Existenz von Einwegfunktionen
|
|
|
- Hansl Voss
- vor 8 Jahren
- Abrufe
Transkript
1 Existenz von Einwegfunktionen Satz Einweg-Eigenschaft von f FO Unter der Faktorisierungsannahme ist f FO eine Einwegfunktion. Beweis: f FO ist mittels FACTOR-ONEWAY effizient berechenbar. z.z.: Invertierer A von f FO impliziert Faktorisierer A. Sei A ein Invertierer für f FO mit Erfolgsws Ws[Invert A,fFO (N) = 1]. Sei x A(N) mit f (x ) = N. Berechne die Faktorisierung (N, p, q) GenModulus(1 n, x ). Unter der Faktorisierungsannahme gilt negl Ws[Factor A,GenModulus(n) = 1] = Ws[Invert A,fFO (n) = 1]. Krypto II - Vorlesung () Konstruktion einer Einwegfunktion, Trapdoor-Permutation, Hardcore-Prädikat 59 / 151
2 Trapdoor-Permutationsfamilie Definition Permutationsfamilie Eine Permutationsfamilie Π f = (Gen, Samp, f ) besteht aus 3 ppt Alg: 1 I Gen(1 n ), wobei I eine Urbildmenge D für f definiert. 2 x Samp(I), wobei x R D. 3 y f (I, x) mit y := f (x) D und f : D D ist bijektiv. Definition Trapdoor-Permutationsfamilie Trapdoor-Permutationsfamilie Π f = (Gen, Samp, f, Inv) besteht aus 1 (I, td) Gen(1 n ) mit td als Trapdoor-Information 2 x Samp(I) wie zuvor 3 y f (I, x) wie zuvor 4 x Inv(td, y) mit Inv td (f (x)) = x für alle x D. Krypto II - Vorlesung () Trapdoor-Permutation, Hardcore-Prädikat, Quadratische Reste, Jacobi-Symbol 60 / 151
3 Spiel Invertieren einer Permutation Invert A,Πf (n) Sei A ein Invertierer für die Familie Π f. 1 I Gen(1 n ), x Samp(I) und y f (I, x). 2 x A(I, y). 3 Invert A,Π (n) = { 1 falls f (x ) = y 0 sonst. Invert A,Πf (n) I Gen(1 n ) x Samp(I) y f(i, x) Ausgabe: { 1 falls f(x ) = y 0 sonst (1 n, I, y) x A Berechne: x I Krypto II - Vorlesung () Trapdoor-Permutation, Hardcore-Prädikat, Quadratische Reste, Jacobi-Symbol 61 / 151
4 Konstruktion einer Trapdoor-Einwegpermutation Definition Einweg-Permutation Eine (Trapdoor-)Permutationsfamilie heißt (Td-)Einwegpermutation falls für alle ppt Algorithmen A gilt Ws[Invert A,Πf (n) = 1] negl(n). Bsp: Trapdoor-Einwegpermutation unter RSA-Annahme Gen(1 n ): (N, e, d) GenRSA(1 n ), Ausgabe I = (N, e) und td = (N, d). Samp(I): Wähle x R Z N. f (I, x): Berechne y x e mod N. Inv(td, y): Berechne x y d mod N. Krypto II - Vorlesung () Trapdoor-Permutation, Hardcore-Prädikat, Quadratische Reste, Jacobi-Symbol 62 / 151
