Ziel Mikro-Skalen. Zur Erinnerung: Unser. 1 Meter 1 Millimeter. Mensch. Blutzelle. 1 Mikrometer 1 Nanometer 1 Picometer. Atom

Größe: px
Ab Seite anzeigen:

Download "Ziel Mikro-Skalen. Zur Erinnerung: Unser. 1 Meter 1 Millimeter. Mensch. Blutzelle. 1 Mikrometer 1 Nanometer 1 Picometer. Atom"

Transkript

1

2 Zur Erinnerung: Unser Ziel Mikro-Skalen 1 Meter 1 Millimeter 1 Mikrometer 1 Nanometer 1 Picometer 1 Femtometer 1 Attometer 1 Zeptometer Mensch Blutzelle Atom Atomkern Elektron 1 Yoctometer? Planck-Skala

3 1930: Atomare Struktur ist verstanden Der Atomkern ist ca mal kleiner als die Elektronenhülle ~ Fermi fm = m. 99,9% der Masse/Energie befindet sich im Kern. Bestandteile: Protonen und Neutronen (1932) (zusammen: Nukleonen) Kern positiv geladen. Anzahl Protonen = Ordnungszahl Z Anzahl Neutronen = Masse Anzahl Protonen = A Z. Die Nukleonen haben annähernd die gleiche Masse m u = 1,6724 x kg = 938,27 MeV/c² Quantenmechanik beschreibt atomare Struktur.

4 Die atomare Struktur - Orbitale

5 Inhalt Kapitel 2 Atomkerne und die Massendifferenz. Massendefekt von Helium kann quantenmechanisch nicht erklärt werden. Prinzipien der Speziellen Relativität (Einstein 1905). Lorentz Transformationen zwischen Inertialsystemen. Zeit und Raum bilden 4-Vektor. Energie und Impuls bilden weiteren 4- Vektor invariante Masse.

6 Atomkerne sind nicht elementar Protonen stoßen sich ab Kraft?

7 Atomkerne: Protonen + Neutronen können nicht beliebig dicht gepackt sein Durch Pauli-Prinzip verboten Mittlerer Abstand ~ 1 Fermi Flüssigkeit 10 Fermi

8 Elementschreibweise 238 U 92, 234 Th 90 Atommasse 238,0 146 Neutronen U Symbol Ordnungszahl Protonen Atommasse 234,0 4 Nukleonen weniger Th Symbol Ordnungszahl 90 2 Protonen weniger

9 Anzahl Protonen Anzahl Neutronen Stabile & instabile Kerne

10 abstoßender Core Yukawa postuliert 1935 Kernkraft F(r) = -g² exp(-µr)/r anziehend

11 Analogie: Molekülpotenzial repulsiv anziehend

12 Warum ist He leichter als 4 Nukleonen?

13 Der Massendefekt von Helium Helium-Atom: Masse = 3727,4 MeV/c² Proton: Neutron: 2p + 2n: Masse = 938,28 MeV/c² Masse = 939,57 MeV/c² Masse = 3755,7 MeV/c² Massendefekt = 28,3 MeV/c² Fusion von p+n gibt Bindungsenergie von 28,3 MeV kann mit Quantenmechanik nicht erklärt werden! Spezielle Relativität!

14 Bindungsenergie Atomkerne Eisenkerne 56 Fe am stärksten gebunden

15 Bindungsenergie Atomkerne Supernova

16 Albert Einstein 1905 Spezielle Relativität

17 Albert Einstein : Fachlehrer-Diplom Physik ETH ZH 1905: Spezielle Relativität, Patentamt BE : Professuren in ZH, Prag, ETH 1914: Aufnahme in die Kgl. Preußische Akademie der Wissenschaften in Berlin 1915: Allgemeine Relativitätstheorie ( Grundlage des Verständnisses des Universums bis heute) 1917: Direktor Kaiser-Wilhelm Institut für Physik in Berlin 1918: Gravitationswellen vorausgesagt (Schwarze Löcher die wichtigsten Quellen)

18 Studium an ETH Einstein in Zürich 25. Nov Gleichungen

19 Galilei Relativitätsprinzip Naturgesetze haben für alle Beobachter dieselbe Form Galilei Transformation Er argumentierte damit, dass ein unter Deck eines unbeschleunigten Schiffes befindlicher Beobachter aus den Vorgängen um ihn herum nicht erschließen kann, ob sich das Schiff in Bewegung befindet oder nicht. P: t = t x = x - v*t d²x /dt ² = d²x/dt² P 2 IS starten zu Zeit t = t = 0 am selben Punkt Geschwindigkeit: U = U v c = c - v

20 Die Galilei-Relativität Galileo Galilei 1610, Isaac Newton 1687 Newton: Es gibt einen absolut ruhenden Raum Weltäther EM-Wellen Es gibt eine absolute (universelle) Zeit t Gleichförmig im Weltäther bewegte Systeme Inertialsysteme dp Bewegungsgleichung in Inertialsystemen (Newton): F dt Wechsel des Inertialsystems: Σ x, r P v t y, z, t r' Σ v x, y,z, t Galilei-Transformation r r t t vt

21 1864: Elektromagnetische Wellen breiten sich mit Lichtgeschw. c aus Maxwell-Gleichungen nicht Galilei-invariant Maxwell-Gleichungen sind nicht Galilei-invariant! Lichtgeschwindigkeit hängt vom Bezugssystem ab! Maxwell-Gleichungen sind Lorentz-invariant (1886)

22 Der Äther trägt die EM Wellen Probleme mit Galilei-Invarianz: Maxwell-Gleichungen bleiben nicht invariant. Lichtgeschwindigkeit hängt vom Inertialsystem ab. Die Vakuumlichtgeschwindigkeit c. km s ist keine Naturkonstante, abhängig vom Inertialsystem und abhängig von der Geschwindigkeit der Lichtquelle kann getestet werden.

23 Michelson-Morley Experiment

24 Michelson-Morley Experiment Potsdam 1881

25 Drehbarer Tisch. Laufzeitunterschiede bei Drehung machen sich durch Verschiebung der Interferenzringe bemerkbar. Eine Ringbreite entspricht ¼. A. Michelson, 1881 (Potsdam) A. Michelson und E.Morley, 1889 (Ohio)

26 Konstanz Lichtgeschwindigkeit 0,3 m/s 3 nm/s

27 Wie schnell fliegt mein Raumschiff? Gelingt es, die Geschwindigkeit in einem abgeschlossenen Raumschiff weit weg von allen Sternen zu bestimmen? Nie!

28 Was ist ein Inertialsystem? Ein Inertialsystem ist ein Bezugssystem, in dem das Trägheitsgesetz der Mechanik gilt: Körper, auf die keine Kräfte wirken, befinden sich in Ruhe oder bewegen sich mit konstanter Geschwindigkeit auf geraden Bahnen. Ein Inertialbeobachter ist ein Beobachter, der relativ zu einem Inertialsystem ruht. Im Zusammenhang der Relativitätstheorien entspricht ein Inertialsystem einem System, das im gravitationsfreien Raum schwebt, ohne beschleunigt zu werden oder zu rotieren.

29 Konsequenz aus Michelson-Morley

30 Zytglogge Turm inspirierte Einstein?

31

32 Einstein-Ausstellung 2005/ Besucher in Bern

33 Bewegte Uhren Zeitdilatation Animation: Bewegte Uhren gehen langsamer bewegte Körper schrumpfen

34 Bewegte Uhren gehen langsamer Unter einer Lichtuhr wird eine Vorrichtung gegebener Länge verstanden, entlang der ein Photon zwischen 2 Spiegeln hin- und herpendelt. v Dt Wenn der Weg größer wird, muss auch Dt größer werden.

