Statische Magnetfelder
|
|
|
- Roland Bader
- vor 9 Jahren
- Abrufe
Transkript
1 Statische Magnetfelder Abb.1 Magnetfeld Steffen Wendler Seite 1
2 Inhaltsverzeichnis 1. Was sind statische Magnetfelder? 2. Magnetfeld Erde und Sonne 3. Wie Magnetfelder entstehen 4. Magnetische Kraftwirkung 5. Magnetfeld eines Permanentmagnets 6. Magnetfeld eines Elektromagnets (Spule) 7. Anwendungen 8. Quellenangabe Steffen Wendler Seite 2
3 Was sind statische Magnetfelder? Magnetfelder sind Feldlinien die magnetische Kräfte beschreiben können. Die magnetische Kraft ist die dritt größte Grundkraft. Die magnetische Kraft ist eine Lorenzkraft die aus der elektromagnetischen Wechselwirkung resultiert. Sie ist ca. 8,8*10^10 mal stärker als die Gravitationskraft. Magnetfelder sind nicht sichtbar, können aber an Modellen anschaulich gemacht werden: Abb.2 Magnetfeld Stabmagnet Abb.3 Magnetfeld Stabmagnet & Spule Steffen Wendler Seite 3
4 Magnetfled Erde und Sonne Abb.4 Magnetfeld Erde ca. 3,1 * 10-5 T Abb.5 Magnetfeld Sonne Steffen Wendler Seite 4
5 Magnetische Flussdichte B Die magnetische Flussdichte B ist ein Vektor der die Dichte (Stärke) des Magnetfeldes beschreibt. Die Einheit ist: Vs/m² bzw. T (Tesla) Sie ist nach dem Physiker: Nikola Tesla benannt. Abb.6 Nikola Tesla um 1890 Steffen Wendler Seite 5
6 Wie entstehen Magnetfelder? Es gibt nur eine Möglichkeit Magnetfelder zu erzeugen! Bewegte Ladungen erzeugen ein Magnetfeld! r B = µ I 2 πρ 0 r e ϕ Die magnetische Flussdichte ist ein Wirbelfeld! Es gilt daher immer: Abb.7 Magnetfeld Leiter Steffen Wendler Seite 6
7 Wie entstehen Magnetfelder? Es gibt nur eine Möglichkeit Magnetfelder zu erzeugen! Bewegte Ladungen erzeugen ein Magnetfeld! r r r µ 0 q v B = 4π r ² Die magnetische Flussdichte ist ein Wirbelfeld! Es gilt daher immer: Abb.8 Magnetfeld Punktladung Steffen Wendler Seite 7
8 Magnetische Kraftwirkung Die magneitsche Kraft ist eine Lorenzkraft die aus der elektromagnetischen Wechselwirkung resultiert. Abb.9 rechte Hand regel Steffen Wendler Seite 8
9 Magnetfeld eines Permanentmagnets Bewegte Ladungen erzeugen ein Magnetfeld! Bewegte Ladung Abb.10 Permanentmagnet Magnetfeld von Elementarteilchen als Folge ihres Spins Abb.3 Magnetfeld Stabmagnet & Spule Abb.11 Neodym Magnet 1,6T Steffen Wendler Seite 9
10 Magnetfeld eines Elektromagnets (Spule) Ein Elektromagnet besteht im wesentlichen aus einem Stromdurchflossenem Leiter, mit oder ohne Eisenkern. Dabei gilt:. Abb.12 Spule Abb.13 Spule Steffen Wendler Seite 10
11 Anwendungen Datenspeicher Die Daten auf Festplatten werden duch Magnetfelder gespeichert. (0,15 bis 0,3T) Abb.14 Festplatte Steffen Wendler Seite 11
12 Anwendungen Antriebe und Generatoren (max: 1,6T) Abb.15 E-Motor Abb Tesla Model S Abb.17 ICE Abb.18 Windkraftanlage Steffen Wendler Seite 12
13 Anwendungen Lautsprecher (0,5T bis 1,6T) Abb.19 Lautsprecher Steffen Wendler Seite 13
14 Anwendungen - Kernspinresonanzspektroskopie - Magnetresonanztomographie MRT Supraleitende Werkstoffe (0,35T bis 7T) 23,5 T derzeit stärkster supraleitender Magnet ist der NMR-Spektroskopie (1000 MHz-Spektrometer) Abb.20 MRT-Gerät (Philips Achieva 3.0 T) Abb. 21 Der Magnet eines 300-MHz-NMR- Spektrometers Steffen Wendler Seite 14
15 Anwendungen Forschung LHC Large Hadron Collider Supraleitende Werkstoffe (bis ca 8,6T) Abb.22 LHC Abb.23 LHC Steffen Wendler Seite 15
