Stromchiffre. Algorithmus Stromchiffre
|
|
|
- Justus Kuntz
- vor 8 Jahren
- Abrufe
Transkript
1 Stromchiffre Algorithmus Stromchiffre Sei G ein Pseudozufallsgenerator mit Expansionsfaktor l(n). Wir definieren Π s = (Gen, Enc, Dec) mit Sicherheitsparameter n für Nachrichten der Länge l(n). 1 Gen: Wähle k R {0, 1} n. 2 Enc: Bei Eingabe k {0, 1} n und m {0, 1} l(n), berechne c := G(k) m. 3 Dec: Bei Eingabe k {0, 1} n und c {0, 1} l(n), berechne m := G(k) c. Anmerkung: Π s verwendet G(k) anstatt r {0, 1} l(n) wie im One-Time Pad. D.h. wir benötigen nur n statt l(n) echte Zufallsbits. (Bsp: n 128 Bit, l(n) mehrere Megabyte) Krypto I - Vorlesung Stromchiffre, mehrfache Verschlüsselung, deterministische Verschlüsselung 44 / 169
2 Sicherheit unserer Stromchiffre Satz Sicherheit von Π s Sei G ein Pseudozufallsgenerator. Dann ist Π s KPA-sicher. Beweis: Idee: Erfolgreicher Angreifer A liefert Unterscheider D für G. Sei A ein KPA-Angreifer auf Π s mit Vorteil ǫ(n). Wir konstruieren mittels A folgenden Unterscheider D für G. Algorithmus Unterscheider D EINGABE: w {0, 1} l(n) 1 Erhalte (m 0, m 1 ) A(1 n ) 2 Wähle b R {0, 1} und berechne c := w m b. 3 Erhalte b A(c). { 1 falls b = b, Interpretation: w = G(k), k R {0, 1} n AUSGABE: = 0 sonst, Interpretation: w R {0, 1} l(n). Krypto I - Vorlesung Stromchiffre, mehrfache Verschlüsselung, deterministische Verschlüsselung 45 / 169
3 Sicherheit von Π s w {0,1} l(n) Unterscheider D 1 n Angreifer A Ausgabe b R {0,1} c = w m b Ausgabe: { 1 if b = b 0 else (m 0,m 1 ) c b Fall 1: w = r R {0, 1} l(n), d.h. w ist ein echter Zufallsstring. Dann ist die Verteilung von c identisch zur Verteilung beim One-Time Pad Π otp. Damit folgt aus der perfekten Sicherheit des One-Time Pads Ws[D(r) = 1] = Ws[PrivK eav A,Π otp (n) = 1] = 1 2. Krypto I - Vorlesung Stromchiffre, mehrfache Verschlüsselung, deterministische Verschlüsselung 46 / 169
4 Sicherheit von Π s Fall 2: w = G(k) für k R {0, 1} n, d.h. w wurde mittels G generiert. Damit ist die Verteilung von c identisch zur Verteilung in Π s. Es folgt Ws[D(G(k)) = 1] = Ws[PrivK eav A,Π s (n) = 1] = 1 2 +ǫ(n). Aus der Pseudozufälligkeit von G folgt insgesamt negl(n) Ws[D(r) = 1] Ws[D(G(k)) = 1] = ǫ(n). }{{}}{{} ǫ(n) Damit ist der Vorteil jedes Angreifers A vernachlässigbar. Krypto I - Vorlesung Stromchiffre, mehrfache Verschlüsselung, deterministische Verschlüsselung 47 / 169
5 Generator mit variabler Ausgabelänge Ziel: Um Nachricht beliebiger Länge l(n) mit Algorithmus Π s zu verschlüsseln, benötigen wir ein G mit variabler Ausgabelänge l(n). Definition Pseudozufallsgenerator mit variabler Ausgabelänge Ein pt Algorithmus G heißt Pseudozufallsgenerator mit variabler Ausgabelänge falls 1 Für eine Saat s {0, 1} n und eine Längel N berechnet G(s, 1 l ) einen String der Länge l. 2 Für jedes Polynom l(n) > n ist G l (s) := G(s, 1 l(n) ), s {0, 1} n ein Pseudozufallsgenerator mit Expansionsfaktor l(n). 3 Für alle s,l,l mit l l ist G(s, 1 l ) ein Präfix von G(s, 1 l ). Anmerkungen: Für Nachricht m erzeugen wir Chiffretext c := G(k, 1 m ) m. Bedingung 3 ist technischer Natur, um im KPA-Spiel Verschlüsselungen von m 0, m 1 beliebiger Länge zuzulassen. Krypto I - Vorlesung Stromchiffre, mehrfache Verschlüsselung, deterministische Verschlüsselung 48 / 169