35 Bewegte Uhren - Zeitdilatation Für einen bewegten Beobachter finden die Ereignisse E1 und E2 an verschiedenen Orten statt, die den Abstand v Dt haben. Damit benötigt der Lichtblitz eine längere Strecke L. Lorentz-Faktor

36 Der Lorentz-Faktor Protonen im LHC werden auf Energien von 7000 GeV beschleunigt. Dies entspricht einem Lorentz-Faktor g = Berechnen Sie v/c!

37 ! v < c! Es würde unendlich viel Energie kosten, Teilchen auf c zu beschleunigen!

38 Lichtuhr Erde Mond 1,3 sec Von einem Flugzeug aus gemessen erscheint der Weg länger.

39 Der grüne Lichtstrahl ist ein Laser. Der Pfad des Strahls wurde am 15. April 2014 vom 3,5-Meter-Teleskop am Apache-Point-Observatorium im Süden von New Mexico abgestrahlt. Genauigkeit ist einige Picosec 1 mm. Bildrechte: apod

40 Zerfall von Myonen, die bei den Reaktionen von kosmischen Strahlen in den oberen Schichten der Atmosphäre erzeugt werden: Lebensdauer: 2,2 µs. von Erde aus: 66 µs

41 Myonen leben im Kreisring länger 2,2 s 1/e-Zeit entspricht 1,52 s Halbwertzeit

42 Lebensdauer von Teilchen am LHC

43 Bewegte Körper schrumpfen Hendrik Lorentz 1899 Dies ist die Längen- oder Lorentzkontraktion: Misst ein Beobachter in seinem IS für eine ruhende Strecke die Eigenlänge L 0, dann messen alle gegen ihn bewegten Beobachter für diese Strecke einen kürzeren Wert L = L 0 / g. Ruhend 0,9 c 0,99 c

44 HIC-Collider Au Au Ionen v =0,999c

45 Galilei x' = (x - vt) y' = y Lorentz x' = g (x - vt) y' = y z' = z z' = z t' = t Zeit ist absolut t' g ( t v ) c 2 x

46 Lorentz-Transformationen vermischen Raum und Zeit H. Lorentz 1899 / H. Poincare / Einstein 1905

47 Galilei x = x' + vt' y = y' z = z' Lorentz x = g (x' + vt') y = y' z = z' t = t' Zeit ist absolut t g v ( t' x c 2 ' )

48 Hermann Minkowski Mathematiker war Einsteins Lehrer ETH 1907 nach Göttingen 1908 Zur SR:»Ach, der Einstein? Der schwänzte doch immer die Vorlesungen dem hätte ich das gar nicht zugetraut.«einstein:»überflüssige Gelehrsamkeit«

49 Jeder Raumpunkt trägt eine Uhr Die Welt ist 4-dimensional Unsere Sinnesorgane können Zeit nicht verarbeiten

50 Die Minkowski Metrik 1908 Abstand zwischen 2 benachbarten Ereignissen ds 2 c 2 d 2 c 2 dt 2 dx 2 dy 2 dz 2 ds² = (dx) T (dx)

51 Zeit Denken Sie vier-dimensional! Die RaumZeit von Minkowski ist flach ds² = c² dt² - dx² - dy² - dz² Raum Lichtgeschwindigkeit bleibt konstant! c = ,458 km/s

52 Niedrige Geschwindigkeit Relativistische Geschwindigkeit

53 Was Einstein noch nicht sehen konnte Flug durch Tübinger Altstadt / Deutsches Museum Gerade Linien werden zu Hyperbeln verzerrt.

54 Was haben wir gelernt? Atomkerne haben eine geringere Masse im Vergleich zu ihren Konstituenten kann nur relativistisch erklärt werden! Moderne Physik muss die Axiome der Speziellen Relativität erfüllen. Welche beiden? Was sind Inertialsysteme? Galilei-Invarianz Lorentz-Invarianz, Raum und Zeit mischen sich bilden eine Gruppe. Lorentz-Transformationen sind die Symmetrie der Minkowski RaumZeit die Welt ist 4D.

55 Energie-Impuls 4er-Vektor Nachtrag Einsteins im Sept. 1905

56 Annalen der Physik. 323, Nr. 13, 1905, S

57 Annalen der Physik. 323, Nr. 13, 1905, S

58 SRT erklärt Masse des Helium-Kerns Masse des He-Atoms: m He = 3727,379 MeV/c² m p = 938,28 MeV/c² m n = 939,57 MeV/c² 2m p + 2m n = 3755,7 MeV/c² Dm He = 28,3 MeV/c² Massendefekt Dieser Unterschied beruht auf Bindung im Fusionsprozess, die negativ beiträgt und Energie abgibt.

59 Felder besitzen auch Trägheit Trägheit = Kasten + Kondensator + e 0 E²V C / c² V E Metallkasten mit Kondensator Volumen V C

60 Masse des Protons = Masse Quarks + Energie der Gluonenfelder Masse der Quarks: m u = 3 MeV/c² m d = 5 MeV/c² m s = 100 MeV/c² Masse des Protons: m p = 938,28 MeV/c² m n = 939,57 MeV/c² m p ~ E gluon /c²

61 Masse des Wasserstoff-Atoms? Masse des H-Atoms: m p = 938,28 MeV/c² m e = 511 kev/c² E B = -13,6 ev m H = m p + E B /c² Dieser Unterschied ist nicht messbar!

62 Masse des Elektrons? Masse des Elektrons: m p = 938,28 MeV/c² m e = 511 kev/c² Problem: Energie im elektrischen Feld >> m e c²!!!! Wenn punktförmig, dann ist Masse sogar unendlich! Die Theorie des Elektrons ist nicht vollständig! E

63 Einstein musste 33 Jahre warten: Uran-Spaltung Otto Hahn Berlin 1938

64

65 Experimentiertisch von Otto Hahn Nachbau im Deutschen Museum München

66 Erklärungen zum Experimentiertisch

67 Otto Hahn & Lise Meitner Einstein: die deutsche Marie Curie Frauen wurden erst 1908 zugelassen musste immer durch Hintertür ins Labor

68 Sie promovierte bereits am in Wien und ging 1907 nach Berlin, nachdem sie von Marie Curie abgelehnt worden ist.

69 Otto Hahn erhielt 1946 den Nobelpreis Lise Meitner ging leer aus! 1938: Ungläubig informierte Hahn seine einstige Kollegin und Vertraute Lise Meitner im schwedischen Exil über die Versuchsergebnisse, die der gängigen Vorstellung vom unteilbaren Atom völlig zuwiderlief. Noch während der Weihnachtsferien lieferte Lise Meitner zusammen mit ihrem ebenfalls aus Deutschland vertriebenen Neffen Otto Robert Frisch eine erste physikalische Erklärung für das Zerplatzen des Urankerns und wies darauf hin, dass bei diesem Vorgang eine gewaltige Energiemenge frei wird. Am 6. Januar 1939 wurde die Entdeckung veröffentlicht und erregte weltweites Aufsehen. Rasch wurde ihre große wissenschaftliche Bedeutung erkannt, aber auch das gewaltige technische und militärische Potenzial.

70 Lise Meitner und die Atombombe

71 Die berühmteste Formel der Welt erklärt die Energiequelle Sterne Spaltung Fusion Sterne

72 Konsequenzen aus SRT Masse ist nicht erhalten! Im Rahmen der SRT gibt es nur eine Erhaltung der totalen Energie, inkl. Feldenergie des totalen Impulses, inkl. Impuls in Feldern formuliert Energie-Impuls-Tensor. Umwandlung von Masse in Energie und umgekehrt erfolgt in Beschleunigern dauernd. Warum ist dann Materie überhaupt stabil? Warum verwandelt sich die gesamte Materie des Universums nicht in Energie?

