Graphalgorithmen in massiv parallelen Umgebungen
|
|
|
- Gudrun Brauer
- vor 7 Jahren
- Abrufe
Transkript
1 Grundseminar SS 2017 Graphalgorithmen in massiv parallelen Heinrich Latreider Grundseminar Vortrag am Betreuer: Prof. Dr. Olaf Zukunft 1
2 Inhaltsübersicht Motivation Graphentheorie Big Data Graph Processing Ausblick Konferenzen 2
3 Motivation Komplette Neuorientierung Bachelor AI Graphentheorie Interesse an verteilter Datenverarbeitung Wie lassen sich Graphen parallel verarbeiten? 3
4 Graphentheorie Teilgebiet der Mathematik Anfänge bis in das 18. Jhd. Knoten und Kanten als zentrale Elemente Viele Probleme auf Graphen zurückführbar Property Graph als Erweiterung 4
5 Graphentheorie - Algorithmen Suchalgorithmen (Breiten- bzw. Tiefensuche) Kürzeste Pfade Minimale Spannbäume Flüsse Matching uvm. 5
6 Big Data 3 V s Velocity Volume Variety [Abb 1] Effiziente Verarbeitung mit herkömmlichen Technologien nicht mehr möglich 6
7 Big Data + Graphen vs. [Abb 2] 7
8 Anwendungsgebiete Social Media Social Analysis Facebook Twitter Web Graphs PageRank Google Search Wikipedia Recommendation Collaborative Filtering Neighborhood Methode 8
9 Big Data Processing MapReduce (am Beispiel Wordcount) Eingabetext in n Teiltexte aufteilen Map: Paralleles Zählen der Wörter des Teiltextes Wörter abgebildet auf Vorkommen im Text Shuffle Gruppierung der Teilergebnisse nach Wörtern Reduce Wörter aus Teilergebnissen zusammenaddieren 9
10 Big Data Processing Problem: Graphalgorithmen sind iterativ Iterationen als Folge von MapReduce Jobs ineffizient (Netzwerklast + I/O) MapReduce für Graphalgorithmen ungeeignet Daher andere Ansätze zur Graphverarbeitung nötig 10
11 Graph Processing Paper Pregel: A System for Large-Scale Graph Processing (2010) PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs (2012) 11
12 Pregel Think like a Vertex Inspiriert vom Bulk Synchronous Parallel Modell Ablauf: Folge von Supersteps Master / Worker Architektur Knoten haben zwei Zustände Aktiv Inaktiv 12
13 Pregel Bulk Synchronous Parallel [Abb 3] 13
14 Pregel Superstep Phasen Gather: Alle eingehenden Nachrichten sammeln Message Combiner zum Aggregieren Apply: Evtl. eigenen Zustand anpassen Scatter: Nachrichten über ausgehende Kanten senden 14
15 Pregel - Beispiel 7 Scatter
16 Pregel - Beispiel 8 Gather
17 Pregel - Beispiel Apply 17
18 Pregel - Beispiel 8 Scatter
19 Pregel - Beispiel Gather
20 Pregel - Beispiel Apply 20
21 Pregel - Beispiel Scatter 10 21
22 Pregel - Beispiel 10 Gather 22
23 Pregel - Beispiel Apply 23
24 Pregel Skalierbarkeit bzgl. Anzahl der Worker Skalierbarkeit bzgl. Größe des Graphen V = 10 9 [1] 24
25 PowerGraph Probleme: Natürliche Graphen Power-Law Degree Distribution Rechenaufwand unbalanciert Partitionierung Kommunikation Begrenzte Ressourcen pro Maschine 25
26 PowerGraph Verarbeitung natürlicher Graphen Sowohl synchrone als auch asynchrone Graphverarbeitung Vertex Cut 26
27 PowerGraph Vertex Cut Wahrscheinlichkeit, dass eine Kante bei zufälliger Verteilung auf p Maschinen geschnitten wird: [2] Netzwerk- und Speicheroverhead Beispiel: Bei p = 2 sind 50% der Kanten geschnitten Bei p = 20 sind 95% der Kanten geschnitten 27