16 Anwendungen Berührungsloses Schalten mit Reedschalter Ferromagnetischen Schaltzungen bewegen sich bei einem von außen einwirkenden schwachen magnetischen Feld zueinander und lösen den Schaltvorgang aus. Abb.24 Reedschalter Abb.25 Funktionsweise Steffen Wendler Seite 16
17 Quellenangabe Abb. 1: Abb. 2: Abb. 3: Abb. 4: Abb. 5: Abb. 6: Abb. 7: Abb. 8: Abb. 9: Abb.10: Abb.11: Abb.12: Abb.13: Abb.14: Abb.15: Abb.16: Abb.17: Abb.18: Abb.19: Abb.20: Abb.21: Abb.22: Abb.23: Abb.24: Abb.25: Steffen Wendler Seite 17
Magnetismus. Vorlesung 5: Magnetismus I
Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I
Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete
Magnetisches Feld Grunderscheinungen Magnetismus - Dauermagnete jeder drehbar gelagerte Magnet richtet sich in Nord-Süd-Richtung aus; Pol nach Norden heißt Nordpol jeder Magnet hat Nord- und Südpol; untrennbar
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #23 am 06.06.2007 Vladimir Dyakonov (Klausur-)Frage des Tages Zeigen Sie mithilfe des Ampere
O. Sternal, V. Hankele. 4. Magnetismus
4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt
Magnetismus. Prof. DI Michael Steiner
Magnetismus Prof. DI Michael Steiner www.htl1-klagenfurt.at Magnetismus Natürlicher Künstlicher Magneteisenstein Magnetit Permanentmagnete Stabmagnet Ringmagnet Hufeisenmagnet Magnetnadel Temporäre Magnete
Der Magnetismus. Kompass. Dauermagnete (Permanentmagnete) Elektromagnet
Der Magnetismus Dauermagnete (Permanentmagnete) Kompass Elektromagnet Anwendungsbeispiele: magnetischer Schraubendreher Wozu? Magnetische Schraube im Ölbehälter des Motors magn. Türgummi beim Kühlschrank
Das magnetische Feld
Das Magnetfeld wird durch Objekte erzeugt und wirkt gleichzeitig auf Objekte repräsentiert die Kraftwirkung aufgrund des physikalischen Phänomens Magnetismus ist gerichtet und wirkt vom Nordpol zum Südpol
Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom
Aufgaben 13 Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen
Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen
Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle
2. Aufgaben: Magnetismus
2. Aufgaben: Magnetismus 1) Welche toffe sind magnetisierbar (ferromagnetisch)? Eisen (tahl), Gusseisen, ickel und Kobalt 2) Welche Wirkung geht von Magneten aus? Magnete ziehen Teile aus Eisen, ickel
12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft
12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein
DK4QT s Amateurfunklehrgang - Wir lern uns was!- Seite 29
DK4QT s Amateurfunklehrgang - Wir lern uns was!- Seite 29 Thema 17: Elektromagnetismus, Elektromagnetisches Feld bis Trafo 15 Min. Wir erinnern uns! Merke! Strom ist bewegte Elektronen! Sobald sich die
Magnetische Phänomene
Magnetische Phänomene Bekannte magnetische Phänomene: Permanentmagnete; Das Erdmagnetfeld (Magnetkompass!); Elektromagnetismus (Erzeugung magnetischer Kraftwirkungen durch Stromfluss) Alle magnetischen
Magnetismus - Einführung
Magnetismus Magnetismus - Einführung Bedeutung: Technik:Generator, Elektromotor, Transformator, Radiowellen... Geologie: Erdmagnetfeld Biologie: Tiere sensitiv auf Erdmagnetfeld (z.b. Meeresschildkröten)
vor ca Jahren gefunden Kleinasien, Magnesia: Steine ziehen kleine Eisenstücke an. --> Magnetismus
Magnetismus vor ca. 2000 Jahren gefunden Kleinasien, Magnesia: Steine ziehen kleine Eisenstücke an. --> Magnetismus Magnetismus ist permanent, durch Überstreichen können andere magnetische Materialien