73 Vereinigung von SRT und QM Zwei verschiedene Bereiche der Physik wurden in der Quantenfeldth. miteinander verknüpft. Umrechnung von Impulsen in Wellenlängen. Planck Konstante hc = 1239 MeV fm. de Broglie: = h/p : ein Teilchen mit Impuls p=1 MeV/c Welle mit = 1239 fm = 1,239 pm ein Teilchen mit Impuls p = 1 GeV/c Welle mit = 1,239 fm e durchleuchten Protonen! Teilchen mit Impuls p = 1 TeV/c Welle mit = 1,24 am heutige Auflösungsvermögen. Deswegen wird m über Lichtgeschwindigkeit festgelegt: c = m/s Lichtjahr.

74 Spezielle Relativität ist erfolgreich Spezielle Relativität ist etabliert & getestet. Invarianz der Lichtgeschwindigkeit ist gut getestet, keine ausgezeichneten IS in Minkowski Gesetze der Physik relativistisch formuliert: Maxwells Theorie mit Faraday Tensor; Teilchen-Dynamik durch 4er-Vektoren; Masse ist nicht mehr erhalten, Energie und Impuls bleiben erhalten in Kollisionen. Offene Frage: Wie Gravitation behandeln?

75 Ungelöste Rätsel Spezielle Relativität konnte das Rätsel um den Massendefekt bei Helium lösen. Problem mit der kleinen Masse des Elektrons. Ausdehnung < 0,0001 Fermi, von elektrischem Feld umgeben falls punktförmig unendliche Feld-Energie. unendliche Masse des Elektrons. Theorie des Elektrons ist unvollständig! Warum ist Materie stabil? Warum ist das Proton stabil? Ist es tatsächlich stabil?

76 Anhang: 4er-Vektoren in der Minkowski RaumZeit Wir definieren die Minkowski-RaumZeit durch Koordinaten x 0 = ct, x 1 = x, x 2 = y, x 3 = z und verwenden 4er-Vektor Notation für Ereignisse in der RaumZeit x = (ct, x 1, x 2, x 3 ) = (ct, x), µ = 0,1,2,3 Lorentz Transformationen lauten wie folgt: x 0 = g(x 0 - bx 1 ) x 1 = g(x 1 - bx 0 ) (1) x 2 = y x 3 = z wobei b = v/c und g = 1/(1-b 2 ) 1/2 Jede Größe mit 4 Komponenten, die sich nach (1) transformiert, ist ein sog. Lorentz-Vektor.

77 Die 4er-Geschwindigkeit Ein 4-Vektor muss sich wie (1) transformieren. Man erhält einen neuen 4-Vektor durch Multiplikation mit einem konstanten Faktor (oder L-Invariante). Eine nützliche Invariante ist = t /g (die Zeit im Ruhsystem eines Teilchens in S ). In einem beliebigen IS S gilt für die beob. Zeit t = g, dt = g d Da d invariant ist, folgt U = dx / d 4er-Geschwindigkeit = (gc, g dx 1 /dt, g dx 2 /dt, g dx 3 /dt) ist ein 4-Vektor: U U µ = g²c²(1 b²) = c²

78 Energie & Impuls 4er-Vektor Da d dt/g invariant ist und dx ein 4-Vektor ist, ist auch die 4-Geschwindigkeit ein 4-Vektor U = dx / d = (gc, gdx 1 /dt, gdx 2 /dt, gdx 3 /dt) = (gc, gdx/dt ) = (gc, gv ) Die Ruhemasse ist m 0 ist ebenfalls eine Konstante. Somit können wir folgenden 4-Vektor definieren p = m 0 U = (gm 0 c, gm 0 dx 1 /dt, gm 0 dx 2 /dt, gm 0 dx 3 /dt) = (gm 0 c, gm 0 dx/dt ) = (m 0 gc, m 0 gv ) Mit der effektiven Masse m = m 0 g Energie- Impuls Vektor p = (mc, mv ) = (mc, p )

79 Invariante oder Ruhe- Masse Für 4-Impuls p µ definiert die L-Invariante die sog. invariante Masse (m 0 c) 2 = (p 0 ) 2 (p 1 ) 2 (p 2 ) 2 (p 3 ) 2 = (E/c) 2 (p x ) 2 (p y ) 2 (p z ) 2 (m 0 c) 2 = (E/c) 2 p 2 Diese Masse ist in allen IS identisch, so auch im Ruhsystem = Ruhe-Masse. für ein Teilchen mit Ruhe-Masse m 0 Physics 841, U. Cincinnati, Oct, 2010 E 2 = p 2 c 2 + m o2 c 4 Brian Meadows, U. Cincinnati

80 Gesamtenergie = Ruheenergie +

21 Spezielle Relativitätstheorie

21 Spezielle Relativitätstheorie Spezielle Relativitätstheorie Hofer 1 21 Spezielle Relativitätstheorie 21.1. Raum und Zeit Die Relativitätstheorie ist neben der Quantentheorie eine der beiden großen Revolutionen der Physik des 20. Jahrhunderts.

Mehr

Spezielle Relativitätstheorie

Spezielle Relativitätstheorie Spezielle Relativitätstheorie Proseminar: Kosmologie und Teilchenphysik von Evangelos Nagel Physik vor dem 20. Jhd. Newton (Principia Mathematica): Der absolute Raum bleibt vermöge seiner Natur und ohne

Mehr

41. Kerne. 33. Lektion Kerne

41. Kerne. 33. Lektion Kerne 41. Kerne 33. Lektion Kerne Lernziel: Kerne bestehen aus Protonen und Neutronen, die mit starken, ladungsunabhängigen und kurzreichweitigen Kräften zusammengehalten werden Begriffe Protonen, Neutronen

Mehr

Jenseits der Antimaterie

Jenseits der Antimaterie Jenseits der Antimaterie Das Higgs Teilchen eine Suche nach den Grenzen der Physik Peter Schleper Universität Hamburg 17.4.2012 Akademie der Wissenschaften in Hamburg Quantenphysik: kleinste Bausteine

Mehr

Allgemeine Chemie. Der Atombau

Allgemeine Chemie. Der Atombau Allgemeine Chemie Der Atombau Dirk Broßke Berlin, Dezember 2005 1 1. Atombau 1.1. Der Atomare Aufbau der Materie 1.1.1. Der Elementbegriff Materie besteht aus... # 6.Jh.v.Chr. Empedokles: Erde, Wasser,

Mehr

Gigantische Explosionen

Gigantische Explosionen Gigantische Explosionen Gammaastronomie - das Universum bei höchsten Energien Gernot Maier Credit: Stephane Vetter (Nuits sacrees) Kollidierende Galaxien Licht = Elektromagnetische Strahlung Welle Teilchen

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

1930: Krise in in der der Physik. Oh, Oh, daran denkt man man am am besten gar gar nicht, wie wie an an die die neuen Steuern

1930: Krise in in der der Physik. Oh, Oh, daran denkt man man am am besten gar gar nicht, wie wie an an die die neuen Steuern 1930: Krise in in der der Physik Oh, Oh, daran denkt man man am am besten gar gar nicht, wie wie an an die die neuen Steuern 1930: Energie-Erhaltung im im Beta-Zerfall verletzt?? Alpha-Zerfall Beta-Zerfall

Mehr

umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen,

umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen, Wiederholung der letzten Vorlesungsstunde: Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen, Neutronen, Element, Ordnungszahl Thema heute: Aufbau von Atomkernen, Kern- umwandlungen

