Stehende Wellen im Mikrowellenbereich
|
|
|
- Calvin Meinhardt
- vor 9 Jahren
- Abrufe
Transkript
1 Verwandte Begriffe Mikrowellen, elektromagnetische Wellen, Reflexion, Abstandsgesetz. Prinzip Werden elektromagnetische Wellen zwischen zwei Reflektoren hin- und hergeworfen, so bildet sich eine stehende Welle aus. Aus der Wellenlänge λ der stehenden Welle kann die Frequenz f der Wellen bestimmt werden. Hinweis Vor der Durchführung dieses Versuches ist es sinnvoll, aber nicht zwingend erforderlich, zunächst die Versuche P46030 Reflexion, Transmission und Brechung von Mikrowellen und P46040 Ausbreitung von Mikrowellen (Quadratisches Abstandsgesetz) durchzuführen. Material Aus dem Mikrowellensatz Mikrowellensender Mikrowellensonde Steuereinheit Mikrowelle Metallplatte Zusätzliches Material Vielfachmessinstrument, analog Verbindungsleitung, 3 A, 750 mm, rot Verbindungsleitung, 3 A, 750 mm, blau Tonnenfuß PHYWE Stativstange Edelstahl 8/8, l = 50 mm, d = 0 mm Doppelmuffe PHYWE Plattenhalter, Öffnungsweite 0-0 mm Klebeband Abb. : Versuchsaufbau Aufgaben Messen Sie die Wellenlänge einer stehenden Welle und bestimmen Sie daraus ihre Frequenz. Finden Sie durch Extrapolation den Schwingungszustand direkt am Reflektor. P46050
2 Hintergrundwissen Wird eine Welle zwischen zwei Orten reflektiert, entsteht zwischen diesen eine stehende Welle. Eine stehende Welle verfügt über ortsfeste Schwingungsbäuche und -knoten. Die stehende Welle entsteht hierbei durch Überlagerung einer hin- und einer rückläufigen Welle, welche die gleichen Frequenzen und Amplituden aufweisen. Die Frequenz der stehenden Welle ist mit dieser Frequenz identisch, ihre (maximale) Amplitude das doppelte der ursprünglichen Amplitude. Da sich alle elektromagnetischen Wellen mit Lichtgeschwindigkeit (c = 3 08 m/s) ausbreiten, kann aus der Wellenlänge λ der stehenden Welle ihre Frequenz bestimmt werden: f= c λ () Aufbau und Durchführung Bauen Sie den Versuch nach Abb. auf. Abb. : Versuchsaufbau Schließen Sie dazu Mikrowellensender und -sonde an den dafür vorgesehenen Buchsen der Steuereinheit an (siehe Abb. 3). Verbinden Sie das Vielfachmessinstrument mit dem Voltmeter-Ausgang der Steuereinheit und wählen Sie den Messbereich 3 V (Gleichspannung). Die Benutzung des Lautsprechers und der internen oder externen Modulation ist für diesen Versuch zunächst nicht notwendig. Abb. 3: Anschlüsse und Einstellungen an der Steuereinheit P46050
3 Montieren Sie Sonde und Reflektorplatte (Klemmhalter verwenden) mit der Doppelmuffe am Stativ im Tonnenfuß (siehe Abb. 4). Achten Sie dabei darauf, dass die punktförmige Markierung der Sonde nach oben weist. Am Sender muss kein zusätzlicher Reflektor befestigt werden, da seine Einhausung selbst reflektierend ist. Befestigen Sie ggf. mit Hilfe des Klebebands den Maßstab am Experimentiertisch. Abb. 4: Halterung von Reflektorplatte und Sonde Positionieren Sie Sender und Reflektorplatte an den gegenüberliegenden Enden der Skala auf dem Maßstab (z.b. Sender bei 790 mm und Platte bei 80 mm). Achten Sie dabei darauf, die Platte senkrecht und mittig in den Strahlengang zu bringen, so dass die Strahlung direkt zum Sender zurückgeworfen wird. Abb. 5: Versuchsanordnung in Detailansicht Bringen Sie nun die Sonde in den Strahlengang, so dass diese senkrecht zur Ausbreitungsrichtung der Strahlung ausgerichtet ist und sich der Messkopf direkt oberhalb des Maßstabs befindet (siehe Abb. 5). Schalten Sie den Sender ein, indem Sie die Steuereinheit an das Stromnetz anschließen, und wählen Sie die maximale Amplitude am Amplitudendrehregler. Kontrollieren Sie die Höhe der Sonde in ihrer Halterung, indem Sie die Höhe der Doppelmuffe variieren, um den Ausschlag des Voltmeters zu maximieren. Passen Sie die Amplitude ggf. nach unten an, wenn bei einer Verschiebung um einige Zentimeter entlang des Maßstabs der gewählte Messbereich überschritten werden sollte. Positionieren Sie nun die Sonde auf halbe Zentimeter genau (an der Skaleneinteilung des Maßstabs orientieren) so nah wie möglich an der Reflektorplatte, ohne diese zu berühren. Messen Sie nun für verschiedene Positionen der Sonde die Strahlungsintensität. Bewegen Sie dazu in Schritten von 0.5 cm die Sonde zum Sender hin und notieren Sie den Ausschlag des Voltmeters. Achten Sie beim Ablesen der Position darauf, den Maßstab ohne Parallaxe senkrecht von oben abzulesen, und achten Sie darauf, dass die Sonde zu jedem Zeitpunkt der Messung senkrecht gegen den Maßstab ausgerichtet ist und nicht etwa verdreht (siehe P