28 PowerGraph Vertex Cut Stattdessen High-Degree Vertices auf mehrere Maschinen verteilen [2] 28
29 Graph Processing Frameworks [Abb 4] [Abb 5] [Abb 8] [Abb 6] [Abb 7] 29
30 Ausblick Grundseminar Überblick über existierende Ansätze und Algorithmen zur Graphverarbeitung verschaffen Grundprojekt Einarbeitung in Graph Processing Frameworks Erste Experimente Weiteres Vorgehen: Weniger Fokus auf einen konkreten Algorithmus? Vergleich verschiedener Frameworks? Entwicklung einer Algorithmenbibliothek 30
31 Konferenzen IEEE International Conference on Big Data (IEEE Big Data) ACM SIGMOD Management of Data USENIX Symposium on Operating Systems Design and Implementation (OSDI) 31
32 Quellen (1) Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski Pregel: a system for large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data (SIGMOD '10). ACM, New York, NY, USA, DOI= (2) Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin PowerGraph: distributed graph-parallel computation on natural graphs. In Proceedings of the 10th USENIX conference on Operating Systems Design and Implementation (OSDI'12). USENIX Association, Berkeley, CA, USA, (3) Leslie G. Valiant A bridging model for parallel computation. Commun. ACM 33, 8 (August 1990), DOI= / (4) Jeffrey Dean and Sanjay Ghemawat MapReduce: simplified data processing on large clusters. Commun. ACM 51, 1 (January 2008), DOI= (5) Sergey Brin and Lawrence Page The anatomy of a large-scale hypertextual Web search engine. In Proceedings of the seventh international conference on World Wide Web 7 (WWW7), Philip H. Enslow, Jr. and Allen Ellis (Eds.). Elsevier Science Publishers B. V., Amsterdam, The Netherlands, The Netherlands, (6) Big Data, ( ) (7) Graphalgorithmen, ( ) 32
33 Abbildungen [Abb 1] [Abb 2] [Abb 3] [Abb 4] [Abb 5] [Abb 6] [Abb 7] [Abb 8] 33
34 Danke für die Aufmerksamkeit! Fragen? 34
Einführung in Hadoop
Einführung in Hadoop Inhalt / Lern-Ziele Übersicht: Basis-Architektur von Hadoop Einführung in HDFS Einführung in MapReduce Ausblick: Hadoop Ökosystem Optimierungen Versionen 10.02.2012 Prof. Dr. Christian
Detecting Near Duplicates for Web Crawling
Detecting Near Duplicates for Web Crawling Gurmeet Singh Manku et al., WWW 2007* * 16th international conference on World Wide Web Detecting Near Duplicates for Web Crawling Finde near duplicates in großen
Data Mining in der Cloud
Data Mining in der Cloud von Jan-Christoph Meier Hamburg, 21.06.2012 1 Ablauf Einführung Verwandte Arbeiten Fazit / Ausblick Literatur 2 Ablauf Einführung Verwandte Arbeiten Fazit / Ausblick Literatur
Big Data bei unstrukturierten Daten. AW1 Vortrag Sebastian Krome
Big Data bei unstrukturierten Daten AW1 Vortrag Sebastian Krome Agenda Wiederholung Aspekte von Big Data Datenverarbeitungsprozess TextMining Aktuelle Paper Identification of Live News Events Using Twitter
Datenanalyse mit Data Mining
Datenanalyse mit Data Mining von Jan-Christoph Meier Hamburg, 19.01.2012 1 Ablauf Motivation Speicherung der Daten für das Data Mining Data Mining Algorithmen Ausblick auf die Masterarbeit Konferenzen