Mehr

LHC: Die größte Maschine der Welt

LHC: Die größte Maschine der Welt 2 Atomhülle LHC: Die größte Woraus besteht die Materie? Durchmesser: 10-10 m Teilchen: Elektronen Atomkern Durchmesser 1 fm = 10-15 m Femtometer Teilchen: Protonen, Neutronen 3 Einfachstes Beispiel: Wasserstoff

Mehr

Urknall im Tunnel: Urknall im Tunnel: das Large Hadron Collider Projekt VDI GMA-Kongress Baden-Baden, 12. Juni 2007 S.Bethke, MPI für Physik, München

Urknall im Tunnel: Urknall im Tunnel: das Large Hadron Collider Projekt VDI GMA-Kongress Baden-Baden, 12. Juni 2007 S.Bethke, MPI für Physik, München Urknall im Tunnel: Urknall im Tunnel: das Large Hadron Collider Projekt VDI GMA-Kongress Baden-Baden, 12. Juni 2007 S.Bethke, MPI für Physik, München 1 Urknall im Tunnel: das Large Hadron Collider Projekt

Mehr

Teilchen sichtbar machen

Teilchen sichtbar machen Teilchen sichtbar machen PD Dr. M. Weber Albert Einstein Center for Fundamental Physics Laboratorium für Hochenergiephysik Physikalisches Institut Universität Bern 1 PD Dr. M. Weber Physik Masterclasses

Mehr

Hatte Einstein wirklich Recht? Äther vs. spezielle Relativitätstheorie

Hatte Einstein wirklich Recht? Äther vs. spezielle Relativitätstheorie Hatte Einstein wirklich Recht? Äther vs. spezielle Relativitätstheorie Klenzestr. 87 80469 München Tel. 089/28808837 Symposium Was ist das für eine Welt, in der wir leben? Freiburg 3. Juli 2010 Inhalt

Mehr

3PbÁTcfPbÁP]STaTÁFXbbT]bRWPUcbV[^bbPaÁ

3PbÁTcfPbÁP]STaTÁFXbbT]bRWPUcbV[^bbPaÁ 8]U^a\PcX^]bQ[Pcc 3PbTcfPbP]STaTFXbbT]bRWPUcbV[^bbPa Natürlich bilde ich mir nicht im Geringsten ein, über diese allgemeinen Dinge irgendetwas Neues oder auch nur Originelles sagen zu können. Albert Einstein

Mehr

Die Klein-Gordon Gleichung

Die Klein-Gordon Gleichung Kapitel 5 Die Klein-Gordon Gleichung 5.1 Einleitung Die Gleichung für die Rutherford-Streuung ist ein sehr nützlicher Ansatz, um die Streuung von geladenen Teilchen zu studieren. Viele Aspekte sind aber

Mehr

Atombau. Die Welt des ganz Kleinen

Atombau. Die Welt des ganz Kleinen Atombau Die Welt des ganz Kleinen Modellvorstellungen als Verständnishilfen Stoffebene Teilchenebene Elemente sind Grundstoffe Stoffe können elektrisch geladen sein Elemente reagieren zu Verbindungen in

Mehr

Die Idee des Atoms geht auf Demokrit von Abdera und Leukipp von Milet zurück. (5. Jhdt. v. Chr.) atomos (griech.) = unteilbar

Die Idee des Atoms geht auf Demokrit von Abdera und Leukipp von Milet zurück. (5. Jhdt. v. Chr.) atomos (griech.) = unteilbar 2Aufbau der Materie Hofer 1 2 Aufbau der Materie 2.1 Die Bestandteile der Materie Chemische Versuche und hoch auflösende Spezialmikroskope zeigen, dass alle Stoffe aus den chemischen Grundstoffen oder

Mehr

Lichtgeschwindigkeit (LG) 1) Erste Messversuche - Galilei 2) Erste erfolgreiche Schätzung - Romer (1676)

Lichtgeschwindigkeit (LG) 1) Erste Messversuche - Galilei 2) Erste erfolgreiche Schätzung - Romer (1676) A. Einstein, 1905, Annalen der Physik: "Zur Elektrodynamik bewegter Körper" Empfehlenswerte Notizen: David Mermin (Cornell University, USA): "Physics 209: Introductory Notes on Relativity" www.lassp.cornell.edu/~cew2/p209/p209_home.html

Mehr

Michelson Interferometer: Aufbau und Anwendungen. 21. Mai 2015

Michelson Interferometer: Aufbau und Anwendungen. 21. Mai 2015 Michelson Interferometer: Aufbau und Anwendungen 1. Mai 015 1 Prinzipieller Aufbau eines Michelson Interferometers Interferenz zweier ebener elektromagnetischer Wellen gleicher Frequenz, aber unterschiedlicher

Mehr

Teilchen, Urknall und theoretische Physik

Teilchen, Urknall und theoretische Physik Vom Little Bang zum Big Bang Teilchen, Urknall und theoretische Physik Hendrik van Hees Fakultät für Physik Universität Bielefeld http://theory.gsi.de/ vanhees/index.html Vom Little Bang zum Big Bang p.

Mehr

Gibt es myonische Atome?

Gibt es myonische Atome? Minitest 7 Das Myon it ist ein Elementarteilchen, t das dem Elektron ähnelt, jedoch jd eine deutlich höhere Masse (105,6 MeV/c 2 statt 0,511 MeV/c 2 ) aufweist. Wie das Elektron ist es mit einer Elementarladung

Mehr

Höhe, Breite, Länge & Zeit -gibt es mehr als diese vier bekannten Dimensionen?

Höhe, Breite, Länge & Zeit -gibt es mehr als diese vier bekannten Dimensionen? Höhe, Breite, Länge & Zeit -gibt es mehr als diese vier bekannten Dimensionen? Betti Hartmann Jacobs University Bremen Schlaues Haus Oldenburg, 11. März 2013 1884, Edwin Abbott: Flächenland eine Romanze

Mehr

Die Natur lässt sich mathematisch beschreiben d.h. es gibt Strukturen und Gesetzmässigkeiten

Die Natur lässt sich mathematisch beschreiben d.h. es gibt Strukturen und Gesetzmässigkeiten Die Natur lässt sich mathematisch beschreiben d.h. es gibt Strukturen und Gesetzmässigkeiten Die Gesetze der Physik gelten im ganzen Universum Physik kann man verstehen d.h. grundsätzlich kann man das

Mehr

Was die Welt im Innersten zusammenhält

Was die Welt im Innersten zusammenhält Was die Welt im Innersten zusammenhält V 1.0 Thomas Hebbeker RWTH, III. Phys. Inst. A Masterclasses Aachen 2010 Übersicht: Teilchen und Kräfte Exp. Methoden: Beschleuniger und Detektoren Beschleuniger

Mehr

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler Mechanik: befasst sich mit der Bewegung von Körpern und der Einwirkung von Kräften. Wir unterscheiden: Kinematik: beschreibt die Bewegung von Körpern, Dynamik: befasst sich mit Kräften und deren Wirkung

Mehr

Grundwissen Physik (9. Klasse)

Grundwissen Physik (9. Klasse) Grundwissen Physik (9. Klasse) 1 Elektrodynamik 1.1 Grundbegriffe Elektrische Ladung: Es gibt zwei Arten elektrischer Ladung, die man als positiv bzw. negativ bezeichnet. Kräfte zwischen Ladungen: Gleichnamige