4 Abb. 6). Die Ungenauigkeit beim Ablesen des Maßstabs ist die Hauptfehlerquelle dieses Versuches, achten Sie daher auf höchstmögliche Präzision. Nehmen Sie mindestens 50 Messwerte auf. Abb. 6: Ablesen des Maßstabs (hier als Beispiel die Position 440 mm) Schalten Sie im Anschluss den internen Lautsprecher der Steuereinheit ein und die Modulator-Einstellung auf intern. Verschieben Sie nun die Sonde entlang der kompletten Strecke des Maßstabs und achten Sie dabei auf die Lautstärke des Signals. Notieren Sie Ihre Beobachtung. Auswertung Bestimmen Sie aus den Messdaten die Periodizität der stehenden Welle, und aus dieser ihre Frequenz. Bestimmen Sie im Anschluss durch Extrapolation den Schwingungszustand am Ort der Reflektorplatte. Überführen Sie für Ihre Darstellungen die gemessenen (absoluten) Positionen in relative Positionen s in Bezug auf den Sender. Beachten Sie, dass für kleinere Abstände s dem Intensitätsverlauf entlang der stehenden Welle ein deutlicher Abfall überlagert ist, siehe hierzu auch Versuch P46040 Ausbreitung von Mikrowellen (Quadratisches Abstandsgesetz). Dies ist auch der Grund, weshalb das Lautsprechersignal im zweiten Versuchsteil zum Sender hin deutlich lauter wird. Abb. 7: Stehende Welle mit Intensitätsvariation Dieser Intensitätsverlust trotz Reflexion hat seine Ursache in der Aufweitung des Strahls, welche dazu führt, dass ein Teil der Mikrowellenstrahlung in Winkel außerhalb des 4 P46050
5 ursprünglichen Strahlengangs reflektiert wird. Abb. 7 zeigt eine Vergleichsmessung für Positionen in der unmittelbaren Nähe des Senders. Um nun die Periodizität aus der Anpassung einer Sinus-Funktion zu bestimmen empfiehlt es sich also, nur die Werte in der Nähe des Reflektors heranzuziehen, da hier die Änderung im Sinne des Abstandsgesetzes am geringsten ist. (Absolute) Position Relative Position s in mm in mm U in V Tabelle : Beispieldaten Abb. 8: Stehende Welle mit Extrapolation P
6 Für die Beispieldaten in Tabelle findet sich aus der Anpassung einer Sinus-Funktion für die stehende Welle eine Periodizität von 5.79 mm (siehe Abb. 8). Da der Abstand der Minima (Knoten) bzw. Maxima (Schwingsbäuche) der halben Wellenlänge entspricht, ergibt sich aus dieser Periodizität eine Wellenlänge von 3.58 mm. Entsprechend findet sich für die Frequenz f ein Wert von c m f = =3 08 / m λ s s () Der Mikrowellensender wird also mit 9.5 GHz betrieben. Wird der Verlauf der Anpassung (siehe Abb. 8) bis zum Ort der Metallplatte extrapoliert (hier: 70 mm), so findet sich dort ein Schwingungsknoten (keine Amplitude). Dies ist gerade die Reflexionsbedingung für den elektrischen Feldvektor: An der Platte findet eine Reflexion statt, so dass sich eine stehende Welle ausbilden kann. 6 P46050
Ausbreitung von Mikrowellen (Quadratisches Abstandsgesetz) Mikrowellen, elektromagnetische Wellen, Kugelwelle, virtuelle Quelle, Reflexion.
Verwandte Begriffe Mikrowellen, elektromagnetische Wellen, Kugelwelle, virtuelle Quelle, Reflexion. Prinzip Die Intensität einer Strahlungsquelle, z.b. eines Mikrowellensenders, an einem beliebigen Ort
Energieerhaltung bei Reflexion und Transmission von Mikrowellen
Verwandte Begriffe Mikrowellen, elektromagnetische Energieerhaltung, Erhaltungssätze. Wellen, Reflexion, Transmission, Polarisation, Prinzip Treffen elektromagnetische Wellen auf ein Hindernis, so werden
Beugung von Mikrowellen an Spalt und Steg. Mikrowellen, elektromagnetische Wellen, Huygenssches Prinzip, Spalt, Steg, Beugung.