5 Hardcore-Prädikat Ziel: Destilliere Komplexität des Invertierens auf ein Bit. Definition Hardcore-Prädikat Sei Π f eine Einwegpermutation. Sei hc ein deterministischer pt Alg mit Ausgabe eines Bits hc(x) bei Eingabe x D. hc heißt Hardcore-Prädikat für f falls für alle ppt Algorithmen A gilt: Ws[A(f (x)) = hc(x)]] negl(n). Intuition: Bild f (x) hilft nicht beim Berechnen von hc(x). Bsp: Goldreich-Levin Hardcore-Prädikat (ohne Beweis) Sei f eine Einwegpermutation mit Definitionsbereich {0, 1} n. Sei x = x 1... x n {0, 1} n. Konstruiere g(x, r) := (f (x), r) mit r R {0, 1} n. Offenbar ist g ebenfalls eine Einwegpermutation. Wir konstruieren ein Hardcore-Prädikat hc für g mittels hc(x, r) = x, r = n i=1 x ir i mod 2. Beweis der Hardcore-Eigenschaft ist nicht-trivial. Krypto II - Vorlesung () Trapdoor-Permutation, Hardcore-Prädikat, Quadratische Reste, Jacobi-Symbol 63 / 151
6 Verschlüsselung aus Trapdoor-Einwegpermutation Algorithmus VERSCHLÜSSELUNG Πf Sei Π f eine Td-Einwegpermutation mit Hardcore-Prädikat hc. 1 Gen: (I, td) Gen(1 n ). Ausgabe pk = I und sk = td. 2 Enc: Für m {0, 1} wähle x R D und berechne c (f (x), hc(x) m). 3 Dec: Für Chiffretext c = (c 1, c 2 ) berechne x Inv td (c 1 ) und m c 2 hc(x). Intuition: hc(x) ist pseudozufällig gegeben f (x). D.h. hc(x) m ist ununterscheidbar von 1-Bit One-Time Pad. Krypto II - Vorlesung () Trapdoor-Permutation, Hardcore-Prädikat, Quadratische Reste, Jacobi-Symbol 64 / 151
7 CPA-Sicherheit unserer Konstruktion Satz CPA-Sicherheit von VERSCHLÜSSELUNG Π Sei Π f eine Trapdoor-Einwegpermutation mit Hardcore-Prädikat hc. Dann ist VERSCHLÜSSELUNG Π CPA-sicher. Beweis: Sei A ein Angreifer mit Erfolgsws ɛ(n) = Ws[PubK cpa A,Π f (n) = 1]. OBdA (m 0, m 1 ) A(pk) mit {m 0, m 1 } = {0, 1}. (Warum?) Verwenden A um einen Angreifer A hc für hc zu konstruieren. Algorithmus Angreifer A hc Eingabe: I, y = f (x) D 1 Setze pk I und berechne (m 0, m 1 ) A(pk). 2 Wähle b, z R {0, 1}. Setze c 2 m b z. 3 b A(y, c 2 ) Ausgabe: hc(x) = { z falls b = b. z sonst Krypto II - Vorlesung () Trapdoor-Permutation, Hardcore-Prädikat, Quadratische Reste, Jacobi-Symbol 65 / 151
8 Angreifer A hc (1 n, I, y) hc(x) A hc pk = I (1 n, pk) b, z R {0, 1} (m 0, m 1 ) c 2 = (m b z) (y, c 2 ) Ausgabe: { z if b = b hc(x) = z else b A m 0, m 1 M b {0, 1} Krypto II - Vorlesung () Trapdoor-Permutation, Hardcore-Prädikat, Quadratische Reste, Jacobi-Symbol 66 / 151
9 CPA-Sicherheit von VERSCHLÜSSELUNG Π Beweis: Fortsetzung Sei x = f 1 (y). A hc rät z = hc(x). Es gilt Ws[A hc (f (x)) = hc(x)] = 1 2 Ws[b = b z = hc(x)] Ws[b b z hc(x)]. 1. Fall z = hc(x): (y, c 2 ) ist korrekte Verschlüsselung von m b, d.h. Ws[b = b z = hc(x)] = ɛ(n). 2. Fall z hc(x): (y, c 2 ) ist Verschlüsselung von m b = m b, d.h. Ws[b b z hc(x)] = ɛ(n). Da hc ein Hardcore-Prädikat ist, folgt negl(n) Ws[A hc(f (x)) = hc(x)] = ɛ(n). Krypto II - Vorlesung () Trapdoor-Permutation, Hardcore-Prädikat, Quadratische Reste, Jacobi-Symbol 67 / 151
Hardcore-Prädikat. Definition Hardcore-Prädikat. Ziel: Destilliere Komplexität des Invertierens auf ein Bit.