Big Data. Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover
Big Data Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover Agenda Was ist Big Data? Parallele Programmierung Map/Reduce Der Big Data Zoo 2 3Vs oder: Was ist Big Data? Deutsche Telekom:
Social Monitoring. HAW Hamburg Hochschule für Angewandte Wissenschaften University of Applied Sciences Master Informatik - Anwendungen 1 WS 2013/2014
HAW Hamburg Hochschule für Angewandte Wissenschaften University of Applied Sciences Master Informatik - Anwendungen 1 WS 2013/2014 Abdul-Wahed Haiderzadah [email protected] Betreuer:
Big Data Anwendungen
Big Data Anwendungen Univ.-Prof. Dr.-Ing. Wolfgang Maass Chair in Information and Service Systems Department of Law and Economics WS 2011/2012 Wednesdays, 8:00 10:00 a.m. Room HS 021, B4 1 Wrap-Up Effiziente
Diskrete Modellierung
Diskrete Modellierung Wintersemester 2013/14 Prof. Dr. Isolde Adler Letzte Vorlesung: Korrespondenz zwischen der Page-Rank-Eigenschaft und Eigenvektoren zum Eigenwert 1 der Page-Rank-Matrix Markov-Ketten
Algorithmen zur Berechnung der Transitiven Hülle einer Datenbankrelation
Algorithmen zur Berechnung der Transitiven Hülle einer Datenbankrelation Daniel Reinhold Shenja Leiser 6. Februar 2006 2/28 Gliederung Einführung Transitive Hülle Definition Iterative Algorithmen 1. Naive
Seminar SS 09 Amdahl`s Law and Cloud-Computing
Seminar SS 09 Amdahl`s Law and Cloud-Computing Prof. G. Bengel Fakultät für Informatik SEMB 7IBW 8IB Raum HO609 Mo 9:45-11:15 1. Teil: Amdahl sches Gesetz 1. Vortrag Das Gesetz von Amdahl und Gustafson
Complex Event Processing
[10] Armin Steudte HAW Hamburg Masterstudiengang Informatik - WS 2011/2012 Agenda Motivation Grundlagen Event Processing Networks Ausblick Quellen 2 Agenda Motivation Grundlagen Event Processing Networks
DATA MINING FÜR BIG DATA. Department Informatik Anwendungen 1 WiSe 2013/14 Anton Romanov
DATA MINING FÜR BIG DATA Department Informatik Anwendungen 1 WiSe 2013/14 Anton Romanov 29.10.2013 2 Agenda Motivation Data Mining Assoziationsanalyse Clusteranalyse Big Data Map Reduce Apache Hadoop Relevante
Modeling Security Aspects of Network Aggregation Protocols. Fachgespräch Sensornetze 2009 14. August 2009
Modeling Security Aspects of Network Aggregation Protocols Frank Werner Raoul Steffen Fachgespräch Sensornetze 2009 14. August 2009 Motivation Formale Methoden: Einsatz mathematischer Modelle und Techniken
Data Mining und Machine Learning
Data Mining und Machine Learning Teil 7: Verteiltes Rechnen mit Map Reduce Dr. Harald König, FHDW Hannover 30. November 2015 Inhalt 1 Verteiltes Rechnen 2 Map Reduce 3 Anwendungen 4 Map Reduce: Weiterführende
Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung
Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken
Map Reduce on Hadoop Seminar SS09. Similarity Join. Tim Felgentreff, Andrina Mascher
Map Reduce on Hadoop Seminar SS09 Similarity Join Tim Felgentreff, Andrina Mascher Gliederung 2!! Aufgabe!! Demo!! Algorithmus!! Performance!! Veränderte Aufgabenstellung:!! Vergleich mit 1 Seite!! Ausblick!!