6 Existenz Zufallsgenerator mit/ohne variable Länge Fakt Existenz von Zufallsgeneratoren (Hastad, Impagliazzo, Levin, Luby, 1999) 1 Die Existenz von Pseudozufallsgeneratoren folgt unter der Annahme der Existenz von sogenannten Einwegfunktionen. 2 Pseudozufallsgeneratoren variabler Ausgabelänge können aus jedem Pseudozufallsgenerator fixer Länge konstruiert werden. Vereinfacht: Einwegfunktion Pseudozufallsgenerator fixer Länge Pseudozufallsgenerator variabler Länge (mehr dazu im Verlauf der Vorlesung) Krypto I - Vorlesung Stromchiffre, mehrfache Verschlüsselung, deterministische Verschlüsselung 49 / 169
7 Diskussion Stromchiffren Stromchiffre: Pseudozufallsgeneratoren mit variabler Ausgabelänge liefern Strom von Zufallsbits. Wir nennen diese Stromgeneratoren auch Stromchiffren. Stromchiffren in der Praxis: Beispiele: LFSRs, RC4, SEAL, A5/1, E0 und Bluetooth. Viele Stromchiffren in der Praxis sind sehr schnell, allerdings sind die meisten leider ad hoc Lösungen ohne Sicherheitsbeweis. Schwächen in RC4 führten zum Brechen des WEP Protokolls. LFSRs sind kryptographisch vollständig gebrochen worden : Ecrypt-Projekt estream zur Etablierung sicherer Standard-Stromchiffren. Vorgeschlagene Kandidaten: Software: HC-128, Rabbit, Salsa20/12 und SOSEMANUK. Hardware: Grain v1, MICKEY v2 und Trivium. Krypto I - Vorlesung Stromchiffre, mehrfache Verschlüsselung, deterministische Verschlüsselung 50 / 169
8 Sicherheit mehrfacher Verschlüsselung Bisher: Angreifer A erhält nur eine Verschlüsselung. Nachrichten müssen aber sicher bleiben, falls A mehrere Chiffretexte erhält. Spiel Mehrfache Verschlüsselung PrivK mult A,Π (n) Sei Π ein Verschlüsselungsverfahren und A ein Angreifer. 1 (M 0, M 1 ) A(1 n ) mit M 0 = (m0 1,...,mt 0 ), M 1 = (m1 1,..., mt 1 ) und m0 i = mi 1 für alle i [t]. 2 k Gen(1 n ). 3 Wähle b R {0, 1}. b A((Enc k (mb 1),..., Enc k(mb t { )). 4 PrivKA,Π mult(n) = 1 für b = b. 0 sonst Krypto I - Vorlesung Stromchiffre, mehrfache Verschlüsselung, deterministische Verschlüsselung 51 / 169
9 Mult-KPA Spiel PrivK mult A,Π (n) k Gen(1 n ) b R {0,1} ) c j Enc k (m j b C = (c 1,,c t ) Ausgabe: { 1 falls b = b = 0 sonst 1 n (M 0,M 1 ) C b Angreifer A M i = (m 1 i,,mt i ), i = 0,1 = j, m j i M m j 0 m j 1 b {0,1} Krypto I - Vorlesung Stromchiffre, mehrfache Verschlüsselung, deterministische Verschlüsselung 52 / 169
10 Mult-KPA Sicherheit Definition Mult-KPA Sicherheit Ein Verschlüsselungsschema Π = (Gen, Enc, Dec) besitzt ununterscheidbare mehrfache Chiffretexte gegenüber KPA falls für alle ppt A: Ws[PrivK mult A,Π (n) = 1] negl(n). Der Wsraum ist definiert über die Münzwürfe von A und PrivK mult A,Π. Notation: Wir bezeichnen Π als mult-kpa sicher. Krypto I - Vorlesung Stromchiffre, mehrfache Verschlüsselung, deterministische Verschlüsselung 53 / 169
