Übungen zur Vorlesung Realzeitsysteme

Größe: px
Ab Seite anzeigen:

Download "Übungen zur Vorlesung Realzeitsysteme"

Transkript

1 Übungen zur Vorlesung Realzeitsysteme Alle Übungen, die in der Vorlesung behandelt werden und zur Bearbeitung ein Formular benötigen, sind im folgenden aufgelistet: Inhalte - Übung Synchrone Programmierung Transportsystem (Kap 3) - Übung Synchr./asyn. Programmierung Toaster (Kap 3) - Übung Taskzustände (Kap 4) - Übungen Realzeitscheduling (Kap 5) FIFO, Round Robin, MFS, RMS - Übungen Task-Synchronisation (Kap 7) wechselseitiger Ausschluss - Übungen Task-Synchronisation (Kap 7) Task-Reihenfolge - Übung zum Petri-Netz (Kap 8) Erreichbarkeit Seite 1

2 Aufgaben zur Synchrone Programmierung (Kap 3) t = Periodische Unterbrechung im Abstand T Steuerung eines fahrerlosen Transportsystems: Task 1 übernimmt Kameradatenverarbeitung und Task 2 steuert den Motor. Aufgabe 1: Wie ist die Synchronisierungsvariable t im Flussdiagramm zu programmieren, damit der u.g. zeitliche Ablauf gegeben? Kameradatenverarbeitung aufrufen Aufgabe 2: Wie sieht Flussdiagramm und zeitlicher Ablauf aus, wenn Task 1 mit der Periode 2T und Task 2 mit der Periode 3T aufgerufen werden? Definieren Sie dazu für jede Task eine eigene Synchronisierungsvariable: t1 für Task 1 und t2 für Task 2. t ==? ja Motorsteuerung aufrufen nein Motorsteuerung Kameradatenverarbeitung t = ruhend Ende der Unterbrechung T 2T 3T 4T 5T 6T Seite 2

3 Aufgaben zur Synchrone Programmierung (Kap 3) Motorsteuerung Kameradatenverarbeitung ruhend T 2T 3T 4T 5T 6T 7T Seite 3

4 Realzeitprogrammierung (Kap 3) Übung: Toaster 1 - Korb; 2 - Druckfeder; 3 - Heizwendel; 4 - Endlagenkontakt; 5 - Temperatursensor; 6 Rastung; 7 - Auslösemagnet; 8 - Schaltrelais (oder Triac); 9 - Stopptaste 10 - Drehschalter; 11 - Kontrollanzeige. Wir legen die Brotscheiben ein und drücken den Korb 1 nach unten. Er rastet in dieser Lage ein. Dieser Betriebszustand wird mittels des Endlagenkontaktes 4 signalisiert. Dies bewirkt dass der Toast-Vorgang beginnt. Um ihn zu beenden, wird der Auslösemagnet 7 erregt und somit Rastung 6 ausgelöst. Daraufhin drückt die Druckfeder 2 den Korb 1 wieder nach oben. Zur Beeinflussung des Ablaufs sind eine Stopptaste 9 (vorzeiti-ges Beenden) und ein Dreh-schalter 10 (zum Einstellen des Bräunungsgrades) vorgesehen. Das Toasten selbst beruht auf einer Erregung der Heizwendel 3. Hierzu muss das Schaltrelais 8 erregt werden. Seite 4

5 Realzeitprogrammierung (Kap 3) Übung: Toaster 1. Realisieren Sie den geschilderten Programmablauf durch synchrones Programmieren, indem Sie ein Flussdiagramm mit Abfrage- und Warteschleifen erstellen. 2. Realisieren Sie den geschilderten Programmablauf durch asynchrones Programmieren, indem Sie die erforderlichen Interrupts kennzeichnen und für jedes Ereignis ein eigenständiges Flussdiagramm erstellen. Die Programme müssen dann durch einen Interrupthandler gestartet werden. Ereignis 1 Ereignis 2 Ist was zu erledigen? erledigen erledigen erledigen Stop Stop Seite 5

6 Task-Verwaltung (Kap 4) Taskzustände und Warteschlangenmodell: Übung: Gegeben seien 4 Prozesse, die zu unterschiedlichen Zeitpunkten gestartet werden und sich in die ready-warteschlange einreihen. Der Scheduler arbeitet nach dem LIFO-Verfahren. Einige Prozesse benötigen Zugriff auf den Drucker. Die dritte Spalte der nebenstehenden Tabelle gibt an, nach wie vielen Zeiteinheiten im Zustand running ein Prozess auf den Drucker zugreifen möchte. Task Ankunf tszeit Drucken nach Zeiteinheit Benötigte Zeiteinheiten im Zustand running P P P3 1-2 P Während der 4 Zeiteinheiten dauernden Druckphase wird der Prozessor für andere Prozesse freigegeben. Nach Beendigung des Druckvorgangs reiht sich der Prozess wieder in die ready-warteschlange ein. Geben Sie zu den ersten 22 Zeiteinheiten die aktuellen Prozesszustände der Prozesse P1 bis P4 an. Beachten Sie, dass ein ankommender Prozess bei seiner Ankunft den Zustand new annimmt und erst nach einer Zeiteinheit in einen anderen Zustand wechselt, wobei keine CPU-Zeit verbraucht wird. Des Weiteren können Prozesse, die ihren Druckvorgang beendet haben, direkt in den Zustand running wechseln, ohne vorher eine Zeiteinheit im Zustand ready verbringen zu müssen (gilt nur für diese Übung). Unterscheiden sie zum besseren Verständnis beim Zustand suspended zwischen blocked (Drucker ist fremdbelegt) und waiting (Drucker ist eigenbelegt, d.h. Task druckt gerade selber) P1 ne ru ru P2 - - ne P3 - ne re P Seite 6

7 Realzeitscheduling (Kap 5) FIFO Scheduling (first-in-first-out): Übung: Zeichnen Sie den Ablauf der einzelnen Tasks und berechnen Sie die durchschnittliche Reaktionszeit (Wartezeit im Zustand bereit ) dieser Tasks beim FIFO- Verfahren. Task Ankunftszeit Ausführungszeit A 0 ms 4 ms B 2 ms 3 ms C 4 ms 6 ms D 11 ms 3 ms Deadline für 1. Aus- Führung von Task 2 E 12 ms 6 ms Task A Task B Task C Task D Task E ruhend t [ms] Seite 7

8 Realzeitscheduling (Kap 5) FIFO Scheduling (first-in-first-out): Hauptproblem bei FIFO ist die Benachteiligung kurzlaufender Jobs durch Langläufer Beispiel aus dem täglichen Leben: analoges Problem an Supermarktkassen Lösung hier: Schnellkassen für Kunden mit maximal 10 Artikeln Entsprechend beim CPU-Scheduling: ausführungszeitabhängige Strategien Shortest-Processing-Time-First (SPT), auch Shortest-Job-First (SJF) Voraussetzung: Ausführungszeit der Tasks ist bekannt Man kann zeigen, dass die mittlere Reaktionszeit von SPT für die Klasse der nicht-präemptiven Strategien minimal ist, d.h. SPT ist die optimale Strategie bzgl. der Wartezeit. Übung: Zeichnen Sie den Ablauf der einzelnen Tasks und berechnen Sie die durchschnittliche Reaktionszeit (Wartezeit) dieser Tasks für FIFO und SPT unter der Voraussetzung, dass alle zum Zeitpunkt T=0 kurz hintereinander eintreffen: A,B,C,D. Task A B C Ausführungszeit 6 ms 8 ms 7 ms D 3 ms Seite 8