Hardcore-Prädikat Ziel: Destilliere Komplexität des Invertierens auf ein Bit. Definition Hardcore-Prädikat Sei Π f eine Einwegfunktion. Sei hc ein deterministischer pt Alg mit Ausgabe eines Bits hc(x)
Einwegfunktionen Ziel: CPA-sichere Verschlüsselung aus Trapdoor-Einwegpermutation Später: CCA-sichere Verschlüsselung aus Trapdoor-Einwegperm.
Einwegfunktionen Ziel: CPA-sichere Verschlüsselung aus Trapdoor-Einwegpermutation Später: CCA-sichere Verschlüsselung aus Trapdoor-Einwegperm. Spiel Invertieren Invert A,f (n) Sei f : 0, 1} 0, 1} effizient
CPA-Sicherheit ist ungenügend
CPA-Sicherheit ist ungenügend Definition CCA CCA (=Chosen Ciphertext Attack) ist ein Angriff, bei dem der Angreifer sich Chiffretext seiner Wahl entschlüsseln lassen kann. Beispiele in denen CPA nicht
Rabin Verschlüsselung 1979
Rabin Verschlüsselung 1979 Idee: Rabin Verschlüsselung Beobachtung: Berechnen von Wurzeln in Z p ist effizient möglich. Ziehen von Quadratwurzeln in Z N ist äquivalent zum Faktorisieren. Vorteil: CPA-Sicherheit
Kryptographie II Asymmetrische Kryptographie
Kryptographie II Asymmetrische Kryptographie Christopher Wolf Fakultät für Mathematik Ruhr-Universität Bochum Sommersemester 2010 Krypto II - Vorlesung 01-14.04.2010 () Schlüsselverteil-Center, Diffie-Hellman
Hybride Verschlüsselungsverfahren
Hybride Verschlüsselungsverfahren Ziel: Flexibilität von asym. Verfahren und Effizienz von sym. Verfahren. Szenario: Sei Π = (Gen, Enc, Dec) ein PK-Verschlüsselungsverfahren und Π = (Gen, Enc, Dec ) ein
Kryptographie II Asymmetrische Kryptographie
Kryptographie II Asymmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Sommersemester 2011 Krypto II - Vorlesung 01-06.04.2011 Schlüsselverteil-Center, Diffie-Hellman
Sicherheit von ElGamal
Sicherheit von ElGamal Satz CPA-Sicherheit ElGamal ElGamal Π ist CPA-sicher unter der DDH-Annahme. Beweis: Sei A ein Angreifer auf ElGamal Π mit Erfolgsws ɛ(n) := Ws[PubK cpa A,Π (n) = 1]. Wir konstruieren
Stromchiffre. Algorithmus Stromchiffre
Stromchiffre Algorithmus Stromchiffre Sei G ein Pseudozufallsgenerator mit Expansionsfaktor l(n). Wir definieren Π s = (Gen, Enc, Dec) mit Sicherheitsparameter n für Nachrichten der Länge l(n). 1 Gen:
Stromchiffre. Algorithmus Stromchiffre
Stromchiffre Algorithmus Stromchiffre Sei G ein Pseudozufallsgenerator mit Expansionsfaktor l(n). Wir definieren Π s = (Gen, Enc, Dec) mit Sicherheitsparameter n für Nachrichten der Länge l(n). 1 Gen:
RSA Full Domain Hash (RSA-FDH) Signaturen
RSA Full Domain Hash (RSA-FDH) Signaturen Signatur RSA-FDH Sei H : {0, 1} Z N ein Random-Oracle. 1 Gen: (N, e, d) GenRSA(1 n ) mit pk = (N, e) und sk = (N, d). 2 Sign: Für eine Nachricht m {0, 1} berechne
Ununterscheidbarkeit von Chiffretexten
Ununterscheidbarkeit von Chiffretexten Spiel Ununterscheidbarkeit von Chiffretexten PrivK eav A,Π (n) Sei Π ein Verschlüsselungsverfahren und A ein Angreifer. 1 (m 0, m 1 ) A. 2 k Gen(1 n ). 3 Wähle b
Ununterscheidbarkeit von Chiffretexten
Ununterscheidbarkeit von Chiffretexten Spiel Ununterscheidbarkeit von Chiffretexten PrivK eav A,Π (n) Sei Π ein Verschlüsselungsverfahren und A ein Angreifer. 1 (m 0, m 1 ) A. 2 k Gen(1 n ). 3 Wähle b
RSA Full Domain Hash (RSA-FDH) Signaturen
RSA Full Domain Hash (RSA-FDH) Signaturen Signatur RSA-FDH Sei H : {0, 1} Z N ein Random-Oracle. 1 Gen: (N, e, d) GenRSA(1 n ) mit pk = (N, e) und sk = (N, d). 2 Sign: Für eine Nachricht m {0, 1} berechne
Sicherheit von Merkle Signaturen