Inhalt. Kapitel 4: Magnetisches Feld
Inhalt Kapitel 4: Magnetische Feldstärke Magnetischer Fluss und magnetische Flussdichte Induktion Selbstinduktion und Induktivität Energie im magnetischen Feld A. Strey, DHBW Stuttgart, 015 1 Magnetische
Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen:
Magnete Die Wirkung und der Aufbau lassen sich am einfachsten erklären mit dem Modell der Elementarmagneten. Innerhalb eines Stoffes (z.b. in ein einem Stück Eisen) liegen viele kleine Elementarmagneten
Repetitionen Magnetismus
TECHNOLOGISCHE GRUNDLAGEN MAGNETISMUS Kapitel Repetitionen Magnetismus Θ = Θ l m = H I I N H µ µ = 0 r N B B = Φ A M agn. Fluss Φ Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1,
4. Beispiele für Kräfte
4. Beispiele für Kräfte Inhalt 4. Beispiele für Kräfte 4.1 Gravitation 4.2 Elektrische Kraft 4.3 Federkraft 4.4 Reibungskraft 4.5 Magnetische Kraft 4.1 Gravitation 4. Beispiele für Kräfte 4.1 Gravitation
Ein von einem elektrischen Strom durchflossener Leiter erfährt in einem Magnetfeld eine Kraft. Wir bezeichnen sie als Lorentzkraft F L.
Kapitel 9 Die Lorentzkraft F L Im Kapitel 8 wurde gezeigt, wie ein elektrischer Strom in seiner Umgebung ein Magnetfeld erzeugt (Oersted, RHR). Dabei scheint es sich um eine Grundgesetzmässigkeit der Natur
E2: Wärmelehre und Elektromagnetismus 17. Vorlesung
E2: Wärmelehre und Elektromagnetismus 17. Vorlesung 18.06.2018 Barlow-Rad Elektromagnet Telefon nach Bell Wissenschaftliche Instrumente aus dem 18. und 19. Jahrhundert aus der Sammlung des Teylers Museum
Basiswissen Physik Jahrgangsstufe (G9)
Wärmelehre (nur nspr. Zweig) siehe 9. Jahrgangsstufe (mat-nat.) Elektrizitätslehre Basiswissen Physik - 10. Jahrgangsstufe (G9) Ladung: Grundeigenschaft der Elektrizität, positive und negative Ladungen.
Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.
Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,
Schulinterner Lehrplan Qualifikationsphase Q1. Präambel
Präambel Dieses Curriculum stellt keinen Maximallehrplan dar, sondern will als offenes Curriculum die Möglichkeit bieten, auf die didaktischen und pädagogischen Notwendigkeiten der Qualifikationsphase
Ein von einem elektrischen Strom durchflossener Leiter erfährt in einem Magnetfeld eine Kraft. Wir bezeichnen sie als Lorentzkraft F L.
Kapitel 9 Die Lorentzkraft F L Im Kapitel 8 wurde gezeigt, wie ein elektrischer Strom in seiner Umgebung ein Magnetfeld erzeugt (Oersted, RHR). Dabei scheint es sich um eine Grundgesetzmässigkeit der Natur
Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld
1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu
3 Magnetismus. 2 magnetische Pole: Nord (zeigt nach S) und Süd (zeigt nach N); Feldlinien laufen von N nach S
3 Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie 2 magnetische Pole: Nord (zeigt nach S) und Süd (zeigt nach N); Feldlinien laufen
Versuche zu magnetischen Gleichfeldern Wir machen unsichtbare Kräfte sichtbar
V1 Versuche zu magnetischen Gleichfeldern Wir machen unsichtbare Kräfte sichtbar Inhaltsübersicht Lehrerinfo Materialien Drei Versuche V1 Versuche zu magnetischen Gleichfeldern Seite 239 V1 Versuche zu
E = ρ (1) B = ȷ+ B = 0 (3) E =
Die elektromagnetische Kraft Das vorausgegangene Tutorial Standardmodell der Teilchenphysik ist eine zusammenfassende Darstellung der Elementarteilchen und der zwischen ihnen wirkenden fundamentalen Kräfte.