Mehr

Zeit, Länge und Geschwindigkeit

Zeit, Länge und Geschwindigkeit Zeit, Länge und Geschwindigkeit Grundlegendes zur Messung physikalischer Größen: 1. Definition einer Einheit 2. Abzählen von Vielfachen dieser Einheit oder Vielfache von Bruchteilen der Einheit Oder: mittels

Mehr

Wie die Zeit vergeht

Wie die Zeit vergeht Zweiter November der Wissenschaft»Einstein heute«wie die Zeit vergeht Uhren, Zeit und Einstein Hannover, 2. November 2010 Peter Aufmuth Albert-Einstein-Institut Leibniz Universität Hannover Einstein: Vorurteile

Mehr

9 Relativistische Mechanik

9 Relativistische Mechanik 9 Relativistische Mechanik Die bisher behandelte Newtonsche Mechanik gilt nur für Geschwindigkeiten, die klein gegenüber der Lichtgeschwindigkeit sind In diesem Kapitel stellen wir die relativistische

Mehr

Experimentalphysik VI Kern- und Teilchenphysik Prof. Markus Schumacher ALU Freiburg, Sommersemsester 2010

Experimentalphysik VI Kern- und Teilchenphysik Prof. Markus Schumacher ALU Freiburg, Sommersemsester 2010 Experimentalphysik VI Kern- und Teilchenphysik Prof. Markus Schumacher ALU Freiburg, Sommersemsester 2010 Kapitel 11: Einige offene Fragen Obtaining PDF from Histograms Offene Fragen 23 Parameter im SM:

Mehr

Einführung in die Beschleunigerphysik WS 2001/02. hc = h ν = = 2 10 10 J λ. h λ B. = = p. de Broglie-Wellenlänge: U = 1.2 10 9 V

Einführung in die Beschleunigerphysik WS 2001/02. hc = h ν = = 2 10 10 J λ. h λ B. = = p. de Broglie-Wellenlänge: U = 1.2 10 9 V Bedeutung hoher Teilchenenergien Dann ist die Spannung Die kleinsten Dimensionen liegen heute in der Physik unter d < 10 15 m Die zur Untersuchung benutzten Wellenlängen dürfen ebenfalls nicht größer sein.

Mehr

Die Physik Albert Einsteins im Schülerlabor. Dr. Thomas Trefzger Jörg Kühnel Universität Mainz

Die Physik Albert Einsteins im Schülerlabor. Dr. Thomas Trefzger Jörg Kühnel Universität Mainz Die Physik Albert Einsteins im Schülerlabor Dr. Thomas Trefzger Jörg Kühnel Universität Mainz Einsteinjahr 2005 KinderUni Wissenschaftsmarkt 2005, zweitägige Veranstaltung der Uni mit 20.000 Besuchern

Mehr

Reichweite von ß-Strahlen

Reichweite von ß-Strahlen Reichweite von ßStrahlen Atommodell: Nach dem Bohrschen Atommodell besteht ein Atom aus dem positiven Atomkern und der negativen Elektronenhülle. Der Durchmesser eines Atoms beträgt etwa 1 1 m, der Durchmesser

Mehr

Transformation der Anregungsenergie zwischen Bezugssystemen.

Transformation der Anregungsenergie zwischen Bezugssystemen. Einsteins Relativitätstheorie kontra klassische Mechanik Paul Marmet übersetzt von Mathias Hüfner Kapitel Zwei letzte Durchsicht 01.08.12 Transformation der Anregungsenergie zwischen Bezugssystemen. 2.1

Mehr

Das Elektron, Wahrheit oder Fiktion

Das Elektron, Wahrheit oder Fiktion Das Elektron, Wahrheit oder Fiktion Seit Tausenden von Jahren stellen sich Menschen die Frage, aus welchen Bausteinen die Welt zusammengesetzt ist und welche Kräfte diese verbinden. Aus was besteht also

Mehr

Willkommen bei den Masterclasses!

Willkommen bei den Masterclasses! Hands on Particles Physics, International Masterclasses Willkommen bei den Masterclasses! Wie arbeitet ein Teilchenphysiker? 1 Ablauf des Tages 10:00 Uhr: Begrüßung 10:10 Uhr: Vortrag Auf den Spuren der

Mehr

Einführung in die Physik der Neutronensterne. I. Sagert Institut für Theoretische Physik/ Astrophysik Goethe Universität, Frankfurt am Main

Einführung in die Physik der Neutronensterne. I. Sagert Institut für Theoretische Physik/ Astrophysik Goethe Universität, Frankfurt am Main Einführung in die Physik der Neutronensterne I. Sagert Institut für Theoretische Physik/ Astrophysik Goethe Universität, Frankfurt am Main Leben und Sterben von Sternen Supernova Geburt eines Neutronensterns

Mehr

DIE FUNDAMENTALEN BAUSTEINE

DIE FUNDAMENTALEN BAUSTEINE DIE FUNDAMENTALEN BAUSTEINE "Die Natur liebt sich zu verbergen" Heraklit, 500 v. Chr. ZWEI FUNDAMENTALE FRAGEN : WIE IST DAS UNIVERSUM ENTSTANDEN? WORAUS BESTEHT DIE MATERIE MIT IHREN KRÄFTEN? BEIDE FRAGEN

Mehr

Schülerworkshop, CERN 27.11.2010. Michael Kobel, Schülerworkshop Netzwerk Teilchenwelt,CERN 27.11.10 1

Schülerworkshop, CERN 27.11.2010. Michael Kobel, Schülerworkshop Netzwerk Teilchenwelt,CERN 27.11.10 1 Masterclasses mit LHC Daten eine Premiere Michael Kobel (TU Dresden) Schülerworkshop, CERN 27.11.2010 Michael Kobel, Schülerworkshop Netzwerk Teilchenwelt,CERN 27.11.10 1 Collider am CERN ALICE ATLAS CMS

Mehr

Relativistische Physik

Relativistische Physik 12 Relativistische Physik Inhalt 12.1 MaßstäbeundUhren RaumundZeit... 607 12.2 Gleichzeitigkeit... 616 12.3 DieLorentz-Transformation... 627 12.4 Vierervektoren... 628 12.5 Relativistischer Doppler-Effekt...

Mehr

Kernkollapssuper novae SN Ib, Ic und II. Moritz Fuchs 11.12.2007

Kernkollapssuper novae SN Ib, Ic und II. Moritz Fuchs 11.12.2007 Kernkollapssuper novae SN Ib, Ic und II Moritz Fuchs 11.12.2007 Gliederung Einleitung Leben eines Sterns bis zur Supernova Vorgänge während der Supernova SN 1987 A r-prozesse Was ist interessant an Supernovae?

Mehr

Auswirkungen der Einsteinschen Theorien

Auswirkungen der Einsteinschen Theorien Auswirkungen der Einsteinschen Theorien York Schröder (Theoretische Physik / Uni Bielefeld) Weser-Gymnasium Vlotho, 01 Mar 2006 1 Weisser Zwerg, H1505+65. Temperatur: 200000 Grad 2 Neutronenstern im Krebs-Nebel.