Ausarbeitung AW2 SS2012. Jan-Christoph Meier Data Mining in der Cloud
Ausarbeitung AW2 SS2012 Jan-Christoph Meier Data Mining in der Cloud Fakultät Technik und Informatik Department Informatik Faculty of Engineering and Computer Science Department of Computer Science Inhaltsverzeichnis
MapReduce in der Praxis
MapReduce in der Praxis Rolf Daniel Seminar Multicore Programmierung 09.12.2010 1 / 53 Agenda Einleitung 1 Einleitung 2 3 Disco Hadoop BOOM 4 2 / 53 1 Einleitung 2 3 Disco Hadoop BOOM 4 3 / 53 Motivation
Teamprojekt & Projekt
2. November 2010 Teamprojekt & Projekt Veranstalter: Betreuer: Prof. Dr. Georg Lausen Alexander Schätzle, Martin Przjyaciel-Zablocki, Thomas Hornung dbis Studienordnung Master: 16 ECTS 480 Semesterstunden
Neue Ansätze der Softwarequalitätssicherung
Neue Ansätze der Softwarequalitätssicherung Googles MapReduce-Framework für verteilte Berechnungen am Beispiel von Apache Hadoop Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik
Wie Google Webseiten bewertet. François Bry
Wie Google Webseiten bewertet François Bry Heu6ge Vorlesung 1. Einleitung 2. Graphen und Matrizen 3. Erste Idee: Ranking als Eigenvektor 4. Fragen: Exisi6ert der Eigenvektor? Usw. 5. Zweite Idee: Die Google
MapReduce und Datenbanken Thema 15: Strom bzw. Onlineverarbeitung mit MapReduce
MapReduce Jan Kristof Nidzwetzki MapReduce 1 / 17 Übersicht 1 Begriffe 2 Verschiedene Arbeiten 3 Ziele 4 DEDUCE: at the intersection of MapReduce and stream processing Beispiel 5 Beyond online aggregation:
Networks, Dynamics, and the Small-World Phenomenon
Seminar aus Data und Web Mining Mining Social and Other Networks Sommersemester 2007 Networks, Dynamics, and the Small-World Phenomenon, Eine kleine Welt? Ein Erlebnis das wahrscheinlich fast jedem schon
Teamprojekt & Projekt
18. Oktober 2010 Teamprojekt & Projekt Veranstalter: Betreuer: Prof. Dr. Georg Lausen Thomas Hordnung, Alexander Schätzle, Martin Przjyaciel-Zablocki dbis Studienordnung Master: 16 ECTS 480 Semesterstunden
Generalisierung von großen Datenbeständen am Beispiel der Gebäudegeneralisierung mit CHANGE
Institut für Kartographie und Geoinformatik Leibniz Universität Hannover Generalisierung von großen Datenbeständen am Beispiel der Gebäudegeneralisierung mit CHANGE Frank Thiemann, Thomas Globig [email protected]
Big Data - Datenquellen und Anwendungen
Big Data - Datenquellen und Anwendungen AW1 Präsentation Gerrit Thede Fakultät Technik und Informatik Department Informatik HAW Hamburg 18. November 2013 Outline 1 Einleitung 2 Datenquellen 3 Data Science
Von Big zu Smart - Wie Daten in Wirtschaft und Gesellschaft zu Innovationen führen
Von Big zu Smart - Wie Daten in Wirtschaft und Gesellschaft zu Innovationen führen 27. März 2014 TUM School of Management Technische Universität München W3-Professorin Lehrstuhl für Strategie und Organisation
Text Mining. Joachim Schole. Fakultät Technik und Informatik Hochschule für angewandte Wissenschaften Hamburg. Grundseminar, WS 2014
