränkung auf passive Sicherheit/Angriffe 11 / 28
12 Semantische Sicherheit Semantische Sicherheit (Goldwasser und Micali 1982) Quelle: Wikipedia Idee: Chiffrat hilft nicht bei Berechnungen über Klartext Oder: alles, was mit C (effizient) über M berechnet werden kann, kann auch (effizient) ohne Chiffrat berechnet werden Wichtig: deckt so nur passive Angriffe ab 12 / 28
13 Semantische Sicherheit Definition (Semantische Sicherheit, informell) Ein symmetrisches Verschlüsselungsverfahren ist semantisch sicher, wenn es für jede M-Verteilung von Nachrichten gleicher Länge, jede Funktion f und jeden effizienten Algorithmus A einen effizienten Algorithmus B gibt, so dass [ ] Pr A Enc(K, ) (Enc(K, M)) = f (M) Pr [B(ε) = f (M)] klein ist. Technisch recht unhandlich (Quantoren!), aber handlichere äquivalente Begriffe (IND-CPA-Sicherheit) existieren Existenz von (mehrfach benutzbaren) semantisch sicheren Verfahren impliziert P NP 13 / 28
14 Passive Sicherheit: IND-CPA IND-CPA: indistinguishability under chosen-plaintext attacks Schema IND-CPA-sicher kein effizienter Angreifer A kann Chiffrate von selbstgewählten Klartexten unterscheiden 1 A erhält im Folgenden Zugriff auf Enc(K, )-Orakel 2 A wählt zwei Nachrichten M (1), M (2) gleicher Länge 3 A erhält C := Enc(K, M (b) ) für gleichverteiltes b {1, 2} 4 A gewinnt, wenn er b richtig rät A : (Pr [A gewinnt] 1/2) klein : Schema IND-CPA-sicher Idee: Chiffrate ununterscheidbar (z.b. von Zufallschiffraten) Theorem (Semantische Sicherheit IND-CPA, ohne Beweis) Ein symmetrisches Verschlüsselungsverfahren ist genau dann semantisch sicher, wenn es IND-CPA-sicher ist. 14 / 28
15 Überblick 1 Blockchiffren Erinnerung Angriffe auf Blockchiffren 2 Formalisierung von Sicherheit (symmetrischer Verschlüsselung) Sicherheitsdefinition Beispiele Sicherheit von Feistel 3 Zusammenfassung symmetrische Verschlüsselung 4 Hashfunktionen Motivation 15 / 28
16 Beispiel: ECB Mode Theorem Erinnerung ECB: C i := E(K, M i ) Keine Blockchiffre ist im ECB Mode IND-CPA-sicher. Beweis. Betrachte folgendes A: 1 A wählt M (1) M (2) beliebig 2 A erhält C := Enc(K, M (b) ) 3 A erfragt C (1) := Enc(K, M (1) ) 4 A gibt 1 aus gdw. C = C (1) Pr [A gewinnt] = 1 Schema IND-CPA-unsicher Nutzt aus, dass gleiche Nachricht gleiches Chiffrat gilt 16 / 28
17 Beispiel: CBC Mode Erinnerung CBC: C i := E(K, M i C i 1 ), wobei C 0 := IV ECB-Angriff funktioniert nicht bei CBC, wenn IV zufällig und für jedes Chiffrat neu gewählt Gleiche Nachricht gleiches Chiffrat Annahme im Folgenden: IV für jede Verschlüsselung neu gleichverteilt gewählt und dem Chiffrat beigefügt Allerdings: macht aktive Angriffe noch leichter (IV veränderbar) 17 / 28
18 Beispiel: CBC Mode Theorem (IND-CPA-Sicherheit des CBC Mode, informell) Ist E(K, ) : {0, 1} l {0, 1} l für zufälliges K ununterscheidbar von einer Zufallsfunktion R : {0, 1} l {0, 1} l, dann ist die oben beschriebene Blockchiffre im CBC Mode IND-CPA-sicher. Bemerkung: Analoge Aussage gilt auch für CTR und GCM Beweisidee (Reduktion). Baue aus IND-CPA-Angreifer A einen E/R-Unterscheider B. Achtung: zeigt noch nicht, dass E ununterscheidbar von R 18 / 28
19 Beispiel: Stromchiffren Erinnerung: Stromchiffre nutzt SC : {0, 1} k {0, 1} {0, 1} k Annahme: K-Update über mehrere Verschlüsselungen hinweg Theorem (IND-CPA-Sicherheit von Stromchiffren, informell) Ist SC(K) für zufälliges K ununterscheidbar von zufälligem U {0,1} {0,1} k {0, 1} {0, 1} k, dann ist die entstehende zustandsbehaftete Stromchiffre IND-CPA-sicher. Beweisidee (Reduktion). Baue aus einem beliebigem gegebenem IND-CPA-Angreifer A einen SC(K)/U {0,1} {0,1} k -Unterscheider B 19 / 28