11 KPA Sicherheit vs. mult-kpa Sicherheit Satz KPA Sicherheit vs. mult-kpa Sicherhei KPA Sicherheit impliziert nicht mult-kpa Sicherheit. Beweis: Π s ist KPA-sicher. Wir betrachten folgendes mult-kpa Spiel. Algorithmus Angreifer A für Π s EINGABE: Sicherheitsparameter n 1 (M 0, M 1 ) A(1 n ) mit M 0 = (0 l(n), 0 l(n) ), M 1 = (0 l(n), 1 l(n) ). 2 Erhalte C = (c 1, c 2 ). { AUSGABE: b 1 falls c 1 = c 2 =. 0 sonst Da Enc von Π s deterministisch ist, gilt Ws[PrivK mult A,Π s (n) = 1] = 1. Krypto I - Vorlesung Stromchiffre, mehrfache Verschlüsselung, deterministische Verschlüsselung 54 / 169
12 Mult-KPA Angreifer auf Π s PrivK mult A,Π s (n) k Gen(1 n ) b R {0,1} ) c j = Enc k (m j b Ausgabe: { 1 falls b = b = 0 sonst 1 n (M 0,M 1 ) (c 1,c 2 ) b Angreifer A M 0 = (0 l(n),0 l(n) ) M 1 = (0 l(n),1 l(n) ) Falls c 1 = c 2, setze b = 0. Falls c 1 c 2, setze b = 1. Krypto I - Vorlesung Stromchiffre, mehrfache Verschlüsselung, deterministische Verschlüsselung 55 / 169
13 Unsicherheit deterministischer Verschlüsselung Korollar Unsicherheit deterministischer Verschlüsselung Sei Π = (Gen, Enc, Dec) mit deterministischer Verschlüsselung Enc. Dann ist Π unsicher gegenüber mult-kpa Angriffen. Voriger Angreifer A nutzt lediglich, dass für zwei identische Nachrichten m 0 = m 1 auch die Chiffretexte identisch sind. Notwendig: Wir benötigen randomisiertes Enc, dass identische Nachrichten auf unterschiedliche Chiffretexte abbildet. Krypto I - Vorlesung Stromchiffre, mehrfache Verschlüsselung, deterministische Verschlüsselung 56 / 169
14 Synchronisierte sichere mehrfache Verschlüsselung Synchronisierter Modus für Stromchiffren: Nutze für Nachrichten m 1, m 2,..., m n sukzessive Teil des Bitstroms G(s) = s 1 s 2...s n mit s i = m i. D.h. es werden nie Teile des Bitstroms wiederverwendet. Ermöglicht einfaches Protokoll zur Kommunikation von A und B: A verschlüsselt mit s1, B entschlüsselt mit s 1. Danach verschlüsselt B mit s2, mit dem auch A entschlüsselt, usw. Erfordert, dass A und B die Position im Bitstrom synchronisieren. Verfahren ist sicher, da die Gesamtheit der Nachrichten als einzelne Nachricht m = m 1... m n aufgefasst werden kann. Krypto I - Vorlesung Stromchiffre, mehrfache Verschlüsselung, deterministische Verschlüsselung 57 / 169
15 Nicht-synchronisierte mehrfache Verschlüsselung Nicht-synchronisierter Modus für Stromchiffren: Erweitern Funktionalität von Pseudozufallsgeneratoren G: 1 G erhält zwei Eingaben: Schlüssel k und Initialisierungsvektor IV. 2 G(k, IV) ist pseudozufällig selbst für bekanntes IV. Verschlüsselung von m mit erweiterten Pseudozufallsgeneratoren: Enc k (m) := (IV, G(k, IV) m) für IV R {0, 1} n. Entschlüsselung möglich, da IV im Klartext mitgesendet wird. D.h. eine Nachricht m besitzt 2 n mögliche Verschlüsselungen. Warnung: Konstruktion solch erweiterter G ist nicht-trivial. Krypto I - Vorlesung Stromchiffre, mehrfache Verschlüsselung, deterministische Verschlüsselung 58 / 169
Stromchiffre. Algorithmus Stromchiffre
Stromchiffre Algorithmus Stromchiffre Sei G ein Pseudozufallsgenerator mit Expansionsfaktor l(n). Wir definieren Π s = (Gen, Enc, Dec) mit Sicherheitsparameter n für Nachrichten der Länge l(n). 1 Gen:
Ununterscheidbarkeit von Chiffretexten