Sicherheit von Merkle Signaturen Algorithmus Angreifer A für die Einwegsignatur EINGABE: pk, Zugriff auf eine Anfrage an Orakel Sign sk ( ) 1 Berechne (pk (i), sk (i) ) Gen(1 n ) für i = 1,...,l. Wähle
ElGamal Verschlüsselungsverfahren (1984)
ElGamal Verschlüsselungsverfahren (1984) Definition ElGamal Verschlüsselungsverfahren Sei n ein Sicherheitsparameter. 1 Gen : (q, g) G(1 n ), wobei g eine Gruppe G der Ordnung q generiert. Wähle x R Z
Homomorphe Verschlüsselung
Homomorphe Verschlüsselung Definition Homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : G G für Gruppen G, G. Π heißt homomorph, falls Enc(m 1 ) G Enc(m 2 ) eine gültige Verschlüsselung
Prinzipien der modernen Kryptographie Sicherheit
Prinzipien der modernen Kryptographie Sicherheit Prinzip 1 Sicherheitsmodell Das Sicherheitsmodell (Berechnungsmodell, Angriffstypen, Sicherheitsziele) muss präzise definiert werden. Berechnungsmodell:
Sicherheit von hybrider Verschlüsselung
Sicherheit von hybrider Verschlüsselung Satz Sicherheit hybrider Verschlüsselung Sei Π ein CPA-sicheres PK-Verschlüsselungsverfahren und Π ein KPA-sicheres SK-Verschlüsselungsverfahren. Dann ist das hybride
Prinzipien der modernen Kryptographie Sicherheit
Prinzipien der modernen Kryptographie Sicherheit Prinzip 1 Sicherheitsziel Die Sicherheitsziele müssen präzise definiert werden. Beispiele für ungenügende Definitionen von Sicherheit Kein Angreifer kann
Definition Message Authentication Code (MAC) Ein Message Authentication Code (MAC) bzgl. des Nachrichtenraumen M besteht aus den ppt Alg.
Message Authentication Code (MAC) Szenario: Integrität und Authentizität mittels MACs. Alice und Bob besitzen gemeinsamen Schlüssel k. Alice berechnet für m einen MAC-Tag t als Funktion von m und k. Alice
Hashfunktionen und Kollisionen
Hashfunktionen und Kollisionen Definition Hashfunktion Eine Hashfunktion ist ein Paar (Gen, H) von pt Algorithmen mit 1 Gen: s Gen(1 n ). Gen ist probabilistisch. 2 H: H s berechnet Funktion {0, 1} {0,
Voll homomorpe Verschlüsselung
Voll homomorpe Verschlüsselung Definition Voll homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : R R für Ringe R, R. Π heißt voll homomorph, falls 1 Enc(m 1 ) + Enc(m 2 ) eine gültige
Sicherer MAC für Nachrichten beliebiger Länge
Sicherer MAC für Nachrichten beliebiger Länge Korollar Sicherer MAC für Nachrichten beliebiger Länge Sei F eine Pseudozufallsfunktion. Dann ist Π MAC2 für Π = Π MAC sicher. Nachteile: Für m ({0, 1} n 4
Der komplexitätstheoretische Zugang zur Kryptographie
Der komplexitätstheoretische Zugang zur Kryptographie Claus Diem Im Wintersemester 2017 / 18 Literatur Oded Goldreich: Foundations of Cryptography Jonathan Katz & Yeduda Lindell: Intoduction to Modern
Kryptographie I Symmetrische Kryptographie
Kryptographie I Symmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2010/11 Krypto I - Vorlesung 01-11.10.2010 Verschlüsselung, Kerckhoffs, Angreifer,
Homomorphe Verschlüsselung
Homomorphe Verschlüsselung Definition Homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : G G für Gruppen G, G. Π heißt homomorph, falls Enc(m 1 ) G Enc(m 2 ) eine gültige Verschlüsselung
How To Play The Game Of "Privk
Kryptographie I Symmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2016/17 Krypto I - Vorlesung 01 Verschlüsselung, Kerckhoffs, Angreifer, klassische
Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008