9 5) Realzeitscheduling FIFO 0 A 6 t [ms] A, B, C, D SPT D 0 3 t [ms] A, B, C, D Seite 9

10 5) Realzeitscheduling Round Robin Verfahren: Übung: Zeichnen Sie den Ablauf der einzelnen Tasks und berechnen Sie die durchschnittliche Reaktionszeit für Zeitschlitz = 1ms. Reihenfolge gem. Alphabet. Task Ankunftszeit Ausführungszeit A 0 ms 4 ms B 2 ms 3 ms C 4 ms 6 ms D 11 ms 3 ms Deadline für 1. Aus- Führung von Task 2 E 12 ms 6 ms Task A Task B Task C Task D Task E ruhend t [ms] Seite 10

11 5) Realzeitscheduling Round Robin Verfahren: Übung: Zeichnen Sie den Ablauf der einzelnen Tasks und berechnen Sie die durchschnittliche Reaktionszeit für Zeitschlitz = 5ms). Reihenfolge gem. Alphabet. Task Ankunftszeit Ausführungszeit A 0 ms 4 ms B 2 ms 3 ms C 4 ms 6 ms D 11 ms 3 ms Deadline für 1. Aus- Führung von Task 2 E 12 ms 6 ms Task A Task B Task C Task D Task E ruhend t [ms] Seite 11

12 5) Realzeitscheduling Übung 1 zum MFS Verfahren: Für das MFS Verfahren stehen 6 Warteschlangen zur Verfügung. Jeder Prozess in einer Warteschlange bekommt seine eigene Zeitscheibe, jedoch alle mit dem Quantum Q = 1. Task Ankunftszeit Ausführungszeit A 0 ms 6 ms B 1 ms 2 ms C 3 ms 3 ms D 4 ms 6 ms E 8 ms 1 ms F 16 ms 1 ms Jeder Prozess beginnt in der Warteschlange 1. Wenn ein Prozess nicht fertig wird, wandert er in die nächst niedere (FIFO-) Warteschlange. Übung: Zeichnen Sie den Ablauf der einzelnen Tasks in ein Gantt-Diagramm Seite 12

13 Lösungsblatt zur MFS Übung 1 5) Realzeitscheduling A B A6 B2 A6 B2 A5 Seite 13

14 5) Realzeitscheduling Übung 2 zum Multilevel Feedback Scheduling (MFS): Gegeben sei folgende Scheduling-Strategie mit vier Prioritätsklassen. Jeder Klasse ist eine eigene FIFO-Warteschlange und ein eigenes Quantum zugeordnet: Es wird Process Aging verwendet, d.h. wenn das Zeitquantum eines Prozesses abgelaufen ist, wird er an das Ende der Warteschlange mit nächstniedriger Priorität gestellt. Neuen Prozessen ist eine bestimmte Priorität zugeordnet. Sie werden an das Ende der Warteschlange ihrer Prioritätsklasse angehängt. Es wird am Ende jeder Zeiteinheit überprüft, welcher Prozess am Anfang der nicht leeren Warteschlange mit der höchsten Priorität steht und dieser dann im nächsten Schritt bearbeitet. Ein Prozess, der zum Zeitpunkt t ankommt, wird erst ab dem Zeitpunkt (t +1) berücksichtigt, d.h. er kann frühestens eine Zeiteinheit nach seiner Ankunft die CPU verwenden. Stellen Sie für die ersten 15 Zeiteinheiten tabellarisch die Warteschlangen der einzelnen Prioritätsklassen sowie die Prozesszuteilung für die folgenden Prozesse dar: Seite 14

15 5) Realzeitscheduling Lösungsblatt zur MFS Übung A(3) A B(5) Running Incoming Prio 0, Q=1 A(3) Prio 1, Q=4 Prio 2, Q=8 Prio 3, FIFO Seite 15

16 5) Realzeitscheduling Übung zum RMS: (Voraussetzung: Tasks werden EINEM Prozessor zugeteilt): 1) Vergeben Sie die Prioritäten nach dem Rate Monotonic Prinzip (RMS) 2) Stellen Sie den zeitlichen Verlauf aller 4 Tasks dar unter der Voraussetzung, dass alle Tasks gleichzeitig bereit sind (s. Lösungsblatt 1) 3) Zeichnen Sie für die Task 3 ihre Zustände (ruhend, ablaufwillig, laufend) über eine Zeitachse von 0 bis 250 ms (s. Lösungsblatt 2). Ausführungszeit Periodendauer Priorität Task 1 20 ms 500 ms? Task 2 10 ms 40 ms? Task 3 30 ms 160 ms? Task 4 40 ms 110 ms? Seite 16

17 5) Realzeitscheduling Lösung zu Teilaufgabe 1: In Abhängigkeit der Periodendauer ergibt sich folgende Prioritätsvergabe: P(2) > P(4) > P(3) > P(1) Lösungsblatt 1 zur Teilaufgabe 2: Priorität Task 2 Task 4 Task 3 Task t [ms] Seite 17

18 5) Realzeitscheduling Lösungsblatt 2 zur Teilaufgabe 3: Taskzustände in Abhängigkeit der Zeit Zustand von Task 3 blockiert laufend ablaufwillig ruhend t [ms] Seite 18

19 Realzeitscheduling (Kap 5) Übung zum Scheduling-Verfahren Gegeben ist nebenstehender Taskplan. Bitte füllen Sie die u.s. Tabelle entsprechend des geforderten Scheduling -Verfahrens aus: 1. FIFO 2. Round Robin 3. Earliest Deadline 4. Least Laxity Task Dauer in ms Ankunftszeit in ms Deadline in ms A keine B C D In dem Fall, dass Prioritäten gesetzt werden müssen, soll dies gemäß der Buchstabenreihenfolge im Alphabet erfolgen. Falls eine Zeitscheibe notwendig ist, ist diese mit 10 ms anzunehmen. 10 ms 20 ms 30 ms 40 ms 50 ms 60 ms 70 ms 80 ms 90 ms 100 ms Seite 19

20 Task-Synchronisation (Kap 7) Übung zum wechselseitigen Ausschluss: Zwei Task A und B (mit absteigender Priorität, A hat die höchste) benutzen exklusiv zwei gemeinsame Speicherbereiche, die jeweils durch eine Semaphore geschützt werden (gestr. Linie = Programmcode, nt = Ausführungsdauer). Tragen Sie den zeitlichen Verlauf mit den entsprechenden Taskzuständen (blockiert = wartet auf Sema, ablaufwillig = durch höhere Prio verdrängt) der zwei Tasks im Bereich 0<=t<=20T ein, wobei sie zwei Fälle unterscheiden: Fall 1: Task A wird bei T=5t und B bei T=0t gestartet Fall 2: Task A wird bei T=2t und B bei T=0t gestartet Die zwei Semaphore S1 und S2 sind mit 1 initialisiert. Task A (Prio 1) T REQ S2 2T REQ S1 3T REL S1 2T REL S2 T Task B (Prio 2) T REQ S1 2T REQ S2 3T REL S2 2T REL S1 T END END Seite 20