Ununterscheidbarkeit von Chiffretexten Spiel Ununterscheidbarkeit von Chiffretexten PrivK eav A,Π (n) Sei Π ein Verschlüsselungsverfahren und A ein Angreifer. 1 (m 0, m 1 ) A. 2 k Gen(1 n ). 3 Wähle b
Ununterscheidbarkeit von Chiffretexten
Ununterscheidbarkeit von Chiffretexten Spiel Ununterscheidbarkeit von Chiffretexten PrivK eav A,Π (n) Sei Π ein Verschlüsselungsverfahren und A ein Angreifer. 1 (m 0, m 1 ) A. 2 k Gen(1 n ). 3 Wähle b
Hybride Verschlüsselungsverfahren
Hybride Verschlüsselungsverfahren Ziel: Flexibilität von asym. Verfahren und Effizienz von sym. Verfahren. Szenario: Sei Π = (Gen, Enc, Dec) ein PK-Verschlüsselungsverfahren und Π = (Gen, Enc, Dec ) ein
Kryptographie I Symmetrische Kryptographie
Kryptographie I Symmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2010/11 Krypto I - Vorlesung 01-11.10.2010 Verschlüsselung, Kerckhoffs, Angreifer,
Kryptographie I Symmetrische Kryptographie
Kryptographie I Symmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2012/13 Krypto I - Vorlesung 01-08.10.2012 Verschlüsselung, Kerckhoffs, Angreifer,
Kryptographie I Symmetrische Kryptographie
Kryptographie I Symmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2013/14 Krypto I - Vorlesung 01 Verschlüsselung, Kerckhoffs, Angreifer, klassische
Kryptographie I Symmetrische Kryptographie
Kryptographie I Symmetrische Kryptographie Eike Kiltz 1 Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2011/12 1 Basierend auf Folien von Alexander May. Krypto I - Vorlesung 01-10.10.2011
How To Play The Game Of "Privk
Kryptographie I Symmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2016/17 Krypto I - Vorlesung 01 Verschlüsselung, Kerckhoffs, Angreifer, klassische
Hardcore-Prädikat. Definition Hardcore-Prädikat. Ziel: Destilliere Komplexität des Invertierens auf ein Bit.
Hardcore-Prädikat Ziel: Destilliere Komplexität des Invertierens auf ein Bit. Definition Hardcore-Prädikat Sei Π f eine Einwegfunktion. Sei hc ein deterministischer pt Alg mit Ausgabe eines Bits hc(x)
Prinzipien der modernen Kryptographie Sicherheit
Prinzipien der modernen Kryptographie Sicherheit Prinzip 1 Sicherheitsziel Die Sicherheitsziele müssen präzise definiert werden. Beispiele für ungenügende Definitionen von Sicherheit Kein Angreifer kann
Existenz von Einwegfunktionen
Existenz von Einwegfunktionen Satz Einweg-Eigenschaft von f FO Unter der Faktorisierungsannahme ist f FO eine Einwegfunktion. Beweis: f FO ist mittels FACTOR-ONEWAY effizient berechenbar. z.z.: Invertierer
CPA-Sicherheit ist ungenügend
CPA-Sicherheit ist ungenügend Definition CCA CCA (=Chosen Ciphertext Attack) ist ein Angriff, bei dem der Angreifer sich Chiffretext seiner Wahl entschlüsseln lassen kann. Beispiele in denen CPA nicht
Prinzipien der modernen Kryptographie Sicherheit
Prinzipien der modernen Kryptographie Sicherheit Prinzip 1 Sicherheitsmodell Das Sicherheitsmodell (Berechnungsmodell, Angriffstypen, Sicherheitsziele) muss präzise definiert werden. Berechnungsmodell:
Einwegfunktionen Ziel: CPA-sichere Verschlüsselung aus Trapdoor-Einwegpermutation Später: CCA-sichere Verschlüsselung aus Trapdoor-Einwegperm.