Verwandte Begriffe Mikrowellen, elektromagnetische Wellen, Huygenssches Prinzip, Spalt, Steg, Beugung. Prinzip Treffen elektromagnetische Wellen auf die Kante eines Objekts (beispielsweise Spalt und Steg),
Beugung und Interferenz von Mikrowellen. Mikrowellen, elektromagnetische Wellen, Huygenssches Prinzip, Doppelspalt, Interferenz.
Verwandte Begriffe Mikrowellen, elektromagnetische Wellen, Huygenssches Prinzip, Doppelspalt, Interferenz. Prinzip Wird ein Doppelspalt in den divergenten Mikrowellenstrahl gebracht, so entsteht hinter
Material Aus dem Mikrowellensatz (siehe Abb. 2) Steuereinheit Mikrowelle Mikrowellenempfänger Mikrowellensender Winkelskala
Verwandte Begriffe Mikrowellen, elektromagnetische Wellen, Reflexion, Transmission, Brechung, Absorption, Polarisation. Prinzip Treffen elektromagnetische Wellen auf ein Hindernis, so können u.a. Reflexion,
Polarisation von Mikrowellen. Mikrowellen, elektromagnetische Wellen, Transversalwellen, Polarisation, Gesetz von Malus.
Verwandte Begriffe Mikrowellen, elektromagnetische Wellen, Transversalwellen, Polarisation, Gesetz von Malus. Prinzip Elektromagnetische Wellen treffen auf ein Gitter, dessen Durchlässigkeit von der Drehebene
Labor für Technische Akustik
Labor für Technische Akustik Abbildung 1: Experimenteller Aufbau zur Untersuchung von stehenden Wellen 1. Versuchsziel Bringt man zwei ebene Wellen gleicher Amplitude und Frequenz, aber entgegengesetzter
Spannung und Stromstärke einer Solarzelle Einfluss von der Fläche und der Beleuchtungsstärke
Spannung und Stromstärke einer Solarzelle ENT Schlüsselworte Sonnenenergie, Fotovoltaik, Solarzelle, Lichtintensität, Elektrische Energie, Leerlaufspannung, Kurzschlussstromstärke Prinzip Solarzellen wandeln
6.2.2 Mikrowellen. M.Brennscheidt
6.2.2 Mikrowellen Im vorangegangen Kapitel wurde die Erzeugung von elektromagnetischen Wellen, wie sie im Rundfunk verwendet werden, mit Hilfe eines Hertzschen Dipols erklärt. Da Radiowellen eine relativ
Mechanische Energieerhaltung / Maxwellsches Rad TEP
Verwandte Begriffe Maxwellsches Rad, Translationsenergie, Rotationsenergie, potentielle Energie, Trägheitsmoment, Winkelgeschwindigkeit, Winkelbeschleunigung, Momentangeschwindigkeit, Gyroskop. Prinzip
Strom-Spannungs-Kennlinie und Leistung einer Solarzelle
Strom-Spannungs-Kennlinie und Leistung einer Solarzelle ENT Schlüsselworte Solarzelle, Kennlinie, Spannung, Stromstärke, Leistung, Widerstand, Innenwiderstand, Anpassung Prinzip Die Strom-Spannungs-Kennlinie
µw Mikrowellen Inhaltsverzeichnis Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 24. Oktober 2007
µw Mikrowellen Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Mikrowellen 2 1.1 Erzeugung durch ein Reflexklystron.......... 2 1.2 Erzeugung durch ein Magnetron............
Lk Physik in 12/2 1. Klausur aus der Physik Blatt 1 (von 2)
Lk Physik in 12/2 1. Klausur aus der Physik 26. 4. 27 Blatt 1 (von 2) 1. Schwingkreis in Schwingkreis aus einem Kondensator der Kapazität C = 2 nf und einer Spule der Induktivität L = 25 mh soll zu ungedämpften
Labor für Technische Akustik
Labor für Technische Akustik Abbildung 1: Experimenteller Aufbau zur Untersuchung der 1. Versuchsziel In diesem Versuch soll das Verhalten akustischer Wellen untersucht werden. Für Wellen gleicher Amplitude
Bank für Schallversuche Best.- Nr. 2004611. Für Versuche zum Schall, Wellenausbreitung, Wellenlänge, Schallgeschwindigkeit.
Bank für Schallversuche Best.- Nr. 2004611 Für Versuche zum Schall, Wellenausbreitung, Wellenlänge, Schallgeschwindigkeit. Dieses Gerät besteht aus 1 Lautsprecher (Ø 50 mm, Leistung 2 W, Impedanz 8 Ω)
[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.
Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------
Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.
Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz
Praktikum Physik. Protokoll zum Versuch 4: Schallwellen. Durchgeführt am Gruppe X
Praktikum Physik Protokoll zum Versuch 4: Schallwellen Durchgeführt am 03.11.2011 Gruppe X Name 1 und Name 2 ([email protected]) ([email protected]) Betreuer: Wir bestätigen hiermit, dass wir das Protokoll
Elektrische Felder und Potentiale im Plattenkondensator (Artikelnr.: P )
Elektrische Felder und Potentiale im Plattenkondensator (Artikelnr.: P2420100) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Hochschule Lehrplanthema: Elektrizität und Magnetismus Unterthema:
Messen der Spannung (Artikelnr.: P )
Lehrer-/Dozentenblatt Messen der Spannung (Artikelnr.: P1371700) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Elektri-itätslehre Unterthema: Der einfache elektrische
Einfluss der Anzahl der Rotorblätter
Einfluss der Anzahl der Rotorblätter ENT Schlüsselworte Windenergie, Leistung, Windkraftanlage, Generator Prinzip In Europa sind derzeit relativ große metallische Formationen mit drei Rotorblättern als
Speicherung der elektrischen Energie einer Solarzelle mit einem Kondensator
Speicherung der elektrischen Energie ENT Schlüsselworte Sonnenenergie, Fotovoltaik, Solarzelle, Kondensator, Speicherung, Sättigungsfunktion Prinzip Elektrische Energie lässt sich mit Hilfe von Kondensatoren
Ultraschall Experimentierset
Ultraschall Experimentierset Beschreibung Das Ultraschall Experimentierset wurde speziell für den Einsatz in Gymnasien entwickelt. Das Experimentierset besteht aus : 1 Stk. Stahltafel 1 Stk. beidseitig
Abiturprüfung Physik, Grundkurs. Aufgabe 1: Kräfte auf bewegte Ladungen in Leitern im Magnetfeld
Seite 1 von 10 Abiturprüfung 2009 Physik, Grundkurs Aufgabenstellung: Aufgabe 1: Kräfte auf bewegte Ladungen in Leitern im Magnetfeld Eine bewegte elektrische Ladung erfährt in Magnetfeldern bei geeigneten
MÜNSTER. Das Michelson Interferometer. ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht. Dominik Glashörster
ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht MÜNSTER Das Michelson Interferometer Dominik Glashörster Schule: Wilhelm Hittorf Gymnasium Münster Jugend forscht 2017 2016 Untersuchung
Versuche mit Mikrowellen - Kristallinterferenzen mit Mikrowellen
Wellenoptik-Versuch 42 WOP-42-1 Versuche mit Mikrowellen - Kristallinterferenzen mit Mikrowellen 1 Vorbereitung 1.1 Spektrum elektromagnetische Wellen Lit.: FREUENFELDER-HUBER Bd. II, 19.4.2 (S.194) 1.2
A05 Ultraschall A05. Schnelleamplitude
A05 Ultraschall A05 1. LITERATUR Bergmann/Schäfer; Experimentalphysik, Bd.1 (am ausführlichsten, dort finden Sie alle Details) Hering/Martin/Stohrer; Physik für Ingeneure 2. FRAGEN 1. In welchem Frequenzbereich
Elektrische Energie aus Windenergie - Einfluss von Windgeschwindigkeit, Windrichtung und Belastung
Elektrische Energie aus Windenergie - Einfluss von ENT Schlüsselworte Windenergie, Leistung, Windkraftanlage, Generator Prinzip Windkraftanlagen wandeln die in der Strömung des Windes enthaltene Energie
Überlagerung, Interferenz, Eigenschwingungen
Übung 23 Wellen Überlagerung, Interferenz, Eigenschwingungen Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse erarbeiten können. - das Prinzip der ungestörten Überlagerung
Spannung und Stromstärke bei Reihen- und Parallelschaltung von Solarzellen
Spannung und Stromstärke bei Reihen- und ENT Schlüsselworte Sonnenenergie, Fotovoltaik, Solarzelle, Reihenschaltung, Parallelschaltung Prinzip Eine einzelne Solarzelle liefert nur eine Spannung von 0,5
3.3 Polarisation und Doppelbrechung. Ausarbeitung
3.3 Polarisation und Doppelbrechung Ausarbeitung Fortgeschrittenenpraktikum an der TU Darmstadt Versuch durchgeführt von: Mussie Beian, Florian Wetzel Versuchsdatum: 8.6.29 Betreuer: Dr. Mathias Sinther
Labor für Technische Akustik
Labor für Technische Akustik Bestimmung der Wellenlänge von Schallwellen mit einer Abbildung 1: Experimenteller Aufbau zur Bestimmung der Wellenlänge von Schallwellen mit einer. 1. Versuchsziel Wenn sich
Speicherung der elektrischen Energie aus Windenergie mit einem Kondensator
Speicherung der elektrischen Energie ENT Schlüsselworte Windenergie, Generator, Kondensator, Speicherung, Sättigungsfunktion Prinzip Elektrische Energie kann mit Hilfe von Kondensatoren gespeichert werden.