21 Task-Synchronisation (Kap 7) Übung: Formular zum Zeichnen der Soll-Abläufe Task A laufend blockiert ablaufwillig Task B laufend blockiert ablaufwillig Seite 21

22 Aufgaben Semaphore (Kap 7) Vorgegeben sind die Anordnung von Semaphor-Anweisungen am Anfang und am Ende dreier Tasks A, B und C. REQ S1 REQ S1 REQ S1 Task A REL S2 REQ S2 Task B REL S3 REL S1 REQ S3 REQ S3 REQ S3 Task C REL S2 REL S2 In der folgenden Tabelle sind die Anfangswerte für die drei Semaphor-Variablen S1, S2 und S3 eingetragen. Ermitteln Sie für die 4 Fälle a), b), c) und d) der Tabelle, ob und in welcher Reihenfolge diese Tasks bei der angegebenen Initialisierung der Semaphor-Variablen ablaufen. Fall a) b) c) d) S S S Seite 22

23 Aufgaben Semaphore (Kap 7) Formular für die Lösung S1 S2 S3 Ablauffähige Task Bemerkungen a) A Reihenfolge: B b) Reihenfolge: c) Reihenfolge: d) Reihenfolge: Seite 23

24 8) Petrinetze zur Synchronisation S1 t2 S2 t1 t3 S3 t4 S4 Übung: Erstellen Sie für das Petri-Netz den Erreichbarkeitsgraphen; es sind insgesamt nur 6 Markierungen M0 bis M5 möglich, da alle Stellen eine max. Kapazität = 1 haben sollen. Transitionsmöglichkeiten M0 M1 M2 M3 M4 M5 M1 M2 - - t1 -> t2 -> t3 -> t4 -> Markierungsmenge Semas S1 S2 S3 S4 M M1 M2 M3 M4 M5 Seite 24

5) Realzeitscheduling

5) Realzeitscheduling Inhalte Anforderungen Klassifizierungen Verschiedene Verfahren: FIFO, Round Robin, Least Laxity, EDF, fixed/dyn. Prio. Beispiele und Aufgaben Seite 1 Motivation Gegeben: Ein Einprozessorsystem, das Multiprogrammierung

Mehr

3) Realzeitprogrammierung

3) Realzeitprogrammierung Inhalte Synchrone Programmierung: Planung des zeitlichen Ablaufs vor der Ausführung der Programme (Planwirtschaft) Asynchrone Programmierung: Organisation des zeitlichen Ablaufs während der Ausführung

Mehr

Lösungen der Übungsaufgaben (Kap 1)

Lösungen der Übungsaufgaben (Kap 1) Lösungen der Übungsaufgaben (Kap 1) Übungsfragen Bei der Echtzeit-Programmierung steht nur der Zeitpunkt eines Ergebnisses im Vordergrund Echtzeit bedeutet so schnell wie möglich Bei weichen Echtzeit-Systemen

Mehr

5) Realzeitscheduling

5) Realzeitscheduling Inhalte Anforderungen Klassifizierungen Verschiedene Verfahren: FIFO, Round Robin, Least Laxity, EDF, fixed/dyn. Prio. Beispiele und Aufgaben Seite 1 Motivation Gegeben: Ein Einprozessorsystem, das Multiprogrammierung

Mehr

Lösung von Übungsblatt 8

Lösung von Übungsblatt 8 Betriebssysteme (SS201) Lösung von Übungsblatt 8 Aufgabe 1 (Unterbrechungen) 1. Was sind Interrupts? Interrupts sind externe Unterbrechungen. Sie werden durch Ereignisse außerhalb des zu unterbrechenden

Mehr

Universität Stuttgart Institut für Automatisierungs- und Softwaretechnik Prof. Dr.-Ing. Dr. h. c. P. Göhner. Übung 5: Semaphoren

Universität Stuttgart Institut für Automatisierungs- und Softwaretechnik Prof. Dr.-Ing. Dr. h. c. P. Göhner. Übung 5: Semaphoren Universität Stuttgart Prof. Dr.-Ing. Dr. h. c. P. Göhner Aufgabe 5.1: Übung 5: Semaphoren Semaphor-Operationen In Bild 5.1.1 ist die Anordnung von Semaphor-Operationen am Anfang und am e der asks A,B,C

Mehr

Klausur zur Vorlesung Grundlagen Betriebssysteme und Systemsoftware

Klausur zur Vorlesung Grundlagen Betriebssysteme und Systemsoftware Klausur zur Vorlesung Grundlagen Betriebssysteme und Systemsoftware (Prof. Dr. J. Schlichter, Dr. W. Wörndl, WS 2011/12) Die Bearbeitungsdauer beträgt 90 Minuten. Es sind keine Hilfsmittel zugelassen.

Mehr

Betriebssysteme I WS 2015/2016. Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404

Betriebssysteme I WS 2015/2016. Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404 Betriebssysteme I WS 2015/2016 Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 17. Dezember 2015 Betriebssysteme / verteilte Systeme

Mehr

Literatur. Betriebssysteme - WS 2015/16 - Teil 13/Scheduling 2

Literatur. Betriebssysteme - WS 2015/16 - Teil 13/Scheduling 2 Literatur [13-1] Quade, Jürgen; Mächtel, Michael: Moderne Realzeitsysteme kompakt. dpunkt, 2012 [13-2] Quade, Jürgen: Embedded Linux lernen mit dem Raspberry Pi. dpunkt, 2014 [13-3] Eißenlöffel, Thomas:

Mehr

Prozesse und Prozessmanagement des BS. 1 Unterschied Prozess, Threads. 1.1 Prozess. 1.2 Threads

Prozesse und Prozessmanagement des BS. 1 Unterschied Prozess, Threads. 1.1 Prozess. 1.2 Threads Prozesse und Prozessmanagement des BS 1 Unterschied Prozess, Threads 1.1 Prozess Bei jedem Programm muss gespeichert werden, welche Betriebsmittel (Speicherplatz, CPU- Zeit, CPU-Inhalt,...) es benötigt.

Mehr

1 Prozesse und Scheduling (12 Punkte)

1 Prozesse und Scheduling (12 Punkte) 1 Prozesse und Scheduling (12 Punkte) a) UNIX Shell-Operatoren (insgesamt 4 Punkte) 1. Operator (1,5 Punkte) Beschreiben Sie die Funktionsweise des Operators. 2. Operator Beispiel (1 Punkt) Geben Sie für

Mehr

Systeme 1. Kapitel 5. Scheduling

Systeme 1. Kapitel 5. Scheduling Systeme 1 Kapitel 5 Scheduling Scheduling Verteilung und Zuweisung von begrenzten Ressourcen an konkurrierende Prozesse Beispiel: -> Zeitablaufsteuerung Zwei Prozesse zur gleichen Zeit rechenbereit auf

Mehr

Konzepte und Methoden der Systemsoftware. Aufgabe 1: Multi-Feedback-Scheduling. SoSe bis P