Einwegfunktionen Ziel: CPA-sichere Verschlüsselung aus Trapdoor-Einwegpermutation Später: CCA-sichere Verschlüsselung aus Trapdoor-Einwegperm. Spiel Invertieren Invert A,f (n) Sei f : 0, 1} 0, 1} effizient
Sicherheit von ElGamal
Sicherheit von ElGamal Satz CPA-Sicherheit ElGamal ElGamal Π ist CPA-sicher unter der DDH-Annahme. Beweis: Sei A ein Angreifer auf ElGamal Π mit Erfolgsws ɛ(n) := Ws[PubK cpa A,Π (n) = 1]. Wir konstruieren
Definition Message Authentication Code (MAC) Ein Message Authentication Code (MAC) bzgl. des Nachrichtenraumen M besteht aus den ppt Alg.
Message Authentication Code (MAC) Szenario: Integrität und Authentizität mittels MACs. Alice und Bob besitzen gemeinsamen Schlüssel k. Alice berechnet für m einen MAC-Tag t als Funktion von m und k. Alice
Hashfunktionen und Kollisionen
Hashfunktionen und Kollisionen Definition Hashfunktion Eine Hashfunktion ist ein Paar (Gen, H) von pt Algorithmen mit 1 Gen: s Gen(1 n ). Gen ist probabilistisch. 2 H: H s berechnet Funktion {0, 1} {0,
Sicherheit von Merkle Signaturen
Sicherheit von Merkle Signaturen Algorithmus Angreifer A für die Einwegsignatur EINGABE: pk, Zugriff auf eine Anfrage an Orakel Sign sk ( ) 1 Berechne (pk (i), sk (i) ) Gen(1 n ) für i = 1,...,l. Wähle
Rabin Verschlüsselung 1979
Rabin Verschlüsselung 1979 Idee: Rabin Verschlüsselung Beobachtung: Berechnen von Wurzeln in Z p ist effizient möglich. Ziehen von Quadratwurzeln in Z N ist äquivalent zum Faktorisieren. Vorteil: CPA-Sicherheit
Sicherheit von hybrider Verschlüsselung
Sicherheit von hybrider Verschlüsselung Satz Sicherheit hybrider Verschlüsselung Sei Π ein CPA-sicheres PK-Verschlüsselungsverfahren und Π ein KPA-sicheres SK-Verschlüsselungsverfahren. Dann ist das hybride
Asymmetrische Verschlüsselungsverfahren
Asymmetrische Verschlüsselungsverfahren Vorlesung 4 Alexander Koch (Vertretung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT 2015-11-12 Universität desalexander Landes Baden-Württemberg
Homomorphe Verschlüsselung
Homomorphe Verschlüsselung Definition Homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : G G für Gruppen G, G. Π heißt homomorph, falls Enc(m 1 ) G Enc(m 2 ) eine gültige Verschlüsselung
Kryptographie I Symmetrische Kryptographie
Kryptographie I Symmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2009/10 Krypto I - Vorlesung 01-12.10.2009 Verschlüsselung, Kerckhoffs, Angreifer,
Merkle-Damgard Transformation
Merkle-Damgard Transformation Ziel: Konstruiere H : {0, 1} {0, 1} l aus h : {0, 1} 2l {0, 1} l. Algorithmus Merkle-Damgard Konstruktion Sei (Gen, h) eine kollisionsresistente Hashfunktion mit h : {0, 1}
Asymmetrische Verschlüsselungsverfahren
Asymmetrische Verschlüsselungsverfahren Vorlesung 4 Alexander Koch (Vertretung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2016-11-10 Alexander Koch Asymmetrische Verschlüsselungsverfahren
Kryptographie I Symmetrische Kryptographie
Kryptographie I Symmetrische Kryptographie Eike Kiltz 1 Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2011/12 1 Basierend auf Folien von Alexander May. Krypto I - Vorlesung 01-10.10.2011
Effizienten MAC-Konstruktion aus der Praxis: NMAC Idee von NMAC:
Effizienten MAC-Konstruktion aus der Praxis: NMAC Idee von NMAC: Hashe m {0, 1} auf einen Hashwert in {0, 1} n. Verwende Π MAC3 für Nachrichten fixer Länge auf dem Hashwert. Wir konstruieren Π MAC3 mittels
Kryptographie I Symmetrische Kryptographie