Labor für Technische Akustik
Labor für Technische Akustik Kraus Abbildung 1: Experimenteller Aufbau zur optischen Ermittlung der Schallgeschwindigkeit. 1. Versuchsziel In einer mit einer Flüssigkeit gefüllten Küvette ist eine stehende
Physik & Musik. Schallresonanz. 2 Aufträge
Physik & Musik 24 Schallresonanz 2 Aufträge Physik & Musik Schallresonanz Seite 2 Schallresonanz Bearbeitungszeit: 30-45 Minuten Sozialform: Partnerarbeit Voraussetzung: Posten 4 "Stehende Wellen" Einleitung
Betrieb einer LED mit Solarenergie
Betrieb einer LED mit Solarenergie ENT Schlüsselworte Sonnenenergie, Fotovoltaik, Solarzelle, Leuchtdiode Prinzip Kleine Fotovoltaikanlagen können direkt zur Versorgung kleiner Geräte oder zur Beleuchtung
Pappröhre, die an einem Ende offen und am anderen mit einem Plastikdeckel verschlossen ist. Vernier Mikrofon-Sonde, CBL oder LabPro und TI-83.
Stehende Wellen Zielsetzung: In diesem Experiment ist es unser Ziel, die Schallwellen zu untersuchen, die entstehen, wenn der Deckel einer Pappröhre mit dem Finger angeschlagen wird. Das Geräusch wird
Stromstärke und Widerstand in Reihenschaltung
Lehrer-/Dozentenblatt Gedruckt: 30.03.207 7:0:20 P372900 Stromstärke und Widerstand in Reihenschaltung (Artikelnr.: P372900) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema:
ENT 8.1. Erwärmen von Wasser mit einer Parabolrinne
Erwärmen von Wasser mit einer Parabolrinne ENT Schlüsselworte Sonnenenrgie, Parabolspiegel, Brennpunkt Parabolrinnen-Kraftwerk, Absorption, Reflexion Kaltes Wasser Prinzip Parabolspiegel bündeln das Licht
Mikrowellenoptik. Marcel Köpke & Axel Müller
Mikrowellenoptik Marcel Köpke & Axel Müller 03.05.2012 Inhaltsverzeichnis 1 Bestimmung der Wellenlänge 3 2 Intensitätmessung 5 3 Fresnel-Beugung 7 4 Einzel- und Mehrfachspalte 8 4.1 Einzelspalt...................................
Die Spannung bei der Reihenschaltung (Artikelnr.: P )
Lehrer-/Dozentenblatt Die Spannung bei der Reihenschaltung (Artikelnr.: P1373000) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Elektrizitätslehre Unterthema:
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden
Die Fotodiode (Artikelnr.: P )
Lehrer-/Dozentenblatt Die Fotodiode (Artikelnr.: P378200) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 0-3 Lehrplanthema: Elektrizitätslehre Unterthema: Elektronik Experiment: Die
DW400-2W Wellenwanne für Overheadprojektion
DW400-2W Wellenwanne für Overheadprojektion 1 2 3 4 9 5 8 7 6 1 einheit (inkl. Batterie 1,5 V Babyzelle LR 14) 2 3 x Wellenerreger für punktförmige Wellen 3 Reflexionsplatte flexibel u. Schnur 4 Beugungsplatten,
Das ohmsche Gesetz (Artikelnr.: P )
Lehrer-/Dozentenblatt Gedruckt: 30.03.207 6:59:56 P372400 Das ohmsche Gesetz (Artikelnr.: P372400) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema: Elektrizitätslehre
IM5. Modul Mechanik. Doppler-Effekt
IM5 Modul Mechanik Doppler-Effekt Der Doppler-Effekt bezeichnet die zeitliche Stauchung bzw. Dehnung eines Signals, die auftritt, wenn während der Dauer des Signals der Abstand zwischen Sender und Empfänger
Ministerium für Schule und Weiterbildung NRW PH GK HT 2 Seite 1 von 10. Unterlagen für die Lehrkraft. Abiturprüfung 2012.
Seite 1 von 10 Unterlagen für die Lehrkraft Abiturprüfung 2012 Physik, Grundkurs 1. Aufgabenart Bearbeitung eines Demonstrationsexperiments Bearbeitung einer Aufgabe, die fachspezifisches Material enthält
Messung der Lichtgeschwindigkeit mit dem Foucault schen Drehspiegelversuch
PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 3: Messung der Lichtgeschwindigkeit Messung der Lichtgeschwindigkeit mit dem Foucault schen Drehspiegelversuch Theoretische Grundlagen: Drehbewegungen
1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen.
Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/015 M Schallwellen Am Beispiel von Ultraschallwellen in Wasser werden Eigenschaften von Longitudinalwellen betrachtet. Im ersten
Strom-Spannungs-Kennlinie und Leistung eines Windrades
Strom-Spannungs-Kennlinie und ENT Schlüsselworte Windenergie, Kennlinie, Spannung, Stromstärke, Leistung, Widerstand, Innenwiderstand, Anpassung Prinzip Die Strom-Spannungs-Kennlinie eines Windgenerators
Mechanische Energieerhaltung / Maxwellsches Rad mit measure Dynamics TEP
Mechanische Energieerhaltung / Maxwellsches Rad TEP Verwandte Begriffe Maxwell-Scheibe, kinetische Energie, Rotationsenergie, potentielle Energie, Trägheitsmoment, Winkelgeschwindigkeit, Winkelbeschleunigung,
Elektrizitätslehre. Feldverlauf und Polarisation von Mikrowellen vor einer Hornantenne. LD Handblätter Physik P Bb/Sel.
Elektrizitätslehre Elektromagnetische Schwingungen und Wellen Mikrowellen LD Handblätter Physik P3.7.4.1 Feldverlauf und Polarisation von Mikrowellen vor einer Hornantenne Versuchsziele Messung des transversalen
4 Der elektrische Leiter als Äquipotentialfläche. Aufgabe. Wie verändert ein elektrischer Leiter ein elektrisches Feld?
Naturwissenschaften - Physik - Äquipotentialflächen 4 Der elektrische Leiter als Äquipotentialfläche Experiment von: Phywe Gedruckt: 04..203 7:00:46 intertess (Version 3.06 B200, Export 2000) Aufgabe Aufgabe
Brechung des Lichts Arbeitsblatt
Brechung des Lichts Arbeitsblatt Bei den dargestellten Strahlenverläufen sind einige so nicht möglich. Zur Erklärung kannst du deine Kenntnisse über Brechung sowie über optisch dichtere bzw. optisch dünnere
Brechung beim Übergang Luft zu Glas (Artikelnr.: P )
Lehrer-/Dozentenblatt Gedruckt: 30.03.207 6:3:8 P064300 Brechung beim Übergang Luft zu Glas (Artikelnr.: P064300) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema:
BESTIMMUNG DER SCHALLGESCHWINDIGKEIT IN LUFT BEI 0 C MIT HILFE EINES OSZILLOSKOPS
21 BESTIMMUNG DER SCHALLGESCHWINDIGKEIT IN LUFT BEI 0 C MIT HILFE EINES OSZILLOSKOPS 1) METHODE Als Schallquelle verwenden wir einen Ultraschallsender, der ein Signal der Frequenz f aussendet. Der so in
Experimentalphysik für ET. Aufgabensammlung
Experimentalphysik für ET Aufgabensammlung 1. Wellen Eine an einem Draht befestigte Stimmgabel schwinge senkrecht zum Draht und erzeuge so auf diesem eine Transversalwelle. Die Amplitude der Stimmgabelschwingung
1 Beugungsmuster am Gitter. 2 Lautsprecher. 3 Der Rote Punkt am Mond. 4 Phasengitter
1 Beugungsmuster am Gitter Ein Gitter mit 1000 Spalten, dessen Spaltabstand d = 4, 5µm und Spaltbreite b = 3µm ist, werde von einer kohärenten Lichtquelle mit der Wellenlänge λ = 635nm bestrahlt. Bestimmen
Labor für Technische Akustik
Labor für Technische Akustik Temperaturabhängigkeit der Schallgeschwindigkeit in Flüssigkeiten Abbildung 1: Experimenteller Aufbau zur Bestimmung der Schallgeschwindigkeit in Abhängigkeit von der Temperatur.
I. GRUNDLAGEN Man kann die Ausbreitung von Licht durch Lichtstrahlen modellhaft beschreiben. Dabei gilt: Licht breitet sich geradlinig aus.
DATUM: I. GRUNDLAGEN Man kann die Ausbreitung von Licht durch Lichtstrahlen modellhaft beschreiben. Dabei gilt: Licht breitet sich geradlinig aus. Wenn ein Lichtstrahl auf die Oberfläche eines lichtundurchlässigen
2. Schulaufgabe aus der Physik
Q Kurs QPh0 2. Schulaufgabe aus der Physik Be max 50 BE Punkte am 22.06.207 Name : M U S T E R L Ö S U N G Konstanten: c Schall =340 m s,c Licht=3,0 0 8 m s.wie können Sie den Wellencharakter von Mikrowellenstrahlung
Wie verhält sich eine Blattfeder bei Belastung?