Text Mining Joachim Schole Fakultät Technik und Informatik Hochschule für angewandte Wissenschaften Hamburg Grundseminar, WS 2014 Joachim Schole (HAW Hamburg) Text Mining Grundseminar, WS 2014 1 / 26 Agenda
Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht
Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik
Mesh-Visualisierung. Von Matthias Kostka. Visualisierung großer Datensätze
Mesh-Visualisierung Von Matthias Kostka Übersicht Einführung Streaming Meshes Quick-VDR Rendering virtueller Umgebung Rendering mit PC-Clustern Zusammenfassung 2 Mesh Untereinander verbundene Punkte bilden
Declarative Data Cleaning
Declarative Data Cleaning Vortragsgrundlage: Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Simon, Cristian Augustin Saita: Declarative Data Cleaning: Language, Model, and Algorithms, in VLDB
Markus Weise. Parallele Cloud-DBS: Aufbau und Implementierung. Parallele Cloud-DBS. Abteilung Datenbanken am Institut für Informatik
: Aufbau und Implementierung Markus Weise Markus Weise, Universität Leipzig Folie 1 Inhalt: 1. Einleitung 2. Google s Bigtable 3. Yahoo! s PNUTS 4. Zusammenfassung 5. Quellen Markus Weise, Universität
Cognitive Systems Master thesis
Cognitive Systems Master thesis Recherche Phase SS 2011 Gliederung 1. Einleitung 2. Analogie Modelle 2.1 SME 2.2 Ava 2.3 Lisa 3. Zusammenfassung 4. Ausblick 2 Einleitung Analogie Problemsituation wird
Proseminar - Data Mining
Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2014, SS 2014 1 Data Mining: Beispiele (1) Hausnummererkennung (Klassifikation) Source: http://arxiv.org/abs/1312.6082,
Algorithmus zum Graphen-Matching. und. Anwendung zur inhaltsbasierten Bildersuche
Algorithmus zum Graphen-Matching und Anwendung zur inhaltsbasierten Bildersuche Gliederung 1. Einführung 2. Algorithmus Beschreibung Beispiel Laufzeit 3. Anwendung des Algorithmus Seite 1 von 18 1. Einführung
Big Data in der Forschung
Big Data in der Forschung Dominik Friedrich RWTH Aachen Rechen- und Kommunikationszentrum (RZ) Gartner Hype Cycle July 2011 Folie 2 Was ist Big Data? Was wird unter Big Data verstanden Datensätze, die
Kapitel 12: Schnelles Bestimmen der Frequent Itemsets
Einleitung In welchen Situationen ist Apriori teuer, und warum? Kapitel 12: Schnelles Bestimmen der Frequent Itemsets Data Warehousing und Mining 1 Data Warehousing und Mining 2 Schnelles Identifizieren
GPU-basierte Beschleunigung von MapReduce am Beispiel von OpenCL und Hadoop
am Beispiel von OpenCL und Masterseminar Hochschule für Technik, Wirtschaft und Kultur Leipzig Leipzig, 02.11.2011 Gliederung 1 Grundlagen 2 3 Gliederung 1 Grundlagen 2 3 Was ist? Clustersystem zur verteilten
Cloud Computing mit mathematischen Anwendungen
Cloud Computing mit mathematischen Anwendungen Vorlesung SoSe 2009 Dr. Marcel Kunze Karlsruhe Institute of Technology (KIT) Steinbuch Centre for Computing (SCC) KIT the cooperation of Forschungszentrum
API Monitoring mit Predictive Analytics
API Monitoring mit Predictive Analytics von Björn Baltbardis Björn Baltbardis, M-INF, HAW-Hamburg! Grundseminar, Betreuung durch Prof. Dr. Olaf Zukunft! 05.12.2014! Inhalt des Vortrags Einführung! Motivation!