Mehr

Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik

Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik Die grundlegenden Gesetze der Physik sind Verallgemeinerungen (manchmal auch Extrapolationen) von hinreichend häufigen und zuverlässigen

Mehr

Grundwissen Chemie 8I

Grundwissen Chemie 8I 1) Stoffe, Experimente Chemie ist die Lehre von den Stoffen, ihren Eigenschaften, ihrem Aufbau, ihren Veränderungen und ihrer Herstellung. Einfache Möglichkeiten der Stofferkennung (Farbe, Glanz, Kristallform,

Mehr

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 7. Anfang und Ende der Welt

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 7. Anfang und Ende der Welt Ziele der Vorlesung: 1.) Die Entwicklung des Universums seit dem Urknall, unsere Heimatgalaxie 2.) Entwicklungszyklen von Sternen mit unterschiedlichen Anfangsmassen, unsere Sonne 3.) Unser Planetensystem

Mehr

Moderne Physik: Elementarteilchenphysik, Astroteilchenphysik, Kosmologie

Moderne Physik: Elementarteilchenphysik, Astroteilchenphysik, Kosmologie Moderne Physik: Elementarteilchenphysik, Astroteilchenphysik, Kosmologie Ulrich Husemann Humboldt-Universität zu Berlin Sommersemester 2008 Klausur Termine Prüfungsordnung sieht zweistündige Klausur vor

Mehr

Stoff, Reinstoff, Gemisch, homogenes Gemisch, heterogenes Gemisch. Reinstoff, Element, Verbindung. Zweiatomige Elemente.

Stoff, Reinstoff, Gemisch, homogenes Gemisch, heterogenes Gemisch. Reinstoff, Element, Verbindung. Zweiatomige Elemente. 1 1 Einteilung der Stoffe: Stoff, Reinstoff, Gemisch, homogenes Gemisch, heterogenes Gemisch Stoff Reinstoff Mischen Gemisch Bei gleichen Bedingungen (Temperatur, Druck) immer gleiche Eigenschaften (z.b.

Mehr

Das Higgs-Boson wie wir danach suchen

Das Higgs-Boson wie wir danach suchen Das Higgs-Boson wie wir danach suchen Beschleuniger und Detektoren Anja Vest Wie erzeugt man das Higgs? Teilchenbeschleuniger Erzeugung massereicher Teilchen Masse ist eine Form von Energie! Masse und

Mehr

Medienbegleitheft zur DVD 14054 DUNKLE MATERIE UND DUNKLE ENERGIE

Medienbegleitheft zur DVD 14054 DUNKLE MATERIE UND DUNKLE ENERGIE Medienbegleitheft zur DVD 14054 DUNKLE MATERIE UND DUNKLE ENERGIE Medienbegleitheft zur DVD 35 Minuten, Produktionsjahr 2012 Unterrichtsvorschlag Einleitung Den SchülerInnen wird eröffnet, dass der kommende

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technoloie Institut für Theorie der Kondensierten Materie Übunen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS -3 Prof. Dr. Alexander Mirlin Blatt 4 Dr. Ior

Mehr

Grundlagen der physikalischen Chemie 1 - Aufbau der Materie

Grundlagen der physikalischen Chemie 1 - Aufbau der Materie Grundlagen der physikalischen Chemie 1 - Aufbau der Materie Michael Schlapa Phillippe Laurentiu 17. April 2012 Semester Thema Dozent Klausurzulassung Klausur Übung Literatur 2012 SS Michael Schmitt mschmitt@uni-duesseldorf.de

Mehr

Kapitel 5: Kernfusion

Kapitel 5: Kernfusion Kapitel 5: Kernfusion 330 5 Die Kernfusion und ihre Anwendung Der Unterschied der Bindungsenergie zwischen Deuterium D und Helium He ist pro Nukleon wesentlich größer als bei der Kernspaltung. Kernfusion

Mehr

Messung radioaktiver Strahlung

Messung radioaktiver Strahlung α β γ Messung radioaktiver Strahlung Radioaktive Strahlung misst man mit dem Geiger-Müller- Zählrohr, kurz: Geigerzähler. Nulleffekt: Schwache radioaktive Strahlung, der wir ständig ausgesetzt sind. Nulleffekt

Mehr

Formulierung einer relativistisch invarianten Definition der Energie von Gravitationswellen - ein unerwarteter Zusammenhang zur Quantenmechanik

Formulierung einer relativistisch invarianten Definition der Energie von Gravitationswellen - ein unerwarteter Zusammenhang zur Quantenmechanik Formulierung einer relativistisch invarianten Definition der Energie von Gravitationswellen - ein unerwarteter Zusammenhang zur Quantenmechanik Von Torsten Pieper Mannheim 11. November 2013 Zusammenfassung

Mehr

Polarisation des Lichtes

Polarisation des Lichtes Polarisation des Lichtes Licht = transversal schwingende el.-magn. Welle Polarisationsrichtung: Richtung des el. Feldvektors Polarisationsarten: unpolarisiert: keine Raumrichtung bevorzugt (z.b. Glühbirne)

Mehr

39 WELTBILDER VOR 1905

39 WELTBILDER VOR 1905 Prolog ALBERT EINSTEIN ist einer der bekanntesten oder vielleicht sogar der bekannteste Physiker und hat beinahe den Status eines Popstars. In den folgenden Kapiteln geht es um seine Spezielle Relativitätstheorie

Mehr

Maturafragen für Big Bang 8

Maturafragen für Big Bang 8 Maturafragen für Big Bang 8 1 Maturafragen für Big Bang 8 Martin Apolin (Stand November 2012) Die Modell-Maturafragen auf den folgenden Seiten sind kapitelweise geordnet. Sie sollen zeigen, dass man in

Mehr

QED Materie, Licht und das Nichts. Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht

QED Materie, Licht und das Nichts. Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht QED Materie, Licht und das Nichts 1 Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht Titel/Jahr: QED Materie, Licht und das Nichts (2005) Filmstudio: Sciencemotion Webseite des

Mehr

Die Avogadro-Konstante N A

Die Avogadro-Konstante N A Die Avogadro-Konstante N A Das Ziel der folgenden Seiten ist es, festzustellen, wie viele Atome pro cm³ oder pro g in einem Stoff enthalten sind. Chemische Reaktionen zwischen Gasen (z.b. 2H 2 + O 2 2

Mehr

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion...

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion... 5 Gase...2 5.1 Das ideale Gasgesetz...2 5.2 Kinetische Gastheorie...3 5.2.1 Geschwindigkeit der Gasteilchen:...5 5.2.2 Diffusion...5 5.2.3 Zusammenstöße...6 5.2.4 Geschwindigkeitsverteilung...6 5.2.5 Partialdruck...7

Mehr

Universität Regensburg, Naturwissenschaftliche Fakultät II - Physik. Big Bang. Die Nukleosynthese der leichten Elemente am 05.12.

Universität Regensburg, Naturwissenschaftliche Fakultät II - Physik. Big Bang. Die Nukleosynthese der leichten Elemente am 05.12. Universität Regensburg, Naturwissenschaftliche Fakultät II - Physik Big Bang Die Nukleosynthese der leichten Elemente am 05.12.2013 von Matthias Rosenauer 1 2 Abbildung 1: George Gamow (links) und Ralph

Mehr

Spezielle Relativitätstheorie. Die Suche nach dem Äther

Spezielle Relativitätstheorie. Die Suche nach dem Äther Spezielle Relativitätstheorie Die Suhe nah dem Äther Wellennatur des Lihtes Sir Isaa Newton (1643 177) Ihm wird die Korpuskulattheorie des Lihtes zugeshrieben: daß das Liht etwas ist, das sih mit einer

Mehr

Was ist Gravitation?