Konzepte und Methoden der Systemsoftware. Aufgabe 1: Multi-Feedback-Scheduling. SoSe bis P SoSe 2013 Konzepte und Methoden der Systemsoftware Universität Paderborn Fachgebiet Rechnernetze Präsenzübung 4 13.05.2013 bis 17.05.2013 Aufgabe 1: Multi-Feedback-Scheduling 0 P 1. Beschreiben Sie kurz

Mehr

Betriebssysteme. Teil 13: Scheduling

Betriebssysteme. Teil 13: Scheduling Betriebssysteme Teil 13: Scheduling Betriebssysteme - WS 2015/16 - Teil 13/Scheduling 15.01.16 1 Literatur [13-1] Quade, Jürgen; Mächtel, Michael: Moderne Realzeitsysteme kompakt. dpunkt, 2012 [13-2] Quade,

Mehr

Übungen zur Vorlesung Technische Informatik I, SS 2002 Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 5 Rechenwerke / Scheduling

Übungen zur Vorlesung Technische Informatik I, SS 2002 Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 5 Rechenwerke / Scheduling Übungen zur Vorlesung Technische Informatik I, SS 2002 Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 5 Rechenwerke / Scheduling Aufgabe 1: Sie haben in der Vorlesung einen hypothetischen Prozessor kennen

Mehr

Scheduling-Algorithmen: Zeitpunkt der Auswahlentscheidung

Scheduling-Algorithmen: Zeitpunkt der Auswahlentscheidung Scheduling-Algorithmen: Zeitpunkt der Auswahlentscheidung Nicht-präemptives Scheduling: CPU kann einem Prozess nur entzogen werden, wenn er beendet oder blockiert ist Präemptives Scheduling: Aktueller

Mehr

5. Foliensatz Betriebssysteme und Rechnernetze

5. Foliensatz Betriebssysteme und Rechnernetze Prof. Dr. Christian Baun 5. Foliensatz Betriebssysteme und Rechnernetze FRA-UAS SS2017 1/29 5. Foliensatz Betriebssysteme und Rechnernetze Prof. Dr. Christian Baun Frankfurt University of Applied Sciences

Mehr

Datentechnik. => Das Rechenergebnis ist nur dann sinnvoll, wenn es rechtzeitig vorliegt. Die Zeit muß daher beim Programmdesign berücksichtigt werden.

Datentechnik. => Das Rechenergebnis ist nur dann sinnvoll, wenn es rechtzeitig vorliegt. Die Zeit muß daher beim Programmdesign berücksichtigt werden. 5. Steuerung technischer Prozesse 5.1 Echtzeit (real time) Im Gegensatz zu Aufgabenstellungen aus der Büroumgebung, wo der Anwender mehr oder weniger geduldig wartet, bis der Computer ein Ergebnis liefert

Mehr

5.1) Realzeitscheduling (Mehrprozessorsysteme)

5.1) Realzeitscheduling (Mehrprozessorsysteme) Inhalte Scheduling Strategie Diskussion von Anomalien: Dauer steigt, wenn mehr Prozessoren eingesetzt werden die Ausführungszeit pro Prozess sinkt weniger Freizeit pro Prozessor vorhanden ist weniger Vorgänger-Nachfolgerrelationen

Mehr

RTOS Einführung. Version: Datum: Autor: Werner Dichler

RTOS Einführung. Version: Datum: Autor: Werner Dichler RTOS Einführung Version: 0.0.1 Datum: 20.07.2013 Autor: Werner Dichler Inhalt Inhalt... 2 RTOS... 3 Definition... 3 Anforderungen... 3 Aufgaben... 3 Eigenschaften... 4 Einteilung der Betriebssysteme...

Mehr

Aufgaben Petrinetze Aufgabe 1

Aufgaben Petrinetze Aufgabe 1 Task C läuft an, wenn A und B abgelaufen sind. Aufgabe 1 A B Task A REL S1 Task B REL S2 REQ S1 REQ S2 S1 S2 Task C C Aufgabe: Task C läuft an, wenn A oder B abgelaufen sind. Zeichne das Petrinetz und

Mehr

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl Übung zur Vorlesung Grundlagen Betriebssysteme und Systemsoftware (Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl (gbs-ws11@mailschlichter.informatik.tu-muenchen.de) http://www11.in.tum.de/veranstaltungen/grundlagenbetriebssystemeundsystemsoftwarews1112

Mehr

Hausübung 2. Konzepte und Methoden der Systemsoftware. Aufgabe 1: Einfache Schedulingstrategien. SoSe bis

Hausübung 2. Konzepte und Methoden der Systemsoftware. Aufgabe 1: Einfache Schedulingstrategien. SoSe bis Universität Paderborn Fachgebiet Rechnernetze SoSe 2014 Konzepte und Methoden der Systemsoftware Hausübung 2 2014-05-12 bis 2014-05-23 Hausübungsabgabe: Format: Lösungen in schriftlicher oder gedruckter

Mehr

Scheduling in Echtzeitbetriebssystemen. Prof. Dr. Margarita Esponda Freie Universität Berlin

Scheduling in Echtzeitbetriebssystemen. Prof. Dr. Margarita Esponda Freie Universität Berlin Scheduling in Echtzeitbetriebssystemen Prof. Dr. Margarita Esponda Freie Universität Berlin Echtzeitsysteme Korrekte Ergebnisse zum richtigen Zeitpunkt Hart Echtzeitsysteme Eine verspätete Antwort ist

Mehr

Proseminar KVBK : Scheduler unter Linux

Proseminar KVBK : Scheduler unter Linux Proseminar KVBK : Scheduler unter Linux Valderine Kom Kenmegne Valderine Kom Kenmegne 1 Gliederung 1. Einführung 2. Einplanungsstrategien im Betriebsystem 2.1 Ziel der Einplanungsstrategien 2.2 Beispiele

Mehr

Aufgaben zum Thema Quantitative Methoden

Aufgaben zum Thema Quantitative Methoden Aufgaben zum Thema Quantitative Methoden Q1. Eine Rechenanlage möge sich durch ein M/M/1/ -System modellieren lassen. Die ankommenden Aufträge haben einen mittleren Abstand von 250 ms, die Bedienrate betrage

Mehr

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl Übung zur Vorlesung Grundlagen Betriebssysteme und Systemsoftware (Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl (gbs-ws11@mailschlichter.informatik.tu-muenchen.de) http://www11.in.tum.de/veranstaltungen/grundlagenbetriebssystemeundsystemsoftwarews1112

Mehr

3.3 Strategien zur Ablaufsteuerung

3.3 Strategien zur Ablaufsteuerung 3.3 Strategien zur Ablaufsteuerung Prinzip der Trennung von Strategie (Richtlinie, policy) und Mechanismus (mechanism) bedeutet bei der Prozessverwaltung class Process {... static Set readylist

Mehr

Echtzeitsysteme: Grundlagen

Echtzeitsysteme: Grundlagen EMES: Eigenschaften mobiler und eingebetteter Systeme 00101111010010011101001010101 Echtzeitsysteme: Grundlagen Dr. Felix Salfner, Dr. Siegmar Sommer Wintersemester 2010/2011 00101111010010011101001010101Was

Mehr

Single- und Multitasking

Single- und Multitasking Single- und Multitasking Peter B. Ladkin ladkin@rvs.uni-bielefeld.de Peter B. Ladkin Command Interpreter (ComInt) läuft wartet auf Tastatur-Eingabe "liest" (parst) die Eingabe (für Prog-Name) Macht "Lookup"

Mehr

Programme werden durch den Ablauf eines oder mehrerer Prozesse (engl.: process, task) von einem Rechner abgearbeitet.