Kryptographie I Symmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2012/13 Krypto I - Vorlesung 01-08.10.2012 Verschlüsselung, Kerckhoffs, Angreifer,
Der komplexitätstheoretische Zugang zur Kryptographie
Der komplexitätstheoretische Zugang zur Kryptographie Claus Diem Im Wintersemester 2017 / 18 Literatur Oded Goldreich: Foundations of Cryptography Jonathan Katz & Yeduda Lindell: Intoduction to Modern
Kryptographie I Symmetrische Kryptographie
Kryptographie I Symmetrische Kryptographie Eike Kiltz 1 Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2014/15 1 Basierend auf Folien von Alexander May. Krypto - Vorlesung 01-6.10.2014
Das Quadratische Reste Problem
Das Quadratische Reste Problem Definition Pseudoquadrate Sei N = q mit, q rim. Eine Zahl a heißt Pseudoquadrat bezüglich N, falls ( a ) = 1 und a / QR N. N Wir definieren die Srache QUADRAT:= {a Z N (
ElGamal Verschlüsselungsverfahren (1984)
ElGamal Verschlüsselungsverfahren (1984) Definition ElGamal Verschlüsselungsverfahren Sei n ein Sicherheitsparameter. 1 Gen : (q, g) G(1 n ), wobei g eine Gruppe G der Ordnung q generiert. Wähle x R Z
Sicherer MAC für Nachrichten beliebiger Länge
Sicherer MAC für Nachrichten beliebiger Länge Korollar Sicherer MAC für Nachrichten beliebiger Länge Sei F eine Pseudozufallsfunktion. Dann ist Π MAC2 für Π = Π MAC sicher. Nachteile: Für m ({0, 1} n 4
8. Woche Quadratische Reste und Anwendungen. 8. Woche: Quadratische Reste und Anwendungen 163/ 238
8 Woche Quadratische Reste und Anwendungen 8 Woche: Quadratische Reste und Anwendungen 163/ 238 Quadratische Reste Ḋefinition Quadratischer Rest Sei n N Ein Element a Z n heißt quadratischer Rest in Z
Erinnerung Blockchiffre
Erinnerung Blockchiffre Definition schlüsselabhängige Permutation Seien F, F 1 pt Algorithmen. F heißt schlüsselabhängige Permutation auf l Bits falls 1 F berechnet eine Funktion {0, 1} n {0, 1} l {0,
Erinnerung Blockchiffre
Erinnerung Blockchiffre Definition schlüsselabhängige Permutation Seien F, F 1 pt Algorithmen. F heißt schlüsselabhängige Permutation auf l Bits falls 1 F berechnet eine Funktion {0, 1} n {0, 1} l {0,
Die (Un-)Sicherheit von DES
Die (Un-)Sicherheit von DES Sicherheit von DES: Bester praktischer Angriff ist noch immer die Brute-Force Suche. Die folgende Tabelle gibt eine Übersicht über DES Kryptanalysen. Jahr Projekt Zeit 1997
Vorlesung Sicherheit
Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 12.05.2014 1 / 26 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:
Kryptographie I Symmetrische Kryptographie
Kryptographie I Symmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2010/11 Krypto I - Vorlesung 01-11.10.2010 Verschlüsselung, Kerckhoffs, Angreifer,
Vorlesung Sicherheit
Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 25.04.2013 1 / 19 Überblick 1 Blockchiffren Erinnerung Beispiel: AES Angriffe auf Blockchiffren 2 Formalisierung von Sicherheit (symmetrischer Verschlüsselung)
Socrative-Fragen aus der Übung vom
Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Übungsleiter: Björn Kaidel, Alexander Koch Stammvorlesung Sicherheit im Sommersemester 2016 Socrative-Fragen aus der Übung vom 28.04.2016
Definition Information I(p)
Definition Information I(p) Definition I(p) Die Information I(p) eines Symbols mit Quellws p > 0 beträgt I(p) = log 1 p. Die Einheit der Information bezeichnet man als Bit. DiMa II - Vorlesung 03-05.05.2009
Vorlesung Sicherheit
Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 15.05.2017 1 / 25 Überblick 1 Hashfunktionen Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel: RSA