Was ist Gravitation? Was ist Gravitation? Über die Einheit fundamentaler Wechselwirkungen Hans Peter Nilles Physikalisches Institut Universität Bonn Was ist Gravitation, Stuttgart, November 2010 p. 1/19 Wie gewiss ist Wissen?...die

Mehr

Moderne Kosmologie. Sommerakademie Stift Keppel 2008 Claus Grupen. Universität Siegen. Moderne Kosmologie p. 1/103

Moderne Kosmologie. Sommerakademie Stift Keppel 2008 Claus Grupen. Universität Siegen. Moderne Kosmologie p. 1/103 Moderne Kosmologie Sommerakademie Stift Keppel 2008 Claus Grupen Universität Siegen Moderne Kosmologie p. 1/103 Galaxie Moderne Kosmologie p. 2/103 Übersicht I Unsere Vorstellung vom Universum RaumundZeit

Mehr

im Zyklus: Experimental Gravitation Burkhard Zink Theoretische Astrophysik Universität Tübingen

im Zyklus: Experimental Gravitation Burkhard Zink Theoretische Astrophysik Universität Tübingen im Zyklus: Experimental Gravitation Burkhard Zink Theoretische Astrophysik Universität Tübingen Verschmelzung von Neutronensternen Verschmelzung Schwarzer Löcher Neutronenstern-Oszillationen Gamma-ray

Mehr

Welche wichtigen Begriffe gibt es?

Welche wichtigen Begriffe gibt es? Welche wichtigen Begriffe gibt es? Moleküle Beispiel: Kohlendioxid CO 2 bestehen aus Protonen (+) bestehen aus Atomkerne Chemische Elemente bestehen aus Atome bestehen aus Neutronen Beispiele: Kohlenstoff

Mehr

Vorlesung Chemie. Gliederung der Vorlesung. Hochschule Landshut. Fakultät für Maschinenbau. Dozenten Prof. Dr. Pettinger

Vorlesung Chemie. Gliederung der Vorlesung. Hochschule Landshut. Fakultät für Maschinenbau. Dozenten Prof. Dr. Pettinger Vorlesung Chemie Fakultät für Maschinenbau Dozenten Prof. Dr. Pettinger Folie Nr. 1 Gliederung der Vorlesung Folie Nr. 2 1 Literaturempfehlungen Guido Kickelbick, Chemie für Ingenieure, 2008, Verlag Pearson

Mehr

Welche Rolle spielen Higgs-Teilchen im frühen Universum?

Welche Rolle spielen Higgs-Teilchen im frühen Universum? Welche Rolle spielen Higgs-Teilchen im frühen Universum? Mikko Laine (ITP, Universität Bern) 1 1 Vorgeschlagen 1964 entdeckt 2012. 2 Was ist das Higgs-Teilchen? 1 Masse: m Higgs = 2.18 10 25 kg = 1.03m

Mehr

Atomphysik NWA Klasse 9

Atomphysik NWA Klasse 9 Atomphysik NWA Klasse 9 Radioaktive Strahlung Strahlung, die im Inneren der Atomkerne entsteht heißt radioaktive Strahlung. Wir unterscheiden zwischen Teilchen- und Wellenstrahlung! Strahlung in der Natur

Mehr

Die Dunkle Seite des Universums Berner Physiker auf der Suche nach Dunkler Materie

Die Dunkle Seite des Universums Berner Physiker auf der Suche nach Dunkler Materie Die Dunkle Seite des Universums Berner Physiker auf der Suche nach Dunkler Materie Marc Schumann AEC, Universität Bern Seniorenuniversität Bern, 11. Oktober 2013 marc.schumann@lhep.unibe.ch www.lhep.unibe.ch/darkmatter

Mehr

Kapitel 08: Radioaktivität

Kapitel 08: Radioaktivität Kapitel 08: Radioaktivität 1 Kapitel 08: Radioaktivität Quelle Bild: public domain by United States Department of Energy, thank you; https://de.wikipedia.org/wiki/datei:castle_romeo.jpg Kapitel 08: Radioaktivität

Mehr

Der Jojo-Effekt bei Neutronensternen

Der Jojo-Effekt bei Neutronensternen Der Jojo-Effekt bei Neutronensternen und wie er die Astrophysiker in Aufregung versetzt Irina Sagert Astronomie am Freitag, 25.03.2011 Physikalischer Verein, Frankfurt 8-20 Sonnenmassen Kollaps eines

Mehr

Die Entdeckung der Kosmischen Strahlung

Die Entdeckung der Kosmischen Strahlung Die Entdeckung der Kosmischen Strahlung Gerhard Gojakovich Institut für Astrophysik Universität Wien 16. November 2012 Inhaltsverzeichnis Die Ionisation der Luft Bekannte Effekte Verwendete Geräte Erste

Mehr

Klassenstufe 7. Überblick,Physik im Alltag. 1. Einführung in die Physik. 2.Optik 2.1. Ausbreitung des Lichtes

Klassenstufe 7. Überblick,Physik im Alltag. 1. Einführung in die Physik. 2.Optik 2.1. Ausbreitung des Lichtes Schulinterner Lehrplan der DS Las Palmas im Fach Physik Klassenstufe 7 Lerninhalte 1. Einführung in die Physik Überblick,Physik im Alltag 2.Optik 2.1. Ausbreitung des Lichtes Eigenschaften des Lichtes,Lichtquellen,Beleuchtete

Mehr

er atomare Aufbau der Materie

er atomare Aufbau der Materie er atomare Aufbau der Materie 6. Jhd. v. Chr.: Thales von Milet Wasser = Urgrund aller Dinge 5. Jhd. v. Chr.: Demokrit Atombegriff 5. Jhd. v. Chr.: Empedokles vier Elemente: Erde, Wasser, Feuer, Luft (unterstützt

Mehr

Protonen bei höchsten Energien

Protonen bei höchsten Energien Protonen bei höchsten Energien QuantenChromoDynamik und Physik am LHC Katerina Lipka katerina.lipka@desy.de Isabell Melzer-Pellmann isabell.melzer@desy.de http://www.desy.de/~knegod/hgf/teaching/katerina/

Mehr

Hawking: Eine kurze Geschichte der Zeit

Hawking: Eine kurze Geschichte der Zeit Hawking: Eine kurze Geschichte der Zeit Claus Grupen SS 2008 Universität Siegen EinekurzeGeschichtederZeit p.1/109 Übersicht I Unsere Vorstellung vom Universum RaumundZeit Spezielle Relativitätstheorie

Mehr

Aufgabe A1. 1 In der Geschichte der Physik nehmen Atommodelle eine bedeutende Rolle ein.

Aufgabe A1. 1 In der Geschichte der Physik nehmen Atommodelle eine bedeutende Rolle ein. Aufgabe A1 1 In der Geschichte der Physik nehmen Atommodelle eine bedeutende Rolle ein. 1.1 Beim rutherfordschen Atommodell nimmt man einen Kern an, der Sitz der positiven Ladung und nahezu der gesamten

Mehr

Fortgeschrittenen - Praktikum. Gamma Spektroskopie

Fortgeschrittenen - Praktikum. Gamma Spektroskopie Fortgeschrittenen - Praktikum Gamma Spektroskopie Versuchsleiter: Bernd Zimmermann Autor: Daniel Bruns Gruppe: 10, Donnerstag Daniel Bruns, Simon Berning Versuchsdatum: 14.12.2006 Gamma Spektroskopie;

Mehr

Intermezzo: Das griechische Alphabet

Intermezzo: Das griechische Alphabet Intermezzo: Das griechische Alphabet Buchstaben Name Buchstaben Name Buchstaben Name A, α Alpha I, ι Iota P, ρ Rho B, β Beta K, κ Kappa Σ, σ sigma Γ, γ Gamma Λ, λ Lambda T, τ Tau, δ Delta M, µ My Υ, υ

Mehr

A. Kräfte und Bewegungsgleichungen (19 Punkte) Name: Vorname: Matr. Nr.: Studiengang: Platz Nr.: Tutor:

A. Kräfte und Bewegungsgleichungen (19 Punkte) Name: Vorname: Matr. Nr.: Studiengang: Platz Nr.: Tutor: Prof. Dr. Sophie Kröger Prof. Dr. Gebhard von Oppen Priv. Doz. Dr. Frank Melchert Dr. Thorsten Ludwig Cand.-Phys. Andreas Kochan A. Kräfte und Bewegungsgleichungen (19 Punkte) 1. Was besagen die drei Newtonschen