Programme werden durch den Ablauf eines oder mehrerer Prozesse (engl.: process, task) von einem Rechner abgearbeitet. Prozessverwaltung Prozesse Programme werden durch den Ablauf eines oder mehrerer Prozesse (engl.: process, task) von einem Rechner abgearbeitet. Prozesse sind Abfolgen von Aktionen, die unter Kontrolle

Mehr

4. Echtzeitaspekte der Software

4. Echtzeitaspekte der Software 4. Echtzeitaspekte der Software Echtzeitaspekte der Software eingebetteter Systeme 4.1 Grundlagen von Echtzeitsystemen 4.2 Echtzeitprogrammierung 4.3 Aufbau von Echtzeitbetriebssystemen 4.4 Echtzeitscheduling

Mehr

(a) Wie unterscheiden sich synchrone und asynchrone Unterbrechungen? (b) In welchen drei Schritten wird auf Unterbrechungen reagiert?

(a) Wie unterscheiden sich synchrone und asynchrone Unterbrechungen? (b) In welchen drei Schritten wird auf Unterbrechungen reagiert? SoSe 2014 Konzepte und Methoden der Systemsoftware Universität Paderborn Fachgebiet Rechnernetze Präsenzübung 2 2014-04-28 bis 2014-05-02 Aufgabe 1: Unterbrechungen (a) Wie unterscheiden sich synchrone

Mehr

Klausur WS 2009/2010

Klausur WS 2009/2010 Betriebssysteme und Systemsoftware Klausur WS 2009/2010 02.02.2010 Name: Vorname: Studiengang: Hinweise: (Bitte sorgfältig durchlesen!) Schreiben Sie auf jedes Blatt Ihren Namen und Ihre Matrikelnummer.

Mehr

B.5 Prozessverwaltung B.5. Prozessverwaltung. 2002 Prof. Dr. Rainer Manthey Informatik II 1

B.5 Prozessverwaltung B.5. Prozessverwaltung. 2002 Prof. Dr. Rainer Manthey Informatik II 1 Prozessverwaltung Prozessverwaltung 2002 Prof. Dr. Rainer Manthey Informatik II 1 Prozesse Programme werden durch den Ablauf eines oder mehrerer Prozesse (engl.: process, task) ) von einem Rechner abgearbeitet.

Mehr

8. Foliensatz Betriebssysteme

8. Foliensatz Betriebssysteme Prof. Dr. Christian Baun 8. Foliensatz Betriebssysteme Frankfurt University of Applied Sciences SS2016 1/56 8. Foliensatz Betriebssysteme Prof. Dr. Christian Baun Frankfurt University of Applied Sciences

Mehr

CPU-Scheduling - Grundkonzepte

CPU-Scheduling - Grundkonzepte CPU-Scheduling - Grundkonzepte Sommersemester 2015 Seite 1 Gesamtüberblick 1. Einführung in Computersysteme 2. Entwicklung von Betriebssystemen 3. Architekturansätze 4. Interruptverarbeitung in Betriebssystemen

Mehr

Round-Robin Scheduling (RR)

Round-Robin Scheduling (RR) RR - Scheduling Reigen-Modell: einfachster, ältester, fairster, am weitesten verbreiteter Algorithmus Entworfen für interaktive Systeme (preemptives Scheduling) Idee: Den Prozessen in der Bereitschaftsschlange

Mehr

Systemsoftware (SYS) Fakultät für Informatik WS 2007/2008 Christian Baun. Übungsklausur

Systemsoftware (SYS) Fakultät für Informatik WS 2007/2008 Christian Baun. Übungsklausur Hochschule Mannheim Systemsoftware (SYS) Fakultät für Informatik WS 2007/2008 Christian Baun Übungsklausur Aufgabe 1: Definieren Sie den Begriff der Systemsoftware. Nennen Sie die Aufgaben und Komponenten

Mehr

Praktische Lernkarten zum Ausschneiden, Zusammenkleben und Sammeln :-) zur Prüfungsvorbereitung Diplomprüfung. Betriebssysteme

Praktische Lernkarten zum Ausschneiden, Zusammenkleben und Sammeln :-) zur Prüfungsvorbereitung Diplomprüfung. Betriebssysteme Eine Zusammenstellung aus Prüfungsprotokollen bei Professor Schlageter Praktische Lernkarten zum Ausschneiden, Zusammenkleben und Sammeln :-) zur Prüfungsvorbereitung Diplomprüfung Betriebssysteme Thomas

Mehr

Übersicht. Monoprozessor-Scheduling. Einführung Anforderungen und Thread-Typen Zustandsmodelle

Übersicht. Monoprozessor-Scheduling. Einführung Anforderungen und Thread-Typen Zustandsmodelle Übersicht Einführung Anforderungen und Thread-Typen Zustandsmodelle Monoprozessor-Scheduling Einfache Scheduling-Verfahren: FCFS, SJF, RR usw. Echtzeit-Scheduling Multiprozessor-Scheduling Implementierungsaspekte

Mehr

Betriebssysteme und Systemsoftware

Betriebssysteme und Systemsoftware Merlin Denker Version 2 1 / 18 Vorwort Dieses Dokument soll einen Überblick über verschiedene Strategien aus der an der RWTH Aachen gehaltenen Vorlesung bieten. Die vorliegende Version dieses Dokuments

Mehr

Systeme I: Betriebssysteme Kapitel 7 Scheduling. Wolfram Burgard

Systeme I: Betriebssysteme Kapitel 7 Scheduling. Wolfram Burgard Systeme I: Betriebssysteme Kapitel 7 Scheduling Wolfram Burgard Version 8.12.2016 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Echtzeitscheduling (1)

Echtzeitscheduling (1) Echtzeitscheduling (1) Scheduling in Betriebssystemen Ressourcenausteilung (CPU, Speicher, Kommunikation) Faire Ressourcenvergabe, insbesondere CPU Hohe Interaktivität / kurze Reaktionszeit für interaktive

Mehr

Test (Lösungen) Betriebssysteme, Rechnernetze und verteilte Systeme

Test (Lösungen) Betriebssysteme, Rechnernetze und verteilte Systeme Seite 1 Test (Lösungen) Betriebssysteme, Rechnernetze und verteilte Systeme 1 11.07.2007 Hinweise: Bevor Sie mit der Bearbeitung der Aufgaben beginnen, müssen Sie auf allen Blättern Ihren Namen und Ihre

Mehr

Einführung. Schedulingziel. Klassisches Scheduling-Problem. 6. Kapitel Ressource Prozessor: Scheduling

Einführung. Schedulingziel. Klassisches Scheduling-Problem. 6. Kapitel Ressource Prozessor: Scheduling Wintersemester 06/07 6. Kapitel Ressource Prozessor: Scheduling Prof. Matthias Werner 6 Professur Betriebssysteme Einführung Bisher: Wenn ein Prozesses den Prozessor aufgibt (Zustand laufend verlässt),

Mehr

DHBW Stuttgart, Studiengang Elektrotechnik, 5. HJ, Vorlesung: Realzeitsysteme Sep 2012. 4) Task-Verwaltung