Problemseminar Komplexitätstheorie und Kryptographie Martin Huschenbett Student am Institut für Informatik an der Universität Leipzig 30. Oktober 2008 1 / 33 Gliederung 1 Randomisierte Algorithmen und
Kryptographie I Symmetrische Kryptographie
Kryptographie I Symmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2012/13 Krypto I - Vorlesung 01-08.10.2012 Verschlüsselung, Kerckhoffs, Angreifer,
Kryptographie I Symmetrische Kryptographie
Kryptographie I Symmetrische Kryptographie Eike Kiltz 1 Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2011/12 1 Basierend auf Folien von Alexander May. Krypto I - Vorlesung 01-10.10.2011
Merkle-Damgard Transformation
Merkle-Damgard Transformation Ziel: Konstruiere H : {0, 1} {0, 1} l aus h : {0, 1} 2l {0, 1} l. Algorithmus Merkle-Damgard Konstruktion Sei (Gen, h) eine kollisionsresistente Hashfunktion mit h : {0, 1}
Asymmetrische Verschlüsselungsverfahren
Asymmetrische Verschlüsselungsverfahren Einmalsignaturen Björn Kaidel (Vertretung für Prof. Müller-Quade) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2018-02-01 B. Kaidel Asymmetrische
Asymmetrische Verschlüsselungsverfahren
Asymmetrische Verschlüsselungsverfahren Vorlesung 4 Alexander Koch (Vertretung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT 2015-11-12 Universität desalexander Landes Baden-Württemberg
Kryptographie I Symmetrische Kryptographie
Kryptographie I Symmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2013/14 Krypto I - Vorlesung 01 Verschlüsselung, Kerckhoffs, Angreifer, klassische
Kryptographie I Symmetrische Kryptographie
Kryptographie I Symmetrische Kryptographie Eike Kiltz 1 Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2014/15 1 Basierend auf Folien von Alexander May. Krypto - Vorlesung 01-6.10.2014
Kryptographie I Symmetrische Kryptographie
Kryptographie I Symmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2012/13 Krypto I - Vorlesung 01-08.10.2012 Verschlüsselung, Kerckhoffs, Angreifer,
Asymmetrische Verschlüsselungsverfahren
Asymmetrische Verschlüsselungsverfahren Vorlesung 4 Alexander Koch (Vertretung) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2016-11-10 Alexander Koch Asymmetrische Verschlüsselungsverfahren
Erinnerung Blockchiffre
Erinnerung Blockchiffre Definition schlüsselabhängige Permutation Seien F, F 1 pt Algorithmen. F heißt schlüsselabhängige Permutation auf l Bits falls 1 F berechnet eine Funktion {0, 1} n {0, 1} l {0,
Kryptographie I Symmetrische Kryptographie
Kryptographie I Symmetrische Kryptographie Eike Kiltz 1 Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2011/12 1 Basierend auf Folien von Alexander May. Krypto I - Vorlesung 01-10.10.2011
Kryptographie I Symmetrische Kryptographie
Kryptographie I Symmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2009/10 Krypto I - Vorlesung 01-12.10.2009 Verschlüsselung, Kerckhoffs, Angreifer,
Digitale Signaturen. Einmalsignaturen Gunnar Hartung, Björn Kaidel. FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK
Digitale Signaturen Einmalsignaturen Gunnar Hartung, Björn Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2016-11-04 B. Kaidel Digitale Signaturen: Einmalsignaturen KIT Die Forschungsuniversität
Asymmetrische Verschlüsselungsverfahren
Asymmetrische Verschlüsselungsverfahren Björn Kaidel - Vertretung für Prof. J. Müller-Quade (Folien von A. Koch) FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 17.11.2016 Björn Kaidel
Bsp: Die kleinsten Carmichael-Zahlen sind 561, 1105, 1729, Es gibt unendlich viele Carmichael-Zahlen (Beweis 1994).