1.1.2.2 Wie verhält sich eine Blattfeder S Blattfedern sind Metallplättchen, die sich unter Belastung elastisch verformen können: Wirkt eine Kraft auf eine Blattfeder, dann verformt sich diese. Charakteristisch
m s km v 713 h Tsunamiwelle Ausbreitungsgeschwindigkeit: g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter
Wellen Tsunami Tsunamiwelle Ausbreitungsgeschwindigkeit: v g h g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter Berechnungsbeispiel: h=4000 m v 9,81 4000 198 km v 713 h m s Räumliche
Grundwissen. Physik. Jahrgangsstufe 10
Grundwissen Physik Jahrgangsstufe 10 1. Impuls Grundwissen Physik Jahrgangsstufe 10 Seite 1 Definition: p=m v [ p]=1 kg m s Impulserhaltungssatz: p vorher = p nachher p= p ' p 1 p = p' 1 p ' m 1 =1kg stößt
Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht
Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht Betreuer: Norbert Lages Hanno Rein [email protected] Florian Jessen [email protected] 26. April 2004 Made
Erwärmen von Wasser in einem Sonnenkollektor
Erwärmen von Wasser in einem Sonnenkollektor ENT Schlüsselworte Strahlungsenergie der Sonne, Energieumwandlung, Sonnenkollektor, Solarthermie Prinzip Sonnenenergie lässt sich mit Hilfe des Sonnenkollektors
9 Periodische Bewegungen
Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum
Der Transistor als Spannungsverstwrker (Artikelnr.: P )
Lehrer-/Dozentenblatt Der Transistor als Spannungsverstwrker (Artikelnr.: P1378500) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 10-13 Lehrplanthema: Elektrizitätslehre Unterthema:
I. GRUNDLAGEN Man kann die Ausbreitung von Licht durch Lichtstrahlen modellhaft beschreiben. Dabei gilt: Licht breitet sich geradlinig aus.
DATUM: I. GRUNDLAGEN Man kann die Ausbreitung von Licht durch Lichtstrahlen modellhaft beschreiben. Dabei gilt: Licht breitet sich geradlinig aus. Wenn ein Lichtstrahl auf die Oberfläche eines lichtundurchlässigen
Labor für Technische Akustik
Labor für Technische Akustik : Abbildung 1: Experimenteller Aufbau zur Untersuchung der Beugung am Spalt 1. Versuchsziel Eine akustische Welle trifft auf einen engen Spalt und wird dadurch in die geometrischen
Wellenfront und Wellenstrahl
Wellenfront und Wellenstrahl Es gibt unterschiedliche Arten von Wellen, Wasserwellen, elektromagnetische Wellen oder Lichtwellen. Um die verschiedenen Wellen zu beschreiben, haben sich Begriffe wie WELLENFRONT
Hallwachs-Experiment. Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe
Hallwachs-Experiment Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe 20.09.2012 Skizziere das Experiment Notiere und Interpretiere die Beobachtungen Photoeffekt Bestrahlt
Wellen als Naturerscheinung
Wellen als Naturerscheinung Mechanische Wellen Definition: Eine (mechanische) Welle ist die Ausbreitung einer (mechanischen) Schwingung im Raum, wobei Energie und Impuls transportiert wird, aber kein Stoff.
Labor für Technische Akustik
Labor für Technische Akustik Abbildung 1: Experimentaler Aufbau zur Bestimmung der Ausbreitungsgeschwindigkeit von Ultraschallwellen in Flüssigkeiten. 1. Versuchsziel Die Schallwellen werden mittels eines
Dehnung eines Gummibands und einer Schraubenfeder
Aufgabe Durch schrittweise Dehnung eines Gummibandes und einer soll der Unterschied zwischen plastischer und elastischer Verformung demonstriert werden. Abb. 1: Versuchsaufbau Material 1 Hafttafel mit
2.3 Abschirmung von Betastrahlen. Aufgabe. Welche Stoffe eignen sich zur Abschirmung von β-strahlen?
Naturwissenschaften - Physik - Radioaktivität - 2 Strahlenarten und ihre Eigenschaften (P7300800) 2.3 Abschirmung von Betastrahlen Experiment von: Phywe Gedruckt: 6.0.203 6:22:32 intertess (Version 3.06
Versuch E1: Elektrisches Feld
Versuch E1: Elektrisches Feld Aufgaben: 1. Untersuchen Sie die Abhängigkeit der räumlich konstanten elektrischen Feldstärke im Plattenkondensator von der Spannung und vom Plattenabstand. 2. Untersuchen
Temperaturmessung mit einem Thermoelement
Lehrer-/Dozentenblatt Temperaturmessung mit einem Thermoelement (Artikelnr.: P1042400) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Wärmelehre Unterthema: Temperatur
Physikalisches Praktikum 2. Semester Elektrotechnik. Versuch 4 Messung der Schallgeswindigkeit
Physikalisches Praktikum 2. Semester Elektrotechnik Versuch 4 Messung der Schallgeswindigkeit Autoren: Markus Krieger Nicolai Löw Erstellungsdatum: 4. Juni 2000 Disclaimer: Alle von mir im Internet unter
Name: PartnerIn in Crime: Datum: Versuch: Ultraschall 1125B
Name: PartnerIn in Crime: Datum: Versuch: Ultraschall 1125B Einleitung Eine Welle wird als ein räumlich und zeitlich verändertes Feld aufgefasst, das in der Lage ist, Energie (aber keine Materie) durch
Physikalisches Praktikum 1. Versuch Mi 1 Mikrowellen. Bergische Universität Wuppertal Sommersemester 2007. Verfasser: Moritz Schubotz.