DHBW Stuttgart, Studiengang Elektrotechnik, 5. HJ, Vorlesung: Realzeitsysteme Sep 2012. 4) Task-Verwaltung Inhalte Eigenschaften von Rechenprozessen (Tasks) Taskübergänge (process control block) Multitasking (kooperativ und präemptiv) Scheduler Erzeugen, Starten und Beenden von Tasks Taskzustände (running,

Mehr

Betriebssysteme I WS 2013/2014. Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404

Betriebssysteme I WS 2013/2014. Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Betriebssysteme I WS 2013/2014 Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 16. Januar 2014 Betriebssysteme / verteilte Systeme Betriebssysteme

Mehr

Klausur zur Vorlesung Grundlagen der Betriebssysteme

Klausur zur Vorlesung Grundlagen der Betriebssysteme Prof. Dr. L. Wegner Dipl.-Math. K. Schweinsberg Klausur zur Vorlesung Grundlagen der Betriebssysteme 19.2.2004 Name:... Vorname:... Matrikelnr.:... Studiengang:... Hinweise: Bearbeitungszeit 2 Stunden.

Mehr

Betriebssysteme BS-F WS 2015/16. Hans-Georg Eßer. Foliensatz F: Scheduling Prioritäten. v1.3, 2015/08/20

Betriebssysteme BS-F WS 2015/16. Hans-Georg Eßer. Foliensatz F: Scheduling Prioritäten. v1.3, 2015/08/20 BS-F Betriebssysteme WS 2015/16 Hans-Georg Eßer Foliensatz F: Scheduling Prioritäten v1.3, 2015/08/20 20.08.2015 Betriebssysteme, WS 2015/16, Hans-Georg Eßer Folie F-1 Übersicht Einführung System Calls

Mehr

Musterlösung zur KLAUSUR

Musterlösung zur KLAUSUR Johann Wolfgang Goethe-Universität Frankfurt am Main FB 15 Institut für Informatik Praktische Informatik PD Dr. R. Brause Musterlösung zur KLAUSUR zur Vorlesung Betriebssysteme I WS 2003/04 Name Vorname

Mehr

Inhaltsverzeichnis. 2.4 Thread-Systeme. 2.1 Was ist ein Prozess? 2.2 Scheduling. 2.3 Interprozesskommunikation

Inhaltsverzeichnis. 2.4 Thread-Systeme. 2.1 Was ist ein Prozess? 2.2 Scheduling. 2.3 Interprozesskommunikation Inhaltsverzeichnis Systemprogrammierung - Kapitel 2 Prozessverwaltung 1/21 2.1 Was ist ein Prozess? Definition Prozesszustände Prozesskontrollblöcke 2.4 Thread-Systeme Sinn und Zweck Thread-Arten Thread-Management

Mehr

Betriebssysteme 1. Einführung. Scheduling worum geht es? Scheduler: Gliederung

Betriebssysteme 1. Einführung. Scheduling worum geht es? Scheduler: Gliederung BS1-D Betriebssysteme 1 SS 2017 Prof. Dr.-Ing. Hans-Georg Eßer Fachhochschule Südwestfalen Einführung Foliensatz D: Scheduler v1.0, 2016/05/20 18.05.2017 Betriebssysteme 1, SS 2017, Hans-Georg Eßer Folie

Mehr

Aufgabe : Low Power Design

Aufgabe : Low Power Design Uebungsaufgabe Eingebettete Systeme Lösungsvorschlag Seite 1 Aufgabe : Low ower Design (maximal 24 unkte) 1: Dynamic ower Management (DM) (maximal 24 unkte) Gegeben ist ein Microcontroller, der über einen

Mehr

Betriebssysteme (BTS)

Betriebssysteme (BTS) 9.Vorlesung Betriebssysteme (BTS) Christian Baun cray@unix-ag.uni-kl.de Hochschule Mannheim Fakultät für Informatik Institut für Betriebssysteme 10.5.2007 Exkursion Die Exkursion wird am Freitag, den 18.5.2007

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 17.01.08 Bastian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Organisatorisches Inoffizielle Info-1 Probeklausur findet

Mehr

Task A Zündung. Task B Einspritzung. Task C Erfassung Pedalwert. J. Schäuffele, Th. Zurawka: Automotive Software Engineering, Vieweg, 2003

Task A Zündung. Task B Einspritzung. Task C Erfassung Pedalwert. J. Schäuffele, Th. Zurawka: Automotive Software Engineering, Vieweg, 2003 Task! evt. parallel zu bearbeitende Ausführungseinheit! Beispiel: Task A Zündung Task B Einspritzung Task C Erfassung Pedalwert Zeit t J. Schäuffele, Th. Zurawka:, Vieweg, 2003 Echtzeitbetriebssysteme

Mehr

Echtzeitprogrammierung und Echtzeitverhalten von Keil RTX. Frank Erdrich Semester AI 7

Echtzeitprogrammierung und Echtzeitverhalten von Keil RTX. Frank Erdrich Semester AI 7 Echtzeitprogrammierung und Echtzeitverhalten von Frank Erdrich Semester AI 7 Inhalt Einleitung Echtzeit und Echtzeitsysteme Echtzeitprogrammierung Real-Time Operating System Keil RTOS RTX Zusammenfassung

Mehr

Modul B-PRG Grundlagen der Programmierung 1

Modul B-PRG Grundlagen der Programmierung 1 Modul B-PRG Grundlagen der Programmierung 1 Teil 3: Betriebssysteme, Dateisysteme,Sicherheit V20: Prozesse Prof. Dr. R. Brause Adaptive Systemarchitektur Institut für Informatik Fachbereich Informatik

Mehr

Klausur. Betriebssysteme SS 2007

Klausur. Betriebssysteme SS 2007 Matrikelnummer: 9999999 Klausur FB Informatik und Mathematik Prof. R. Brause Betriebssysteme SS 2007 Vorname: Nachname: Matrikelnummer: Geburtsdatum: Studiengang: Bitte tragen Sie auf jeder Seite Ihre

Mehr

1. Bedienung der Shell (6 / 80 Punkte)

1. Bedienung der Shell (6 / 80 Punkte) Juni 2015 Seite 1/6 1 2 3 4 5 6 7 8 9 Die Bearbeitungszeit der ist 80 Minuten; für die richtige Klausur haben Sie 120 Minuten Zeit. Entsprechend hat diese reduzierten Umfang (2/3). Bitte bearbeiten Sie

Mehr

Vorbereitung zur Prüfung Echtzeitbetriebssysteme

Vorbereitung zur Prüfung Echtzeitbetriebssysteme Vorbereitung zur Prüfung Echtzeitbetriebssysteme Zugelassene Hilfsmittel: Taschenrechner Bitte verwenden Sie keinen roten Farbstift! 1. Echtzeitbetriebssysteme - Allgemein (15 Punkte) 1.1. Warum setzen

Mehr

Klausur am

Klausur am Vorlesung Betriebssysteme I Wintersemester 2004/2005 Fachbereich 12, Elektrotechnik und Informatik Betriebssysteme / verteilte Systeme Prof. Roland Wismüller Klausur am 04.04.2005 Name: Vorname: Matrikelnummer:

Mehr

Dämon-Prozesse ( deamon )