Automatisierte Dossier- Erstellung mittels Text-Mining
Automatisierte Dossier- Erstellung mittels Text-Mining Paul Assendorp Grundseminar 11.12.2014 Paul Assendorp Automatisierte Dossier-Erstellung 1 Gliederung Motivation Textmining Tools Aktueller Stand Ausblick
ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik
ARFA ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik Ralf Leipner Domain Architect Analytics, Risk Management & Finance 33. Berner Architekten
Apache HBase. A BigTable Column Store on top of Hadoop
Apache HBase A BigTable Column Store on top of Hadoop Ich bin... Mitch Köhler Selbstständig seit 2010 Tätig als Softwareentwickler Softwarearchitekt Student an der OVGU seit Oktober 2011 Schwerpunkte Client/Server,
Big Data Mythen und Fakten
Big Data Mythen und Fakten Mario Meir-Huber Research Analyst, IDC Copyright IDC. Reproduction is forbidden unless authorized. All rights reserved. About me Research Analyst @ IDC Author verschiedener IT-Fachbücher
Überarbeitung und Verbesserung der Saros Homepage
Abschlusspräsentation Bachelorarbeit, Sascha Kretzschmann FB Informatik Überarbeitung und Verbesserung der Saros Homepage unter Verwendung eines User-Centered-Design Ansatzes 1 INHALT 2 Inhalt 1. Ergebnisse
MATCHING VON PRODUKTDATEN IN DER CLOUD
MATCHING VON PRODUKTDATEN IN DER CLOUD Dr. Andreas Thor Universität Leipzig 15.12.2011 Web Data Integration Workshop 2011 Cloud Computing 2 Cloud computing is using the internet to access someone else's
Alles zu seiner Zeit Projektplanung heute
Alles zu seiner Zeit Projektplanung heute Nicole Megow Matheon Überblick Projektplanung Planen mit Graphentheorie Maschinenscheduling Ein 1 Mio. $ Problem Schwere & leichte Probleme? Zeitplanungsprobleme?
SS 2005 FAU Erlangen 20.6.2005. Eine Wegeplanungs-Strategie. Jeremy Constantin, Michael Horn, Björn Gmeiner
SS 2005 FAU Erlangen 20.6.2005 Voronoi Diagramm Eine Wegeplanungs-Strategie Jeremy Constantin, Michael Horn, Björn Gmeiner Grundseminar: Umgebungsexploration und Wegefindung mit Robotern am Beispiel "Katz
Angewandte Forschung zu Datenlebenszyklen in der Helmholtz-Gemeinschaft und darüber hinaus
Angewandte Forschung zu Datenlebenszyklen in der Helmholtz-Gemeinschaft und darüber hinaus Christopher Jung, KIT (SCC) KIT University of the State of Baden-Wuerttemberg and National Research Center of
Wir unterscheiden folgende drei Schritte im Design paralleler Algorithmen:
1 Parallele Algorithmen Grundlagen Parallele Algorithmen Grundlagen Wir unterscheiden folgende drei Schritte im Design paralleler Algorithmen: Dekomposition eines Problems in unabhängige Teilaufgaben.
Trends im Suchmaschinen- und Social Media Marketing
Trends im Suchmaschinen- und Social Media Marketing Andreas Hörcher Finnwaa GmbH Jena, Leipzig, Saalfeld Jena, 2011 Agenda» (1) Kurze Vorstellung der Agentur» (2) Aktuelles» (3) Trends & Möglichkeiten
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung
Informationsrecherche im Internet mit Hilfe der Google Web APIs
Informationsrecherche im Internet mit Hilfe der Google Web APIs Referenten: Philipp Mayr, Fabio Tosques Lange Nacht der Wissenschaften, Institut für Bibliothekswissenschaft, Humboldt-Universität zu Berlin,
War bis 2004 Bakk. rer.soc.oec. Bakkalaureus/Bakkalaurea rerum socialium oeconomicarumque Bakk. der Sozial- und Wirtschaftswissenschaften
War bis 2004 Bakk. rer.soc.oec. Bakkalaureus/Bakkalaurea rerum socialium oeconomicarumque Bakk. der Sozial- und Wirtschaftswissenschaften ab 2007 - Heute BSc Bachelor of Science WAS IST INFORMATIK? WAS
Graphdatenbanksysteme
Diplomarbeit Exposé Graphdatenbanksysteme Überblick und Benchmark Benjamin Gehrels 16. Juli 2012 1 Motivation Viele Strukturen der realen Welt lassen sich als Graphen interpretieren, einer mathematischen
Big Data und Oracle bringen die Logistik in Bewegung
OPITZ CONSULTING Deutschland GmbH Dortmund, 07.05.2014 Bild-Quelle: Web-Seite von Pasta ZARA, Big Artikel Data So und entstehen Oracle bringen unsere die Nudeln Logistik in Bewegung http://de.pastazara.com/so-entstehen-unsere-nudeln
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Prüfungsplan Master of Science in Wirtschaftsinformatik
Prüfungsplan Master of Science in Wirtschaftsinformatik Modul Art Creditpunkte Schwerpunkt Very Large Business Applications Module aus dem Bereich Wirtschaftsinformatik SWS Empfohlenes Semester Prüfungsart
RAID Redundant Array of Independent [Inexpensive] Disks
RAID Redundant Array of Independent [Inexpensive] Disks Stefan Wexel Proseminar Algorithms and Data Structures im WS 2011/2012 Rheinisch-Westfälische Technische Hochschule Aachen Lehrstuhl für Informatik
Open Data: Datenmanagement und Visualisierung Wie funktionieren Question / Answering Systeme?