Voll homomorpe Verschlüsselung
Voll homomorpe Verschlüsselung Definition Voll homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : R R für Ringe R, R. Π heißt voll homomorph, falls 1 Enc(m 1 ) + Enc(m 2 ) eine gültige
13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie
13 Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit, Satz von Cook-Levin, Anwendungen 276/ 333 N P-Vollständigkeit Ḋefinition NP-vollständig Sei
Kryptographie II Asymmetrische Kryptographie
Kryptographie II Asymmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Sommersemester 2011 Krypto II - Vorlesung 01-06.04.2011 Schlüsselverteil-Center, Diffie-Hellman
Kryptographie II Asymmetrische Kryptographie
Kryptographie II Asymmetrische Kryptographie Christopher Wolf Fakultät für Mathematik Ruhr-Universität Bochum Sommersemester 2010 Krypto II - Vorlesung 01-14.04.2010 () Schlüsselverteil-Center, Diffie-Hellman
Erinnerung Blockchiffre
Erinnerung Blockchiffre Definition schlüsselabhängige Permutation Seien F, F 1 pt Algorithmen. F heißt schlüsselabhängige Permutation auf l Bits falls 1 F berechnet eine Funktion {0, 1} n {0, 1} l {0,
Kryptographie für CTFs
Kryptographie für CTFs Eine Einführung KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kitctf.de Einführung Cryptography is the practice and study of techniques for secure communication
Informationsgehalt einer Nachricht
Informationsgehalt einer Nachricht Betrachten folgendes Spiel Gegeben: Quelle Q mit unbekannten Symbolen {a 1, a 2 } und p 1 = 0.9, p 2 = 0.1. Zwei Spieler erhalten rundenweise je ein Symbol. Gewinner
RSA Parameter öffentlich: N = pq mit p, q prim und e Z RSA Parameter geheim: d Z φ(n)
RSA Parameter { öffentlich: N = pq mit p, q prim und e Z RSA Parameter φ(n) geheim: d Z φ(n) mit ed = 1 mod φ(n). Satz RSA Parameter Generierung RSA-Parameter (N, e, d) können in Zeit O(log 4 N) generiert
Asymmetrische Verschlüsselungsverfahren
Asymmetrische Verschlüsselungsverfahren Einmalsignaturen Björn Kaidel (Vertretung für Prof. Müller-Quade) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2018-02-01 B. Kaidel Asymmetrische
Pseudozufallsfunktionen (PRF) Kapitel 3
Pseudozufallsfunktionen (PRF) Kapitel 3 Motivation Verschlüsselung eines Dateisystems durch PRG: PRG G(x) Entschlüsselung: berechne aus x entsprechende Generator-Ausgabe Aber: Entschlüsselung der letzten
Digitale Signaturen. Einmalsignaturen Gunnar Hartung, Björn Kaidel. FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK
Digitale Signaturen Einmalsignaturen Gunnar Hartung, Björn Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2016-11-04 B. Kaidel Digitale Signaturen: Einmalsignaturen KIT Die Forschungsuniversität
Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Klausur Hinweise
Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2015 Klausur 21.07.2015 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung stehen
Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 10. Signaturen, Diffie-Hellman
Kryptologie Bernd Borchert Univ. Tübingen SS 2017 Vorlesung Teil 10 Signaturen, Diffie-Hellman Signatur Signatur s(m) einer Nachricht m Alice m, s(m) Bob K priv K pub K pub Signatur Signatur (Thema Integrity
Vorlesung Sicherheit
Vorlesung Sicherheit Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 20.04.2014 1 / 28 Überblick 1 Blockchiffren Erinnerung Angriffe auf Blockchiffren 2 Formalisierung
Wann sind Codes eindeutig entschlüsselbar?