Dämon-Prozesse ( deamon ) Prozesse unter UNIX - Prozessarten Interaktive Prozesse Shell-Prozesse arbeiten mit stdin ( Tastatur ) und stdout ( Bildschirm ) Dämon-Prozesse ( deamon ) arbeiten im Hintergrund ohne stdin und stdout

Mehr

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Maren Bennewitz

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Maren Bennewitz Systeme I: Betriebssysteme Kapitel 4 Prozesse Maren Bennewitz Version 21.11.2012 1 Begrüßung Heute ist Tag der offenen Tür Willkommen allen Schülerinnen und Schülern! 2 Testat nach Weihnachten Mittwoch

Mehr

Echtzeitsysteme: Grundlagen. Dipl.-Inf. J. Richling Wintersemester 2003/2004

Echtzeitsysteme: Grundlagen. Dipl.-Inf. J. Richling Wintersemester 2003/2004 Echtzeitsysteme: Grundlagen Dipl.-Inf. J. Richling Wintersemester 2003/2004 ? Was ist Echtzeit? 03-1 Eigenschaften mobiler und eingebetteter Systeme c J.Richling Was ist Echtzeit? Es gibt eine Reihe verwirrender

Mehr

Betriebssysteme G: Parallele Prozesse (Teil A: Grundlagen)

Betriebssysteme G: Parallele Prozesse (Teil A: Grundlagen) Betriebssysteme G: Parallele Prozesse (Teil A: Grundlagen) 1 Prozesse Bei Betriebssystemen stoßen wir des öfteren auf den Begriff Prozess als wahrscheinlich am häufigsten verwendeter und am unklarsten

Mehr

Architektur Verteilter Systeme Teil 2: Prozesse und Threads

Architektur Verteilter Systeme Teil 2: Prozesse und Threads Architektur Verteilter Systeme Teil 2: Prozesse und Threads 21.10.15 1 Übersicht Prozess Thread Scheduler Time Sharing 2 Begriff Prozess und Thread I Prozess = Sequentiell ablaufendes Programm Thread =

Mehr

Threads and Scheduling

Threads and Scheduling Vorlesung Betriebssysteme WS 2010, fbi.h-da.de Threads and Scheduling Jürgen Saala 1. Threads 2. Scheduling 2 1. Threads 3 Prozesse mit je 1 Adressraum 1 Ausführungsfaden d.h. Unabhängiger Adressraum mit

Mehr

Scheduling. Prozess-Ablaufplanung. Prof. Dr. Margarita Esponda Freie Universität Berlin WS 2011/2012

Scheduling. Prozess-Ablaufplanung. Prof. Dr. Margarita Esponda Freie Universität Berlin WS 2011/2012 Scheduling Prozess-Ablaufplanung Prof. Dr. Margarita Esponda Freie Universität Berlin WS 2011/2012 Scheduler Der Scheduler ist ein besonders wichtiges Programmteil jedes Betriebssystems. Prozesse P 1 P

Mehr

Analysis of System Performance IN2072 Chapter 2 Random Process Part 1

Analysis of System Performance IN2072 Chapter 2 Random Process Part 1 Chair for Network Architectures and Services Prof. Carle Department of Computer Science TU München Analysis of System Performance IN2072 Chapter 2 Random Process Part Dr. Alexander Klein Prof. Dr.-Ing.

Mehr

Übung zu Grundlagen der Betriebssysteme. 7. Übung 27.11.2012

Übung zu Grundlagen der Betriebssysteme. 7. Übung 27.11.2012 Übung zu Grundlagen der Betriebssysteme 7. Übung 27.11.2012 Threads Thread (Faden des (Kontrollflusses)): ist ein sequentieller Abarbeitungsablauf (Kontrollfluss) innerhalb eines Prozesses. Umfasst ein

Mehr

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Wolfram Burgard

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Wolfram Burgard Systeme I: Betriebssysteme Kapitel 4 Prozesse Wolfram Burgard Version 18.11.2015 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Scheduling. Gliederung. Was ist Scheduling? Scheduling. Übersicht: 1. Einführung und Übersicht. 2. Prozesse und Threads. 3. Interrupts. 4.

Scheduling. Gliederung. Was ist Scheduling? Scheduling. Übersicht: 1. Einführung und Übersicht. 2. Prozesse und Threads. 3. Interrupts. 4. Gliederung 1. Einführung und Übersicht 2. Prozesse und Threads 3. Interrupts 4. 5. Synchronisation 6. Interprozesskommunikation 7. Speicherverwaltung Cl. Schnörr / HM 1 Gliederung Cl. Schnörr / HM 2 Was

Mehr

Systemsoftware (SYS) MSc Christian Baun

Systemsoftware (SYS) MSc Christian Baun Ä ÙÒ ÞÞ Ò ÞÙÖ ÐÙ Ð Ù ÙÖ ËÝ Ø Ñ Ó ØÛ Ö Ë Ëµ ØÖ Ý Ø Ñ ¹ÓÖ ÒØ ÖØ Ö Ì Ð º ÖÙ Ö ¾¼¼ Æ Ñ ÎÓÖÒ Ñ Å ØÖ ÐÒÙÑÑ Ö ËØÙ Ò Ò À ÒÛ ÌÖ Ò Ë ÞÙ Ö Ø Ù ÐÐ Ò ÐØØ ÖÒ Ò Ð Ð Ð ØØ µ Á Ö Ò Æ Ñ Ò Á Ö Ò ÎÓÖÒ Ñ Ò ÙÒ Á Ö Å ØÖ ÐÒÙÑÑ

Mehr

Echtzeitanwendungen mit Java Real Time Specification for Java

Echtzeitanwendungen mit Java Real Time Specification for Java Fakultät Informatik» Institut für Angewandte Informatik» Lehrstuhl für Technische Informationssysteme Echtzeitanwendungen mit Java Real Time Specification for Java Vortrag im Rahmen des Hauptseminars Technische

Mehr

3. Scheduler und Schedulingstrategien

3. Scheduler und Schedulingstrategien 5 3 Scheduler und Schedulingstrategien Unter Scheduling versteht man einen Ablaufplan, einen Fahrplan oder eine Auswahlstrategie, nach der ein knappes Betriebsmittel im Wettbewerb befindlichen Prozessen

Mehr

Arbeitsgruppe ESS Jun.-Prof. Dr. Sebastian Zug. Technische Informatik II (TI II) (5) Scheduling. Sebastian Zug Arbeitsgruppe: Embedded Smart Systems

Arbeitsgruppe ESS Jun.-Prof. Dr. Sebastian Zug. Technische Informatik II (TI II) (5) Scheduling. Sebastian Zug Arbeitsgruppe: Embedded Smart Systems 1 Technische Informatik II (TI II) (5) Scheduling Sebastian Zug Arbeitsgruppe: Embedded Smart Systems 2 Fragen an die Veranstaltung Welche Kernaufgabe wird durch das Scheduling umgesetzt? Welche Zielgrößen

Mehr

8. Einplanung einzelner Jobs durch nichtperiodische Tasks in prioritätsbasierten Systemen

8. Einplanung einzelner Jobs durch nichtperiodische Tasks in prioritätsbasierten Systemen 8. Einplanung einzelner Jobs durch nichtperiodische Tasks in prioritätsbasierten Systemen 8.1. Modellannahmen und Vorgehen Voraussetzungen Jobs / nichtperiodische Tasks unterbrechbar, voneinander unabhängig