Primzahltest Wir wollen testen, ob eine gegebene Zahl n eine Primzahl ist Effizienter Algorithmus zum Faktorisieren ist unbekannt Kontraposition des Kleinen Satzes von Fermat liefert: Falls a n 1 1 mod
Erinnerung Blockchiffre
Erinnerung Blockchiffre Definition schlüsselabhängige Permutation Seien F, F 1 pt Algorithmen. F heißt schlüsselabhängige Permutation auf l Bits falls 1 F berechnet eine Funktion {0, 1} n {0, 1} l {0,
Sicherheit von ElGamal Intuitiv: Eve soll c 2 = m g ab nicht von c 2 R G unterscheiden können.
Sicherheit von ElGamal Intuitiv: Eve soll c 2 m g ab nicht von c 2 R G unterscheiden können. Protokoll Unterscheider EINGABE: q, g, g x 1 Eve wählt m G und schickt m an Alice. 2 Alice wählt b R {0, 1},
Erinnerung Blockchiffre
Erinnerung Blockchiffre Definition schlüsselabhängige Permutation Seien F, F 1 pt Algorithmen. F heißt schlüsselabhängige Permutation auf l Bits falls 1 F berechnet eine Funktion {0, 1} n {0, 1} l {0,
Vorlesung Sicherheit
Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 12.05.2014 1 / 26 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:
8 Komplexitätstheorie und Kryptologie
8 Komplexitätstheorie und Kryptologie Verschlüsselung, Authentisierung,... müssen schnell berechenbar sein. Formal: polynomiell zeitbeschränkte Funktionen/Algorithmen Angreifer hat beschränkte Ressourcen.
Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G.
Satz von Euler Satz von Euler Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Beweis: Sei G = {g 1,..., g n } und a G. Betrachte die Abbildung f : G G, g ag. Da a G, besitzt a ein
Satz von Euler. Satz von Euler. Korollar 1. Korollar 2 Kleiner Fermat. Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G.
Satz von Euler Satz von Euler Sei (G, ) eine endl. abelsche Gruppe. Dann gilt a G = 1 für alle a G. Beweis: Sei G = {g 1,..., g n } und a G. Betrachte die Abbildung f : G G, g ag. Da a G, besitzt a ein
Effizienten MAC-Konstruktion aus der Praxis: NMAC Idee von NMAC:
Effizienten MAC-Konstruktion aus der Praxis: NMAC Idee von NMAC: Hashe m {0, 1} auf einen Hashwert in {0, 1} n. Verwende Π MAC3 für Nachrichten fixer Länge auf dem Hashwert. Wir konstruieren Π MAC3 mittels
Das Quadratische Reste Problem
Das Quadratische Reste Problem Definition Pseudoquadrate Sei N = q mit, q rim. Eine Zahl a heißt Pseudoquadrat bezüglich N, falls ( a ) = 1 und a / QR N. N Wir definieren die Srache QUADRAT:= {a Z N (
Beweisbar sichere Kryptographie
Beweisbar sichere Kryptographie Dennis Hofheinz Wintersemester 2012/2013, Karlsruher Institut für Technologie Notation Für n N schreiben wir n := {1,..., n}. Für einen Bitstring x {0, 1} bezeichnet x die
Erweiterter Euklidischer Algorithmus
Erweiterter Euklidischer Algorithmus Algorithmus ERWEITERTER EUKLIDISCHER ALG. (EEA) EINGABE: a, b N 1 If (b = 0) then return (a, 1, 0); 2 (d, x, y) EEA(b, a mod b); 3 (d, x, y) (d, y, x a b y); AUSGABE:
8. Woche Quadratische Reste und Anwendungen. 8. Woche: Quadratische Reste und Anwendungen 163/ 238
8 Woche Quadratische Reste und Anwendungen 8 Woche: Quadratische Reste und Anwendungen 163/ 238 Quadratische Reste Ḋefinition Quadratischer Rest Sei n N Ein Element a Z n heißt quadratischer Rest in Z
Vorlesung Sicherheit
Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 15.05.2017 1 / 25 Überblick 1 Hashfunktionen Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel: RSA