Maxwell mit Minkowski. Max Camenzind Uni Würzburg Senioren 2015
Maxwell mit Minkowski Max Camenzind Uni Würzburg Senioren 2015 Vektorfelder in 3 Dimensionen F(t,x) = (F x,f y,f z ) Satz von Gauß Quelle Fluss Die Massenerhaltung Ein Nettomassenfluss M durch die festen
PN 2 Einführung in die Experimentalphysik für Chemiker
PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität
Abbildung 3.1: Kraftwirkungen zwischen zwei Stabmagneten
Kapitel 3 Magnetostatik 3.1 Einführende Versuche Wir beginnen die Magnetostatik mit einigen einführenden Versuchen. Wenn wir - als für uns neues und noch unbekanntes Material - zwei Stabmagnete wie in
Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie
Aufgaben 12 Magnetisches Feld Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen
Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld
1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu
Administratives BSL PB
Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.
Kann-Liste. Jahrgangsstufe 9 Physik. TNW =Tätigkeitsnachweis Tax = x/xx/xxx/xxxx. Name:
Themenbereich 1: Magnetismus 1 die Stoffe, die ferromagnetisch sind, benennen und ihren Aufbau und Eigenschaften erläutern 2, was man unter einem magnetischen Feld versteht 3 Feldlinienbilder für unterschiedliche
LernJob Naturwissenschaften - Physik Funktion einer Magnetfeldsensors
LernJob Naturwissenschaften - Physik Funktion einer Magnetfeldsensors Lernbereich: 5. Felder als Modell zur Beschreibung elektromagnetischer Phänomene nutzen Zeitrichtwert: 90 Minuten Index: BGY PH 5.3.2c
Ich kann mindestens drei Anwendungsbeispiele von Elektromagneten aufzählen.
1 MAGNETISMUS 1 Magnetismus Detaillierte Lernziele: 1.1 Dauermagnetismus Ich kann mindestens drei ferromagnetische Werkstoffe aufzählen. Ich kann Nord- und Südpol mit der richtigen Farbe kennzeichnen.
12. Elektrodynamik. 12. Elektrodynamik
12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik
Elektrostaitische Felder
Elektrostaitische Felder Grundlagen zu den elektrischen Felder 1 homogenes Feld des Plattenkondensators inhomogenes Feld einer Punktladung Bei einem Plattenkondensator verlaufen die Feldlinien parallel
15.Magnetostatik, 16. Induktionsgesetz
Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v
10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft
Inhalt 10. Elektrodynamik 10.3 Das elektrische Potential 10.4 Elektrisches Feld und Potential ti 10.5 Magnetische Kraft und Felder 1051M 10.5.1 Magnetische Kraft 10.3 Das elektrische Potential ti Wir hatten
Übungsprüfung A zur Physik-Prüfung vom 15. März 2012
Übungsprüfung A zur Physik-Prüfung vom 15. März 2012 1. Kurzaufgaben (6 Punkte) a) Wie heissen die drei chemischen Elemente, die sich bei Raumtemperatur ferromagnetisch verhalten? b) Welche der folgenden
2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung
2.1 Coulomb-Kraft und elektrische Ladung 2 Elektrostatik 2.1 Coulomb-Kraft und elektrische Ladung Abb. 2.1 Durch Reiben verschiedener Stoffe aneinander verbleiben Elektronen der Atomhüllen überwiegend
Magnetismus der Materie. Bernd Fercher David Schweiger
Magnetismus der Materie Bernd Fercher David Schweiger Einleitung Erste Beobachtunge in China und Kleinasien Um 1100 Navigation von Schiffen Magnetismus wird durch Magnetfeld beschrieben dieses wird durch
Oersteds Erkenntnis: Ströme erzeugen Magnetfelder
Kapitel 8 Oersteds Erkenntnis: Ströme erzeugen Magnetfelder Im Jahre 1819 beobachtete der dänische Physiker Hans Christian Oersted (vgl. Abb. 8.1), dass sich Kompassnadeln ausrichten, wenn in ihrer Nähe
Kai Müller. Maxwell für die Hosentasche