20 Überblick 1 Blockchiffren Erinnerung Angriffe auf Blockchiffren 2 Formalisierung von Sicherheit (symmetrischer Verschlüsselung) Sicherheitsdefinition Beispiele Sicherheit von Feistel 3 Zusammenfassung symmetrische Verschlüsselung 4 Hashfunktionen Motivation 20 / 28
21 Weiteres Beispiel: Feistel-Schema Theorem (Sicherheit des Feistel-Schemas, informell) Ist F(K, ) (mit zufälligem K) ununterscheidbar von einer zufälligen Funktion, dann ist Enc(K, ) ununterscheidbar von einer zufälligen invertierbaren Funktion. 21 / 28
22 Überblick 1 Blockchiffren Erinnerung Angriffe auf Blockchiffren 2 Formalisierung von Sicherheit (symmetrischer Verschlüsselung) Sicherheitsdefinition Beispiele Sicherheit von Feistel 3 Zusammenfassung symmetrische Verschlüsselung 4 Hashfunktionen Motivation 22 / 28
23 Zusammenfassung symmetrische Verschlüsselung Stromchiffren schneller, aber weniger gute Kandidaten Struktur von Blockchiffren reichhaltiger E-Funktion, Betriebsmodi Feistel-Struktur (DES) Angriffsstrategien: lineare/differentielle Kryptoanalyse Sicherheit grundsätzlich formalisierbar Sicherheitsreduktion erlaubt es, sich auf zugrundeliegende Bausteine (z.b. E) zu konzentrieren Aber: sichere Verschlüsselung impliziert P NP (Ausnahme: begrenzte Nachrichtenlänge/unbegrenzter Schlüssel) 23 / 28
24 Aktuelle Forschung Algebraische Kryptoanalyse 1 Drücke Rundenfunktion algebraisch (F 2 -GLS) aus 2 Versuche, algebraische Abhängigkeiten zu erweitern 3 Löse entstehendes GLS z.b. mit Gröbnerbasisalgorithmen Alternativen zu Feistel (Sponge Functions) Seitenkanalangriffe und Leakage Resilience Beispiel: Zeitmessung(en) von Verschlüsselungen Laufzeit hängt subtil von verwendetem Schlüssel ab Manchmal statistische Analyse möglich Aber: manchmal algorithmische Gegenmaßnahmen möglich 24 / 28
25 Überblick 1 Blockchiffren Erinnerung Angriffe auf Blockchiffren 2 Formalisierung von Sicherheit (symmetrischer Verschlüsselung) Sicherheitsdefinition Beispiele Sicherheit von Feistel 3 Zusammenfassung symmetrische Verschlüsselung 4 Hashfunktionen Motivation 25 / 28
26 Überblick 1 Blockchiffren Erinnerung Angriffe auf Blockchiffren 2 Formalisierung von Sicherheit (symmetrischer Verschlüsselung) Sicherheitsdefinition Beispiele Sicherheit von Feistel 3 Zusammenfassung symmetrische Verschlüsselung 4 Hashfunktionen Motivation 26 / 28
27 Was ist eine Hashfunktion? Kurzer Fingerabdruck großer Daten: H : {0, 1} {0, 1} k Anwendungen: Vergleich großer Dateien: überprüfe, ob Download korrekt war (vorgreifend) Signaturen: signiere H(M) anstellt von M Generell wichtiger kryptographischer Baustein Beispiel (vorgreifend): aktiv sichere Verschlüsselung 27 / 28
28 Anforderungen an eine Hashfunktion Kurzer Fingerabdruck großer Daten: H : {0, 1} {0, 1} k Keine Kollisionen (X X mit H(X ) = H(X )) Für unsere Zwecke (kryptographische Hashfunktion): Definition (Kollisionsresistenz, informell) Eine Hashfunktion H ist kollisionsresistent, wenn jeder effiziente Algorithmus nur mit kleiner Wahrscheinlichkeit eine Kollision findet. 28 / 28
Vorlesung Sicherheit
Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 25.04.2013 1 / 19 Überblick 1 Blockchiffren Erinnerung Beispiel: AES Angriffe auf Blockchiffren 2 Formalisierung von Sicherheit (symmetrischer Verschlüsselung)