Kryptographie und Komplexität
Kryptographie und Komplexität Einheit 4.4 Semantische Sicherheit 1. Sicherheit partieller Informationen 2. Das Verfahren von Rabin 3. Sicherheit durch Randomisierung Semantische Sicherheit Mehr als nur
Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Klausur Hinweise
Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2015 Klausur 21.07.2015 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung stehen
Vorlesung Sicherheit
Vorlesung Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 23.05.2016 1 / 32 Überblick 1 Symmetrische Authentifikation von Nachrichten Ziel Konstruktionen MACs
Isomorphismus. Definition Gruppen-Isomorphismus. Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt
Isomorphismus Definition Gruppen-Isomorphismus Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt 1 f ist bijektiv f (u + v) = f (u) f (v) für alle u, v G, die
Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Nachklausur. Lösungsvorschlag Hinweise
Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2015 Nachklausur Lösungsvorschlag 29.09.2015 Vorname: Nachname: Matrikelnummer: Hinweise - Für
Primzahltest für Mersenne-Primzahlen
Primzahltest für Mersenne-Primzahlen Satz Lucas-Lehmer Test Sei n = 2 p 1 N für p P\{2}. Wir definieren die Folge S k durch S 1 = 4 und S k = S 2 k 1 2. Falls n S p 1, dann ist n prim. Beweis: Seien ω
Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Nachklausur
Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz IKS Institut für Kryptographie und Sicherheit Stammvorlesung Sicherheit im Sommersemester 2013 Nachklausur 07.10.2013 Vorname: Nachname:
Vorlesung Sicherheit
Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 30.04.2018 1 / 35 Überblick 1 Hashfunktionen Motivation Formalisierung Die Merkle-Damgård-Konstruktion (Weitere) Angriffe auf Hashfunktionen Zusammenfassung
Das RSA Kryptosystem
Kryptografie Grundlagen RSA Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit geheimem Schlüssel Alice
Kryptographie I Symmetrische Kryptographie
Kryptographie I Symmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2010/11 Krypto I - Vorlesung 01-11.10.2010 Verschlüsselung, Kerckhoffs, Angreifer,
Wann sind Codes eindeutig entschlüsselbar?
Wann sind Codes eindeutig entschlüsselbar? Definition Suffix Sei C ein Code. Ein Folge s {0, 1} heißt Suffix in C falls 1 c i, c j C : c i = c j s oder 2 c C und einen Suffix s in C: s = cs oder 3 c C
Message Authentication Code (MAC)
Message Authentcaton Code (MAC) Szenaro: Integrtät und Authentztät mttels MACs. Alce und Bob bestzen gemensamen Schlüssel k. Alce berechnet für m enen MAC-Tag t als Funkton von m und k. Alce sendet das
Probleme aus NP und die polynomielle Reduktion
Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit
Asymmetrische Algorithmen
Asymmetrische Algorithmen Abbildung 9. Leonhard Euler Leonhard Euler, geboren am 15. April 1707 in Basel, gestorben am 18. September 1783 in Sankt Petersburg, war einer der produktivsten Mathematiker aller
Das Rucksackproblem. Definition Sprache Rucksack. Satz
Das Rucksackproblem Definition Sprache Rucksack Gegeben sind n Gegenstände mit Gewichten W = {w 1,...,w n } N und Profiten P = {p 1,...,p n } N. Seien ferner b, k N. RUCKSACK:= {(W, P, b, k) I [n] : i