Mehr

Klausur zum Kurs Betriebssysteme (1802) am 18. September 2010

Klausur zum Kurs Betriebssysteme (1802) am 18. September 2010 Fakultät für Mathematik und Informatik Lehrgebiet Kooperative Systeme Prof. Dr. Jörg M. Haake Klausur zum Kurs Betriebssysteme (1802) am 18. September 2010 Klausurort: Vorname Name: Adresse: Matrikelnummer:

Mehr

Begriff: Scheduling Planung, Schedule Plan. Verplanung der CPU-Zeit an die Threads (bzw. Prozesse)

Begriff: Scheduling Planung, Schedule Plan. Verplanung der CPU-Zeit an die Threads (bzw. Prozesse) 5 CPU-Scheduling Im folgenden wird von Threads gesprochen. Bei Systemen, die keine Threads unterstützen, ist der einzige "Thread" eines Prozesses gemeint. Früher wurde dieser Thread synonym mit dem Begriff

Mehr

a) Welches der folgenden Zeichen weist im Shell-Prompt darauf hin, dass Sie mit normalen Benutzerrechten (also nicht als root) arbeiten?

a) Welches der folgenden Zeichen weist im Shell-Prompt darauf hin, dass Sie mit normalen Benutzerrechten (also nicht als root) arbeiten? 1 2 3 4 5 6 7 8 9 Seite 1/10 Die Bearbeitungszeit der Probeklausur ist 90 Minuten; für die richtige Klausur haben Sie 120 Minuten Zeit. Entsprechend hat diese Probeklausur reduzierten Umfang (3/4). Bitte

Mehr

Systeme I: Betriebssysteme Kapitel 7 Scheduling. Maren Bennewitz

Systeme I: Betriebssysteme Kapitel 7 Scheduling. Maren Bennewitz Systeme I: Betriebssysteme Kapitel 7 Scheduling Maren Bennewitz Version 23.01.2013 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Übung Betriebssysteme 11

Übung Betriebssysteme 11 Übung Betriebssysteme 11 Christian Motika Christian-Albrechts-Universität zu Kiel Institut für Informatik AG Echtzeitsysteme / Eingebettete Systeme Kiel, Germany 29-JAN-2013 CAU - WS 2012/13 Übung Betriebssysteme

Mehr

Systemsoftware (SYS) Fakultät für Informatik WS 2008/2009 Christian Baun. Übungsklausur

Systemsoftware (SYS) Fakultät für Informatik WS 2008/2009 Christian Baun. Übungsklausur Hochschule Mannheim Systemsoftware (SYS) Fakultät für Informatik WS 2008/2009 Christian Baun Übungsklausur Aufgabe 1: Definieren Sie den Begriff der Systemsoftware. Nennen Sie die Aufgaben und Komponenten

Mehr

Einführung in die technische Informatik

Einführung in die technische Informatik inführung in die technische Informatik hristopher Kruegel chris@auto.tuwien.ac.at http://www.auto.tuwien.ac.at/~chris etriebssysteme ufgaben Management von Ressourcen Präsentation einer einheitlichen Schnittstelle

Mehr

13. Übung mit Musterlösung

13. Übung mit Musterlösung 13. Übung mit Musterlösung 1 Lösung 1 Teil 1.Multiple Choice) Bewertung: Ein Punkt für richtige Antwort, für jede falsche Antwort ein Punktabzug. a) Für die Exponentialverteilung ist die Zeit bis zum nächsten

Mehr

Technische Universität Braunschweig Institut für Betriebssysteme und Rechnerverbund. Betriebssysteme und Netze Prof. Dr. L. Wolf. 18.

Technische Universität Braunschweig Institut für Betriebssysteme und Rechnerverbund. Betriebssysteme und Netze Prof. Dr. L. Wolf. 18. @ Technische Universität Braunschweig Institut für Betriebssysteme und Rechnerverbund Betriebssysteme und Netze Prof. Dr. L. Wolf Hinweise zur Bearbeitung: Klausur: Betriebssysteme und Netze 18. Februar

Mehr

Klausur. Betriebssysteme SS

Klausur. Betriebssysteme SS Klausur FB Informatik und Mathematik Prof. R. Brause Betriebssysteme SS 2011 14.7.2011 Vorname: Nachname: Matrikelnummer: Geburtsdatum: Studiengang: Bitte tragen Sie auf jeder Seite Ihre Matrikelnummer

Mehr

Technische Informatik II

Technische Informatik II Institut für Technische Informatik und Kommunikationsnetze Technische Informatik II Übung 1: Prozesse und Threads Aufgabe 1: Prozesse und Threads a) Wie verhält sich eine Applikation die aus mehreren Prozessen

Mehr

Ausgewählte Kapitel eingebetteter Systeme

Ausgewählte Kapitel eingebetteter Systeme Ausgewählte Kapitel eingebetteter Systeme Echtzeitfähige Ereignisgetriebene Scheduling-Strategien Friedrich-Alexander-Universität Erlangen-Nürnberg 08.06.2005 Übersicht Problemdefinition Scheduling-Strategien

Mehr

Der Scheduler von Windows 2000 Konzepte und Strategien

Der Scheduler von Windows 2000 Konzepte und Strategien Der Scheduler von Windows 2000 Konzepte und Strategien Daniel Lohmann lohmann@informatik.uni-erlangen.de Gliederung 1. Grundbegriffe 2. Eigenschaften des Schedulers Grundlegende Eigenschaften Prioritätenmodell

Mehr

TI Übung 5. Prozess-Scheduling. Andreas I. Schmied SS2005. Abteilung Verteilte Systeme Universität Ulm

TI Übung 5. Prozess-Scheduling. Andreas I. Schmied SS2005. Abteilung Verteilte Systeme Universität Ulm TI Übung 5 Prozess-Scheduling Andreas I. Schmied (schmied@inf...) Abteilung Verteilte Systeme Universität Ulm SS2005 Und nun... Wiederholung 1 Wiederholung Andreas I. Schmied (schmied@inf...) TI Übung

Mehr

Windows 2000 Scheduler

Windows 2000 Scheduler Windows 2000 Scheduler Konzepte von Betriebssystem Komponenten Friedrich Alexander Universität Erlangen Nürnberg Lehrstuhl für Informatik 4 Verteilte Systeme und Betriebssysteme Sommersemester 2005 Viktor

Mehr

Betriebssysteme Kap F: CPU-Steuerung CPU-Scheduling

Betriebssysteme Kap F: CPU-Steuerung CPU-Scheduling Betriebssysteme Kap F: CPU-Steuerung CPU-Scheduling 1 termini technici Der englische Fachausdruck scheduler wurde eingedeutscht : Der Scheduler Für scheduling ist im Deutschen auch zu verwenden: Ablaufplanung

Mehr

Mikrocomputertechnik

Mikrocomputertechnik Mikrocomputertechnik Thema: CPU Timing XC888 und Interrupt System des XC888 und Timer/Counter 0 und 1 -Im InterruptBetrieb - CPU Timing XC888 CPU Timing XC888 Befehl Befehl Befehl Befehlszyklus Befehlszyklus

Mehr