Vorlesung Sicherheit
Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 17.04.2014 1 / 26 Logistisches Überschneidungsfreiheit Vorlesung: nachfragen Übungsblatt nicht vergessen Frage: Wie viele würden korrigiertes Übungsblatt nutzen?
Vorlesung Sicherheit
Vorlesung Sicherheit Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 02.05.2016 1 / 22 Überblick 1 Hashfunktionen Erinnerung Formalisierung Die Merkle-Damgård-Konstruktion
Vorlesung Sicherheit
Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 30.04.2018 1 / 35 Überblick 1 Hashfunktionen Motivation Formalisierung Die Merkle-Damgård-Konstruktion (Weitere) Angriffe auf Hashfunktionen Zusammenfassung
Vorlesung Sicherheit
Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 12.05.2014 1 / 26 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:
Vorlesung Sicherheit
Vorlesung Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 23.05.2016 1 / 32 Überblick 1 Symmetrische Authentifikation von Nachrichten Ziel Konstruktionen MACs
Vorlesung Sicherheit
Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 15.05.2017 1 / 25 Überblick 1 Hashfunktionen Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel: RSA
Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Nachklausur
Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz IKS Institut für Kryptographie und Sicherheit Stammvorlesung Sicherheit im Sommersemester 2013 Nachklausur 07.10.2013 Vorname: Nachname:
Homomorphe Verschlüsselung
Homomorphe Verschlüsselung Definition Homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : G G für Gruppen G, G. Π heißt homomorph, falls Enc(m 1 ) G Enc(m 2 ) eine gültige Verschlüsselung
Asymmetrische Verschlüsselungsverfahren
Asymmetrische Verschlüsselungsverfahren Einmalsignaturen Björn Kaidel (Vertretung für Prof. Müller-Quade) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2018-02-01 B. Kaidel Asymmetrische
Socrative-Fragen aus der Übung vom
Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Übungsleiter: Björn Kaidel, Alexander Koch Stammvorlesung Sicherheit im Sommersemester 2016 Socrative-Fragen aus der Übung vom 28.04.2016
Hashfunktionen und MACs
3. Mai 2006 Message Authentication Code MAC: Message Authentication Code Was ist ein MAC? Der CBC-MAC Der XOR-MAC Kryptographische Hashfunktionen Iterierte Hashfunktionen Message Authentication Code Nachrichten
Asymmetrische Verschlüsselungsverfahren
Asymmetrische Verschlüsselungsverfahren Vorlesung 4 Alexander Koch (Vertretung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2016-11-10 Alexander Koch Asymmetrische Verschlüsselungsverfahren
Asymmetrische Verschlüsselungsverfahren
Asymmetrische Verschlüsselungsverfahren Vorlesung 4 Alexander Koch (Vertretung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT 2015-11-12 Universität desalexander Landes Baden-Württemberg
Prinzipien der modernen Kryptographie Sicherheit
Prinzipien der modernen Kryptographie Sicherheit Prinzip 1 Sicherheitsziel Die Sicherheitsziele müssen präzise definiert werden. Beispiele für ungenügende Definitionen von Sicherheit Kein Angreifer kann
Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Klausur Hinweise
Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2015 Klausur 21.07.2015 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung stehen
Prinzipien der modernen Kryptographie Sicherheit