Bergische Universität Wuppertal Fachbereich C Sommersemester 007 Physikalisches Praktikum 1 Versuch Mi 1 Mikrowellen Verfasser: Moritz Schubotz Betreuer: Sebastian Weber Abgabetermin: 0 Ausgangssituation
Wie breitet sich Licht aus?
A1 Experiment Wie breitet sich Licht aus? Die Ausbreitung des Lichtes lässt sich unter anderem mit dem Strahlenmodell erklären. Dabei stellt der Lichtstrahl eine Idealisierung dar. In der Praxis beobachtet
Versuch O08: Polarisation des Lichtes
Versuch O08: Polarisation des Lichtes 5. März 2014 I Lernziele Wellenoptik Longitudinal- und Transversalwellen Elektromagnetische Wellen II Physikalische Grundlagen Nachweismethode Elektromagnetische Wellen
Reflexion am Hohlspiegel (Artikelnr.: P )
Lehrer-/Dozentenblatt Reflexion am Hohlspiegel (Artikelnr.: P1063900) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Optik Unterthema: Reflexion und Brechung Experiment:
Beugung am Gitter. Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes
PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 2: Beugung am Gitter Beugung am Gitter Theoretische Grundlagen Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes beeinträchtigen.
Die Leuchtdiode (Artikelnr.: P )
Lehrer-/Dozentenblatt Gedruckt: 30.03.207 7:0:5 P37800 Die Leuchtdiode (Artikelnr.: P37800) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 0-3 Lehrplanthema: Elektrizitätslehre Unterthema:
Ferienkurs Teil III Elektrodynamik
Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................
Bildkonstruktion an Konvexlinsen (Artikelnr.: P )
Lehrer-/Dozentenblatt Bildkonstruktion an Konvexlinsen (Artikelnr.: P065400) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema: Optik Unterthema: Linsengesetze Experiment:
I. GRUNDLAGEN Man kann die Ausbreitung von Licht durch Lichtstrahlen modellhaft beschreiben. Dabei gilt: Licht breitet sich geradlinig aus.
KLASSE: DATUM: NAMEN: I. GRUNDLAGEN Man kann die Ausbreitung von Licht durch Lichtstrahlen modellhaft beschreiben. Dabei gilt: Licht breitet sich geradlinig aus. Wenn ein Lichtstrahl auf eine glatte oder
Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002
Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723
Versuch 3.3: Polarisation und Doppelbrechung
Versuch 3.3: Polarisation und Doppelbrechung Markus Rosenstihl e-mail:[email protected] Praktikumspartner: Shona Mackie, Wolfgang Schleifenbaum Betreuer: Dr. Holzfuss 6. Juli 2005 1 1
Polarisationsapparat
1 Polarisationsapparat Licht ist eine transversale elektromagnetische Welle, d.h. es verändert die Länge der Vektoren des elektrischen und magnetischen Feldes. Das elektrische und magnetische Feld ist
Strahlengang und Brennweite bei einer Konkavlinse
Lehrer-/Dozentenblatt Strahlengang und Brennweite bei einer Konkavlinse (Artikelnr.: P1065500) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Optik Unterthema:
TEP. Impulsübertrag eines Balls aus dem freien Fall
Impulsübertrag eines Balls TEP Lernziele und verwandte Themen Freier Fall, Impulsberechnung als Kraft pro Zeit, Impulsübertrag von bewegten Gegenständen, exponentielle Funktionen, wissenschaftliches experimentieren.
Wie schwer ist eine Masse? S
1.1.2.1 Wie schwer ist eine Masse? S Eine Masse ist nicht nur träge, sondern auch schwer. Das soll bedeuten, dass nicht nur eine Kraft nötig ist, um eine Masse zu beschleunigen, sondern dass jede Masse
Physik & Musik. Stehende Wellen. 1 Auftrag
Physik & Musik 4 Stehende Wellen 1 Auftrag Physik & Musik Stehende Wellen Seite 1 Stehende Wellen Bearbeitungszeit: 45 Minuten Sozialform: Einzel- oder Partnerarbeit Einleitung Alle Blasinstrumente die
Zentralabitur 2011 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min
Thema: Eigenschaften von Licht Gegenstand der Aufgabe 1 ist die Untersuchung von Licht nach Durchlaufen von Luft bzw. Wasser mit Hilfe eines optischen Gitters. Während in der Aufgabe 2 der äußere lichtelektrische
Zentralabitur 2012 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min
Thema: Wellen und Quanten Interferenzphänomene werden an unterschiedlichen Strukturen untersucht. In Aufgabe 1 wird zuerst der Spurabstand einer CD bestimmt. Thema der Aufgabe 2 ist eine Strukturuntersuchung