Wann sind Codes eindeutig entschlüsselbar? Definition Suffix Sei C ein Code. Ein Folge s {0, 1} heißt Suffix in C falls 1 c i, c j C : c i = c j s oder 2 c C und einen Suffix s in C: s = cs oder 3 c C
Asymmetrische Verschlüsselungsverfahren
Asymmetrische Verschlüsselungsverfahren Björn Kaidel - Vertretung für Prof. J. Müller-Quade (Folien von A. Koch) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 17.11.2016 Björn Kaidel
Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008
Problemseminar Komplexitätstheorie und Kryptographie Martin Huschenbett Student am Institut für Informatik an der Universität Leipzig 30. Oktober 2008 1 / 33 Gliederung 1 Randomisierte Algorithmen und
Das Rucksackproblem. Definition Sprache Rucksack. Satz
Das Rucksackproblem Definition Sprache Rucksack Gegeben sind n Gegenstände mit Gewichten W = {w 1,...,w n } N und Profiten P = {p 1,...,p n } N. Seien ferner b, k N. RUCKSACK:= {(W, P, b, k) I [n] : i
Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G.
Satz von Euler Satz von Euler Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Beweis: Sei G = {g 1,..., g n } und a G. Betrachte die Abbildung f : G G, g ag. Da a G, besitzt a ein
Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G.
Satz von Euler Satz von Euler Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Beweis: Sei G = {g 1,..., g n } und a G. Betrachte die Abbildung f : G G, g ag. Da a G, besitzt a ein
Vorlesung Sicherheit
Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 17.04.2014 1 / 26 Logistisches Überschneidungsfreiheit Vorlesung: nachfragen Übungsblatt nicht vergessen Frage: Wie viele würden korrigiertes Übungsblatt nutzen?
VI.4 Elgamal. - vorgestellt 1985 von Taher Elgamal. - nach RSA das wichtigste Public-Key Verfahren
VI.4 Elgamal - vorgestellt 1985 von Taher Elgamal - nach RSA das wichtigste Public-Key Verfahren - besitzt viele unterschiedliche Varianten, abhängig von zugrunde liegender zyklischer Gruppe - Elgamal
RSA Full Domain Hash (RSA-FDH) Signaturen
RSA Full Domain Hash (RSA-FDH) Signaturen Signatur RSA-FDH Sei H : {0, 1} Z N ein Random-Oracle. 1 Gen: (N, e, d) GenRSA(1 n ) mit pk = (N, e) und sk = (N, d). 2 Sign: Für eine Nachricht m {0, 1} berechne
Homomorphe Verschlüsselung
Homomorphe Verschlüsselung Definition Homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : G G für Gruppen G, G. Π heißt homomorph, falls Enc(m 1 ) G Enc(m 2 ) eine gültige Verschlüsselung
Alice (A) und Bob (B) wollen sicher kommunizieren (vgl. Schutzziele) Oskar (O) versucht, die Schutzziele zu durchbrechen
Vorlesung am 21.04.2015 3 Symmetrische Verschlüsselung Alice (A) und Bob (B) wollen sicher kommunizieren (vgl. Schutzziele) Oskar (O) versucht, die Schutzziele zu durchbrechen Passiver Angri : Abhören
Vorlesung Sicherheit
Vorlesung Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 23.05.2016 1 / 32 Überblick 1 Symmetrische Authentifikation von Nachrichten Ziel Konstruktionen MACs
Kryptographie für CTFs
Kryptographie für CTFs Eine Einführung KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kitctf.de Einführung Cryptography is the practice and study of techniques for secure communication
Vorlesung Sicherheit
Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 30.04.2018 1 / 35 Überblick 1 Hashfunktionen Motivation Formalisierung Die Merkle-Damgård-Konstruktion (Weitere) Angriffe auf Hashfunktionen Zusammenfassung
Kryptographie II Asymmetrische Kryptographie
Kryptographie II Asymmetrische Kryptographie Christopher Wolf Fakultät für Mathematik Ruhr-Universität Bochum Sommersemester 2010 Krypto II - Vorlesung 01-14.04.2010 () Schlüsselverteil-Center, Diffie-Hellman