Prinzipien der modernen Kryptographie Sicherheit Prinzip 1 Sicherheitsmodell Das Sicherheitsmodell (Berechnungsmodell, Angriffstypen, Sicherheitsziele) muss präzise definiert werden. Berechnungsmodell:
Vorlesung Sicherheit
Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 13.05.2013 1 / 16 Überblick 1 Asymmetrische Verschlüsselung Erinnerung Andere Verfahren Demonstration Zusammenfassung 2 Symmetrische Authentifikation von Nachrichten
Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Klausur Hinweise
Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz Stammvorlesung Sicherheit im Sommersemester 2014 Klausur 22.07.2014 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung stehen
Vorlesung Sicherheit
Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 26.06.2017 1 / 41 Überblick 1 Identifikationsprotokolle Erinnerung Sicherheitsmodell Ein sicheres Protokoll Noch ein sicheres Protokoll 2 Zero-Knowledge-Protokolle
Digitale Signaturen. Einmalsignaturen Gunnar Hartung, Björn Kaidel. FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK
Digitale Signaturen Einmalsignaturen Gunnar Hartung, Björn Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2016-11-04 B. Kaidel Digitale Signaturen: Einmalsignaturen KIT Die Forschungsuniversität
Sicherheit von Merkle Signaturen
Sicherheit von Merkle Signaturen Algorithmus Angreifer A für die Einwegsignatur EINGABE: pk, Zugriff auf eine Anfrage an Orakel Sign sk ( ) 1 Berechne (pk (i), sk (i) ) Gen(1 n ) für i = 1,...,l. Wähle
Kryptographie für CTFs
Kryptographie für CTFs Eine Einführung KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kitctf.de Einführung Cryptography is the practice and study of techniques for secure communication
Kryptografische Hashfunktionen
Kryptografische Hashfunktionen Andreas Spillner Kryptografie, SS 2018 Wo verwenden wir kryptografische Hashfunktionen? Der Hashwert H(x) einer Nachricht x wird oft wie ein Fingerabdruck von x vewendet.
Konstruktion von MACs. Message Authentication Codes. Sicherheitsmodell CBC-MAC
Message Authentication Codes Entspricht Hashfunktionen mit geheimen Schlüsseln. h : K M H, MAC = h k (m). h parametrisierte Hashfunktion. m Nachricht. k geheimer Schlüssel. Mit der Nachricht m wird h k
Message Authentication Codes. Konstruktion von MACs. Hash-then-Encrypt. Sicherheitsmodell
Message Authentication Codes Entspricht Hashfunktionen mit geheimen Schlüsseln. h : K M H, MAC = h k (m). h parametrisierte Hashfunktion. m Nachricht. k geheimer Schlüssel. Mit der Nachricht m wird h k
Stromchiffre. Algorithmus Stromchiffre
Stromchiffre Algorithmus Stromchiffre Sei G ein Pseudozufallsgenerator mit Expansionsfaktor l(n). Wir definieren Π s = (Gen, Enc, Dec) mit Sicherheitsparameter n für Nachrichten der Länge l(n). 1 Gen:
EINIGE GRUNDLAGEN DER KRYPTOGRAPHIE
EINIGE GRUNDLAGEN DER KRYPTOGRAPHIE Steffen Reith [email protected] 22. April 2005 Download: http://www.thi.uni-hannover.de/lehre/ss05/kry/folien/einleitung.pdf WAS IST KRYPTOGRAPHIE? Kryptographie
Stromchiffre. Algorithmus Stromchiffre
Stromchiffre Algorithmus Stromchiffre Sei G ein Pseudozufallsgenerator mit Expansionsfaktor l(n). Wir definieren Π s = (Gen, Enc, Dec) mit Sicherheitsparameter n für Nachrichten der Länge l(n). 1 Gen:
Voll homomorpe Verschlüsselung
Voll homomorpe Verschlüsselung Definition Voll homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : R R für Ringe R, R. Π heißt voll homomorph, falls 1 Enc(m 1 ) + Enc(m 2 ) eine gültige
Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester 2013.
Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz IKS Institut für Kryptographie und Sicherheit Stammvorlesung Sicherheit im Sommersemester 2013 Übungsblatt 2 Aufgabe 1. Wir wissen,
Pseudozufallsfunktionen (PRF) Kapitel 3
Pseudozufallsfunktionen (PRF) Kapitel 3 Motivation Verschlüsselung eines Dateisystems durch PRG: PRG G(x) Entschlüsselung: berechne aus x entsprechende Generator-Ausgabe Aber: Entschlüsselung der letzten
Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Klausur
Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz IKS Institut für Kryptographie und Sicherheit Stammvorlesung Sicherheit im Sommersemester 2013 Klausur 26.07.2013 Vorname: Nachname:
Beweisbar sichere Verschlüsselung
Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit [email protected] 1
Kryptographie für CTFs
Kryptographie für CTFs Eine Einführung KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kitctf.de Einführung Cryptography is the practice and study of techniques for secure communication
Sicherer MAC für Nachrichten beliebiger Länge
Sicherer MAC für Nachrichten beliebiger Länge Korollar Sicherer MAC für Nachrichten beliebiger Länge Sei F eine Pseudozufallsfunktion. Dann ist Π MAC2 für Π = Π MAC sicher. Nachteile: Für m ({0, 1} n 4
Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Klausur Hinweise
Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz Stammvorlesung Sicherheit im Sommersemester 2014 Klausur 22.07.2014 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung stehen
Hashfunktionen und Kollisionen
Hashfunktionen und Kollisionen Definition Hashfunktion Eine Hashfunktion ist ein Paar (Gen, H) von pt Algorithmen mit 1 Gen: s Gen(1 n ). Gen ist probabilistisch. 2 H: H s berechnet Funktion {0, 1} {0,
Vorlesung Sicherheit
Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 23.05.2013 1 / 26 Überblick 1 Einschub: Seitenkanalangriffe Demonstration Simple Power Attacks (SPAs) (Weitere) Beispiele für Seitenkanäle Gegenmaßnahmen gegen
Ununterscheidbarkeit von Chiffretexten
Ununterscheidbarkeit von Chiffretexten Spiel Ununterscheidbarkeit von Chiffretexten PrivK eav A,Π (n) Sei Π ein Verschlüsselungsverfahren und A ein Angreifer. 1 (m 0, m 1 ) A. 2 k Gen(1 n ). 3 Wähle b
Ununterscheidbarkeit von Chiffretexten
Ununterscheidbarkeit von Chiffretexten Spiel Ununterscheidbarkeit von Chiffretexten PrivK eav A,Π (n) Sei Π ein Verschlüsselungsverfahren und A ein Angreifer. 1 (m 0, m 1 ) A. 2 k Gen(1 n ). 3 Wähle b
Kryptologie. K l a u s u r WS 2006/2007, Prof. Dr. Harald Baier
Kryptologie K l a u s u r WS 2006/2007, 2007-02-01 Prof. Dr. Harald Baier Name, Vorname: Matrikelnummer: Hinweise: (a) Als Hilfsmittel ist nur der Taschenrechner TI-30 zugelassen. Weitere Hilfsmittel sind
Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Übungsblatt 5. pk = (g, y) und sk = (g, x). ? = y H(t m) t. g s
Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz Stammvorlesung Sicherheit im Sommersemester 2014 Übungsblatt 5 Hinweis: Übungsblätter können freiwillig bei Jessica Koch, Raum 256, Geb.