Mehr

Physik I Übung 11 - Lösungshinweise

Physik I Übung 11 - Lösungshinweise Physik I Übung 11 - Lösungshinweise Stefan Reutter SoSe 2012 Moritz Kütt Stand: 04.07.2012 Franz Fujara Aufgabe 1 Das Lied der Moreley Die shöne Moreley singe eine besondere Art von Welle, die ein sehr

Mehr

14. Kernreaktionen; Kernspaltung; Kernfusion

14. Kernreaktionen; Kernspaltung; Kernfusion 4. Kernreaktionen; Kernspaltung; Kernfusion 4.. Überblick über wichtige Kernreaktionen Unter einer Kernreaktion versteht man den Vorgang, der sich abspielt, wenn ein Teilchen in das Feld eines Atomkerns

Mehr

Bitte beschäftigen Sie sich mit folgenden Aspekten aus dem Gebiet Schwache Wechselwirkung :

Bitte beschäftigen Sie sich mit folgenden Aspekten aus dem Gebiet Schwache Wechselwirkung : Bitte beshäftigen Sie sih mit folgenden Asekten aus dem Gebiet Shwahe Wehselwirkung : igenarten des nuklearen β-zerfalls Fermi- und Gamow-Teller Übergänge 3 vektorielle und axiale Kolung 4 Wiederholen

Mehr

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale 300 Arbeit, Energie und Potential 30 Arbeit und Leistung 30 Felder und Potentiale um was geht es? Arten on (mechanischer) Energie Potentialbegriff Beschreibung on Systemen mittels Energie 3 potentielle

Mehr

Relativistische Effekte in der Satellitennavigation

Relativistische Effekte in der Satellitennavigation Vortragender: Nicolas Keckl Betreuer: Dr.-Ing. Peter Steigenberger Übersicht 1. Die Relativitätstheorie nach Albert Einstein 2. Warum muss die Relativität bei der Satellitennavigation beachtet werden?

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

FORTGESCHRITTENE TEILCHENPHYSIK FÜR. Achim Geiser. Caren Hagner. Sommersemester 2007. Universität Hamburg, IExpPh. Teilchenphysik und Kosmologie

FORTGESCHRITTENE TEILCHENPHYSIK FÜR. Achim Geiser. Caren Hagner. Sommersemester 2007. Universität Hamburg, IExpPh. Teilchenphysik und Kosmologie TEILCHENPHYSIK FÜR FORTGESCHRITTENE Teilchenphysik und Kosmologie (teilweise in Anlehnung an Skript R. Klanner/T. Schörner) Caren Hagner Achim Geiser Universität Hamburg, IExpPh Sommersemester 2007 ÜBERBLICK

Mehr

Das Michelson-Morley-Experiment

Das Michelson-Morley-Experiment Das Michelson-Morley-Experiment Wolfgang Lange 23. April 20 Lichttheorien on Isaac Newton (643-727) stammt die erste brauchbare Lichttheorie, bei der er das Licht als unendlich feinen on der Lichtquelle

Mehr

Lorenzen. "Gedehnte Zeit & Gekrümmte Räume - Eine Einführung in die Relativitätstheorie" Wundersame Einstein-Welt

Lorenzen. Gedehnte Zeit & Gekrümmte Räume - Eine Einführung in die Relativitätstheorie Wundersame Einstein-Welt "Gedehnte Zeit & Gekrümmte Räume - Eine Einführung in die Relativitätstheorie" Wundersame Einstein-Welt Seit Albert Einstein beschreiben die Forscher das Universum mit einer ebenso faszinierenden wie bizarr

Mehr

Die Welt ist fast aus Nichts gemacht

Die Welt ist fast aus Nichts gemacht Die Welt ist fast aus Nichts gemacht Ein Gespräch mit dem Physiker Martinus Veltman beim 58. Nobelpreisträgertreffen in Lindau Am europäischen Kernforschungszentrum in Genf (CERN) wird in den nächsten

Mehr

Kernphysik I. Kernmodelle: Fermigas-Modell Neutronenstern

Kernphysik I. Kernmodelle: Fermigas-Modell Neutronenstern Kernhysik I Kernmodelle: ermigas-modell Neutronenstern ermigas-modell Kerne im Grundzustand können als entartetes ermigassysteme aus Nukleonen, mit hoher Dichte (,1 Nukleonen/fm ) betrachtet werden. Die

Mehr

Physikalischen Gesetze der Informationsverarbeitung

Physikalischen Gesetze der Informationsverarbeitung Physikalischen Gesetze der Informationsverarbeitung Ildar Klassen 4. Juli 2005 Inhaltsverzeichnis 1 Einführung 2 1.1 Mooresche Gesetzt........................ 2 1.2 Was ist Information/Informationsverarbeitung?........

Mehr

Stoffeigenschaften und Teilchenmodell

Stoffeigenschaften und Teilchenmodell Stoffeigenschaften und Teilchenmodell Teilchenmodell (1) Alle Stoffe bestehen aus kleinsten Teilchen. (2) Zwischen den Teilchen wirken Anziehungskräfte. (3) Alle Teilchen befinden sich in ständiger, regelloser

Mehr

Grundlagen für das Ingenieurstudium kurz und prägnant

Grundlagen für das Ingenieurstudium kurz und prägnant ürgen Eichler S Grundlagen für das ngenieurstudium kurz und prägnant Mit 241 Abbildungen und 54 Tabellen 3., überarbeitete und ergänzte Auflage Studium Technik V nhaltsverzeichnis Physikalische Größen.

Mehr

Energiefreisetzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfusion freigesetzt. Wasserstoffkerne(Protonen) können

Energiefreisetzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfusion freigesetzt. Wasserstoffkerne(Protonen) können Energiefreietzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfuion freigeetzt. Waertoffkerne(Protonen) können bei güntigen Bedingungen zu Heliumkernen verchmelzen, dabei

Mehr

Die Entstehung der leichten Elemente

Die Entstehung der leichten Elemente Hauptseminar Astroteilchenphysik und Dunkle Materie Sommersemester 2009 Die Entstehung der leichten Elemente Johannes Zeller Universität Karlsruhe (TH) Vortrag am 15.5.2009 1 Inhaltsverzeichnis 1 Einleitung

Mehr

Arbeit und Energie. Brückenkurs, 4. Tag

Arbeit und Energie. Brückenkurs, 4. Tag Arbeit und Energie Brückenkurs, 4. Tag Worum geht s? Tricks für einfachere Problemlösung Arbeit Skalarprodukt von Vektoren Leistung Kinetische Energie Potentielle Energie 24.09.2014 Brückenkurs Physik:

Mehr

Relativistische Kinematik - Formelsammlung

Relativistische Kinematik - Formelsammlung Relativistische Kinematik - Formelsammlung Editor: Patrick Reichart Physik Department E, TU-München Originalassung vom 0. Dezember 996 letzte Überarbeitung :. März 05 Quelle/Autoren: diverse handschritliche

Mehr

8 Spezielle Relativitätstheorie

8 Spezielle Relativitätstheorie 8 Spezielle Relativitätstheorie 53 8 Spezielle Relativitätstheorie Es ist ein sonniger Herbsttag, der zum Spazieren einlädt. Am Nachmittag gehen Sie mit Ihrer Familie hinunter an den nahen Fluss. Und dort

Mehr