Kai Müller Maxwell für die Hosentasche Copyright des Textes: by Kai Müller Version: 11.02.2013 Überblick Der Physiker James Clerk Maxwell stellte zwischen 1861 und 1864 eine Theorie des Elektromagnetismus
Die Jagd nach dem Feldrekord Forschung in hohen Magnetfeldern
Die Jagd nach dem Feldrekord Forschung in hohen Magnetfeldern Jochen Wosnitza Physik am Samstag 3. Dezember 2011 1 Ziel des HLD: 100 Tesla 2 Mitglied der Helmholtz-Gemeinschaft Was sind 100 Tesla? [ täss
Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2
Wechselstromwiderstände (Impedanzen) Ohm'scher Widerstand R: Kondensator mit Kapazität C: Spule mit Induktivität L: RwR = R RwC = 1/(ωC) RwL = ωl Parallel- und Reihenschaltungen bei der Reihenschaltung
Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)
Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie Ein Magnetfeld wird erzeugt durch: Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls
Beschreibung Magnetfeld
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #21 am 1.06.2007 Vladimir Dyakonov Beschreibung Magnetfeld Magnetfeld: Zustand des Raumes, wobei
Inhalt der Vorlesung B2
Inhalt der Vorlesung B 4. Elektrizitätslehre, Elektrodynamik Einleitung Ladungen & Elektrostatische Felder Elektrischer Strom Magnetostatik Zeitlich veränderliche Felder - Elektrodynamik Wechselstromnetzwerke
An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?
An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Ideale und reale Spannungsquellen Kirchhoffsche Regeln Parallelschaltung und Reihenschaltungen von Widerständen Amperemeter
Das magnetische Feld. Kapitel Lernziele zum Kapitel 7
Kapitel 7 Das magnetische Feld 7.1 Lernziele zum Kapitel 7 Ich kann das theoretische Konzept des Magnetfeldes an einem einfachen Beispiel erläutern (z.b. Ausrichtung von Kompassnadeln in der Nähe eines
Physik am Samstag. Die Jagd nach dem Feldrekord Forschung in hohen Magnetfeldern. Jochen Wosnitza
Physik am Samstag Die Jagd nach dem Feldrekord Forschung in hohen Magnetfeldern Jochen Wosnitza Hochfeld-Magnetlabor Dresden (HLD) Jochen Wosnitza www.fzd.de Mitglied der Leibniz-Gemeinschaft Ziel des
was besagt das Induktionsgesetz? was besagt die Lenzsche Regel?
Induktion Einleitung Thema: Induktion Fragen: was ist Induktion? was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Frage: was, wenn sich zeitlich ändernde E- und -Felder sich gegenseitig
Magnetisches Feld / Magnetismus
/ Magnetismus Magnetismus ist die Eigenschaft eines Materials, magnetisch leitende Stoffe anzuziehen. Man bezeichnet diese Stoffe als Ferromagnetische Stoffe. Darunter fallen alle Arten von Metallen. Das
E2: Wärmelehre und Elektromagnetismus 17. Vorlesung
E2: Wärmelehre und Elektromagnetismus 17. Vorlesung 18.06.2018 Barlow-Rad Elektromagnet Telefon nach Bell Wissenschaftliche Instrumente aus dem 18. und 19. Jahrhundert aus der Sammlung des Teylers Museum
Übungsblatt 1. Seite 1 / 6
Übungsblatt 1 1. Nennen Sie mindestens zwei verschiedene Möglichkeiten wie Sie feststellen können, welches der Nord- und welches der Südpol eines gegebenen Stabmagneten ist. 2. Kreuzen Sie bei den folgenden
Materie im Magnetfeld
. Stromschleifen - Permanentmagnet Materie im Magnetfeld EX-II SS007 = > µmag = I S ˆn S = a b µ bahn = e m L µ spin = e m S Stromschleife im Magnetfeld Magnetisierung inhomogenes Magnetfeld = D = µmag
Elektrizitätslehre. Zusammenfassung. Aufbau des Stoffes. Elektrische Wechselwirkung. Elektrische Ladung geladener Zustand
Aufbau des toffes Elektrizitätslehre 7 Elektrische Ladung Elektrisches Feld Elektrische Ww Zusammenfassung tromkreise trom nduzierter trom Magnetfeld magnetische Ww Dauermagnet Elektromagnetische chwingungen
Magnete die geheimnisvolle Kraft?