Open Data: Datenmanagement und Visualisierung Wie funktionieren Question / Answering Systeme? Prof. Dr. Edy Portmann Universität Bern Institut für Wirtschaftsinformatik Informationsmanagement Assistenzprofessur
NoSQL HANSER. Einstieg in die Web 2.0 Datenbanken. Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner
Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner NoSQL Einstieg in die Web 2.0 Datenbanken 2., akutalisierte und erweiterte Auflage HANSER Geleitwort Vorwort Vorwort zur 2. Auflage
Ein etwas anderer Morgen für Sal [0] [10]
Ein etwas anderer Morgen für Sal [0] [10] Integrationsplattform für HCI Untersuchungen in Smart Environments Sobin Ghose - Masterseminar SS2015 EmotionBike HAW Hamburg Worum geht s? Motivation [1] J.A.R.V.I.S.
Diskrete Strukturen Kapitel 1: Einleitung
WS 2015/16 Diskrete Strukturen Kapitel 1: Einleitung Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15
Proseminar - Data Mining
Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2012, SS 2012 1 Data Mining Pipeline Planung Aufbereitung Modellbildung Auswertung Wir wollen nützliches Wissen
Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr
Peter Dikant mgm technology partners GmbH Echtzeitsuche mit Hadoop und Solr ECHTZEITSUCHE MIT HADOOP UND SOLR PETER DIKANT MGM TECHNOLOGY PARTNERS GMBH WHOAMI [email protected] Java Entwickler seit
Algorithms for graph visualization
Algorithms for graph visualization Project - Orthogonal Grid Layout with Small Area W INTER SEMESTER 2013/2014 Martin No llenburg KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum
Das Small World Phenomenon. Aus http://www.tell6.com
Das Small World Phenomenon Aus http://www.tell6.com Das Experiment Durchgeführt von Stanley Milgram im Jahr 1969 [7] 296 Briefe an zufällig ausgewählte Personen in Nebraska und Boston Briefe sollten an
Extraktion und Visualisierung von multidimensionalen Textinformationen zur Integration von Big Data in unternehmensspezifischen Wissenslandkarten
Extraktion und Visualisierung von multidimensionalen Textinformationen zur Integration von Big Data in unternehmensspezifischen Wissenslandkarten FOM Hochschulzentrum Dortmund, Fachbereich Wirtschaftsinformatik
Usability Metrics. Related Work. Von Torsten Rauschan ([email protected]) HAW Hamburg M-Inf2 Anwendungen 2 Betreuer: Prof. Dr.
Usability Metrics Related Work Von Torsten Rauschan ([email protected]) HAW Hamburg M-Inf2 Anwendungen 2 Betreuer: Prof. Dr. Zukunft Agenda Rückblick AW1 Motivation Related work QUIM SUM
Big Data Grundlagen. Univ.-Prof. Dr.-Ing. Wolfgang Maass. Chair in Information and Service Systems Department of Law and Economics
Big Data Grundlagen Univ.-Prof. Dr.-Ing. Wolfgang Maass Chair in Information and Service Systems Department of Law and Economics WS 2011/2012 Wednesdays, 8:00 10:00 a.m. Room HS 021, B4 1 Wrap-Up Inhaltliche
Lineare Programmierung
Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in
PageRank-Algorithmus
Proseminar Algorithms and Data Structures Gliederung Gliederung 1 Einführung 2 PageRank 3 Eziente Berechnung 4 Zusammenfassung Motivation Motivation Wir wollen eine Suchmaschine bauen, die das Web durchsucht.