Digitale Signaturen. Einführung Gunnar Hartung, Björn Kaidel. FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK
Digitale Signaturen Einführung Gunnar Hartung, Björn Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2016-10-21 G. Hartung, B. Kaidel Digitale Signaturen: Einführung KIT Die Forschungsuniversität
Hybride Verschlüsselungsverfahren
Hybride Verschlüsselungsverfahren Ziel: Flexibilität von asym. Verfahren und Effizienz von sym. Verfahren. Szenario: Sei Π = (Gen, Enc, Dec) ein PK-Verschlüsselungsverfahren und Π = (Gen, Enc, Dec ) ein
Das Generalized Birthday Problem
Das Generalized Birthday Problem Problem Birthday Gegeben: L 1, L 2 Listen mit Elementen aus {0, 1} n Gesucht: x 1 L 1 und x 2 L 2 mit x 1 x 2 = 0. Anwendungen: Meet-in-the-Middle Angriffe (z.b. für RSA,
IT-Sicherheit: Kryptographie
IT-Sicherheit: Kryptographie Kryptologie = Kryptographie + Kryptoanalyse! Kryptographie: Methoden zur Ver- und Entschlüsselung von Nachrichten und damit zusammenhängende Methoden! Kryptoanalyse: Entschlüsselung
Algorithmische Kryptographie
Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Public-Key-Systeme: Rabin 1 Das System nach Rabin 2 Grundlagen Körper Endliche Körper F(q) Definitionen Quadratwurzel
VI.4 Elgamal. - vorgestellt 1985 von Taher Elgamal. - nach RSA das wichtigste Public-Key Verfahren
VI.4 Elgamal - vorgestellt 1985 von Taher Elgamal - nach RSA das wichtigste Public-Key Verfahren - besitzt viele unterschiedliche Varianten, abhängig von zugrunde liegender zyklischer Gruppe - Elgamal
Asymmetrische Verschlüsselungsverfahren
Asymmetrische Verschlüsselungsverfahren Björn Kaidel - Vertretung für Prof. J. Müller-Quade (Folien von A. Koch) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 17.11.2016 Björn Kaidel
Digitale Signaturen. Einführung Björn Kaidel. FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK
Digitale Signaturen Einführung Björn Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2017-10-20 B. Kaidel Digitale Signaturen: Einführung KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft
Informatik II, SS 2016
Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 8 (13.5.2016) Hashtabellen I Algorithmen und Komplexität Dictionary mit sortiertem Array Laufzeiten: create: O(1) insert: O(n) find: O(log
Homomorphe Verschlüsselung
Homomorphe Verschlüsselung Definition Homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : G G für Gruppen G, G. Π heißt homomorph, falls Enc(m 1 ) G Enc(m 2 ) eine gültige Verschlüsselung
In beiden Fällen auf Datenauthentizität und -integrität extra achten.
Stromchiffren Verschlüsseln eines Stroms von Daten m i (Bits/Bytes) mithilfe eines Schlüsselstroms k i in die Chiffretexte c i. Idee: Im One-Time Pad den zufälligen Schlüssel durch eine pseudo-zufällige
Kryptographie - eine mathematische Einführung
Kryptographie - eine mathematische Einführung Rosa Freund 28. Dezember 2004 Überblick Grundlegende Fragestellungen Symmetrische Verschlüsselung: Blockchiffren, Hashfunktionen
Grundlagen der Verschlüsselung und Authentifizierung (1)
Grundlagen der Verschlüsselung und Authentifizierung (1) Proseminar im SS 2010 Friedrich-Alexander-Universität Erlangen-Nürnberg 18.05.2010 1 Motivation