Magnete die geheimnisvolle Kraft? Magnete stellen für viele Leute etwas Mysteriöses dar. Schließlich kann der Mensch Magnetismus weder sehen, hören, riechen, schmecken noch direkt fühlen. Zudem ziehen
Felder als Objekte. F. Herrmann.
Felder als Objekte F. Herrmann www.physikdidaktik.uni-karlsruhe.de 1. Das Wort Feld in zweierlei Bedeutung 2. Das Feld als Gegenstand 3. Zur Geschichte des Feldbegriffs 4. Konsequenzen für den Unterricht
Vorlesung 5: Magnetische Induktion
Vorlesung 5: Magnetische Induktion, [email protected] Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed [email protected] 1 WS 2016/17 Magnetische Induktion Bisher:
B oder H Die magnetische Ladung
B oder H Die magnetische Ladung Holger Hauptmann Europa-Gymnasium, Wörth am Rhein [email protected] Felder zum Anfassen: B oder H 1 Physikalische Größen der Elektrodynamik elektrische Ladung Q elektrische
Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung.
7. Die elektromagnetische Induktion ------------------------------------------------------------------------------------------------------------------ A Die Induktion im bewegten Leiter Bewegt man einen
Protokoll zum Anfängerpraktikum
Protokoll zum Anfängerpraktikum Messung von Magnetfeldern Gruppe 2, Team 5 Sebastian Korff Frerich Max 8.6.6 Inhaltsverzeichnis 1. Einleitung -3-1.1 Allgemeines -3-1.2 IOT-SAVART Gesetz -4-1.3 Messung
Die Linien, deren Tangenten in Richtung des Magnetfeldes laufen, heißt magnetische Feldlinien. a) Das Magnefeld eine Stabmagneten
I. Felder ================================================================== 1. Das magnetische Feld Ein Raumgebiet, in dem auf Magnete oder ferromagnetische Stoffe Kräfte wirken, heißt magnetisches Feld.
Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte:
Elektromagnetismus Magnetismus Prinzip: Kein Monopol nur Dipole Kräfte: S N Richtung des Magnetischen Feldes I B Kraft auf Ladungen im B-Feld + Proportionalitätskonstante B FM = q v B Durch Messung: LORENTZ
Kraft auf ein geladenes Teilchen im Magnetfeld (Lorentzkraft):
Wiederholung: 1 r F r B Kraft auf ein geladenes Teilchen im Magnetfeld (Lorentzkraft): = r q v q = Ladung des Teilchens v = Geschwindigkeit des Teilchens B = magnetische Kraftflussdichte Rechte Hand Regel
Demonstrationsexperimente Elektrotechnik
Demonstrationsexperimente Elektrotechnik 25 E 1.1 Kräfte zwischen Ladungen E 1.2 Zubehör zu elektrostatischen Versuchen E 1.3 Elektrometer mit Farraday Becher E 1.5 Bernstein 26 E 2.1 Elektrostatischer
Reihen- und Parallelschaltung von Kondensatoren
Ladung Spannung Kapazität Skizze wir-sind-klasse.jimdo.com Das elektrische Feld Energie des Kondensators Die Energie sitzt nach Faradays Feldvorstellung nicht bei den Ladungen auf den Platten sondern zwischen
Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt?
Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? elektrischer Strom Stromstärke elektrische Spannung Spannungsquelle Gerichtete Bewegung von Ladungsträgern in einem elektrischen
5.1 Statische und zeitlich veränderliche
5.1 Statische und zeitlich veränderliche Felder 5 Induktion 5.1 Statische und zeitlich veränderliche Felder Bisher haben wir elektrische und magnetische Felder betrachtet, die durch zeitlich konstante
Vorlesung Physik für Pharmazeuten PPh - 09 b
Vorlesung Physik für Pharmazeuten PPh - 09 b Elektrizitätslehre (II) 29.01.2007 IONENLEITUNG 2 Elektrolytische Leitfähigkeit Kationen und Anionen tragen zum Gesamtstrom bei. Die Ionenleitfähigkeit ist
12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker
12. Elektrodynamik 12.11 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein
Theoretische Physik: Elektrodynamik
Ferienkurs Merlin Mitschek, Verena Walbrecht 7.3.5 Ferienkurs Theoretische Physik: Elektrodynamik Vorlesung Technische Universität München Fakultät für Physik Ferienkurs Merlin Mitschek, Verena Walbrecht
Vorkurs Physik des MINT-Kollegs
Vorkurs Physik des MINT-Kollegs Elektrizitätslehre MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales Forschungszentrum
E2: Wärmelehre und Elektromagnetismus 18. Vorlesung
E2: Wärmelehre und Elektromagnetismus 18. Vorlesung 21.06.2018 Barlow-Rad Heute: Telefon nach Bell - Materie im Magnetfeld: Dia-, Para-, Ferromagnetismus - Supraleitung - Faradaysches Induktionsgesetz
11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker
11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter
11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker
11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter
2 Grundgrößen und -gesetze der Elektrodynamik
Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:
Magnetisches Induktionsgesetz
Magnetisches Induktionsgesetz Michael Faraday entdeckte, dass ein sich zeitlich veränderndes Magnetfeld eine elektrische Spannung in einer Schleife oder Spule aus leitendem Material erzeugt: die Induktionsspannung
Das statische magnetische Feld
Das statische magnetische Feld M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis 1 Magnetisches Feld (2 Std.) 2 (6 Std.) Lorentzkraft E Magnetfeld (B-Feld) eines Stabmagneten LV: Eisenfeil-
Die magnetische Wirkung eines stromdurchflossenen Leiters (Artikelnr.: P )
Lehrer-/Dozentenblatt Die magnetische Wirkung eines stromdurchflossenen Leiters (Artikelnr.: P1375500) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Elektrizitätslehre
1 Klassische Mechanik
1 Klassische Mechanik 1.1 Einführung Einheiten, Einheitensysteme Messungen und Messgenauigkeit Statistische Beschreibung und signifikante Stellen Dimensionsanalyse und Lösung physikalischer Probleme 1.2
Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007)
Physik II für Bauingenieure Vorlesung 03 (08. Mai 2007) http://homepage.rub.de/daniel.haegele Prof. D. Hägele Vorlesung Stoff umfangreich, Zeit knapp. Probleme beim Verständnis der Vorlesung Übungen. Schulgrundlagen
Elektromagnetische Induktion
Elektromagnetische M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis im bewegten und im ruhenden Leiter Magnetischer Fluss und sgesetz Erzeugung sinusförmiger Wechselspannung In diesem Abschnitt
1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4
Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Feldstärke E............................... 3 1.2 Potential, potentielle Energie............................ 4 1.3 Kondensator.....................................
Alles ist magnetisch manchmal muss man nachhelfen
Alles ist magnetisch manchmal muss man nachhelfen Jürgen Schnack Fakultät für Physik Universität Bielefeld http://obelix.physik.uni-bielefeld.de/ schnack/ Kinderuni, 17. Februar 2012 ? Physiker I Physiker
Grundwissen Physik 9. Jahrgangsstufe
Grundwissen Physik 9. Jahrgangsstufe I. Elektrizitätslehre und Magnetismus 1. a) Geladene Teilchen, die sich in einem Magnetfeld senkrecht zu den Magnetfeldlinien bewegen, erfahren eine Kraft (= Lorentzkraft),