BIG DATA HYPE ODER CHANCE
BIG DATA HYPE ODER CHANCE 1 Fuchs Dominik 16.05.2014 Fahrplan 2 Begriff Big Data Die 3 V s Fallbeispiel Google Was? Wie? Womit? Fazit & Ausblick in die Zukunft Der Begriff Big Data 3 Datenmengen, die zu
Lars Schmidt-Thieme et al., Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, 0/13
0/13 Lehrveranstaltungen Wintersemester 2011/2012 WI-Gebiet Anwendungssysteme (teilw.) WI-Gebiet Business Intelligence Informatik-Gebiet KI & Maschinelles Lernen Prof. Dr. Dr. Lars Schmidt-Thieme Information
Ein Vergleich von Methoden für Multi-klassen Support Vector Maschinen
Ein Vergleich von Methoden für Multi-klassen Support Vector Maschinen Einführung Auf binären Klassifikatoren beruhende Methoden One-Against-All One-Against-One DAGSVM Methoden die alle Daten zugleich betrachten
Wasserfall-Ansätze zur Bildsegmentierung
Wasserfall-Ansätze zur Bildsegmentierung von Philipp Jester Seminar: Bildsegmentierung und Computer Vision 16.01.2006 Überblick 1. Problemstellung 2. Wiederholung: Wasserscheiden-Ansätze 3. Der Wasserfall-Ansatz
Überblick. Verarbeitung großer Datenmengen. MapReduce. Herausforderungen
Überblick Verarbeitung großer Datenmengen Verarbeitung großer Datenmengen Motivation MapReduce Zusammenfassung Problemstellungen (e) Indexierung des World Wide Web PageRank-Berechnungen für Web-Seiten
Spark, Impala und Hadoop in der Kreditrisikoberechnung
Spark, Impala und Hadoop in der Kreditrisikoberechnung Big Data In-Memory-Technologien für mittelgroße Datenmengen TDWI München, 22. Juni 2015 Joschka Kupilas, Data Scientist, Adastra GmbH 2 Inhalt Vorwort
Kommerzielle Softwareentwicklung mit Haskell
Kommerzielle Softwareentwicklung mit Haskell Ein Erfahrungsbericht Stefan Wehr factis research GmbH, Freiburg im Breisgau 7. Oktober 2011, Hal6 in Leipzig Viele Fragen Wer sind wir? Wer bin ich? Wie setzen
Motivation Kenngrößen von Graphen Modelle. Small Worlds. in Vorlesung Semantische Suche in P2P-Netzwerken. Florian Holz
Small Worlds in Vorlesung Florian Holz 14.06.2005 in Vorlesung Small Worlds Florian Holz bekannte Arten der Vernetzung zur Zusammenarbeit (Graphen) regelmäßige, z.b. parallele Hardwarestrukturen vollständige
Algorithmische Mathematik
Algorithmische Mathematik Wintersemester 2013 Prof. Dr. Marc Alexander Schweitzer und Dr. Einar Smith Patrick Diehl und Daniel Wissel Übungsblatt 6. Abgabe am 02.12.2013. Aufgabe 1. (Netzwerke und Definitionen)
Web Information Retrieval. Web Information Retrieval. Informationssuche im Web Typen von Web-Suche (nach Andrei Broder) Das World Wide Web
Web Information Retrieval Web Information Retrieval Ingo Frommholz / Norbert Fuhr 30. Januar 2012 Informationssuche im Web Browsing und Suche Beispiel einer Web-Suchmaschine: Google Hypertext und Web IR
