Datenstrukturen und Algorithmen

Größe: px
Ab Seite anzeigen:

Download "Datenstrukturen und Algorithmen"

Transkript

1 Datenstrukturen und Algorithmen VO

2 WH: Untere Schranke für SorGeren Die bisher betrachteten schnellen Sor$eralgorithmen (MergeSort, HeapSort, QuickSort) brauchen O(n*log n) Zeit Gibt es einen schnelleren SorGeralgorithmus? Wir zeigen: Jedes SorGerverfahren, das mitels Vergleichen arbeitet, braucht mindestens c n log n Vergleiche im worst case [email protected] 2

3 Untere Schranke für SorGeren Der Kontrollfluss von vergleichsbasierten SorGerverfahren kann als Entscheidungsbaum dargestellt werden: Beispiel: drei Zahlen a 1, a 2, a 3 : alle möglichen Programmverzweigungen Innere Knoten: Vergleiche zwischen Elementen BläAer: SorGerte Reihenfolge des Inputs Es gibt n! BläTer Ast: Kontrollfluss für best. Input [email protected] 3

4 Untere Schranke für SorGeren Das worst case Verhalten des Algorithmus entspricht dem längsten Ast im Entscheidungsbaum (# Knoten = # Vergleiche) Der längste Ast wird kürzestmöglich, wenn alle Äste ungefähr gleich lang sind Idealer Algorithmus entspricht einem vollständigen Binärbaum mit n! BläTern [email protected] 4

5 Untere Schranke für SorGeren Die Höhe eines Binärbaums mit n! BläTern ist Ω(n*log n) Ω(n*log n) ist eine untere Schranke für die Anzahl der im worst case zum SorGeren notwendigen Vergleiche Die worst case Laufzeit vergleichsorien$erter Sor$erverfahren ist Ω(n*log n) MergeSort und HeapSort sind worst case op$mal

6 Untere Schranke für SorGeren Gibt es einen schnelleren SorGeralgorithmus? Ja: nicht vergleichsoriengerte SorGeralgorithmen (z.b. RadixSort) Durch Verwendung von ZusatzinformaGon: WerGgkeit einer Dezimalstelle

7 RadixSort Beispiel für einen nicht vergleichsoriengerten SorGeralgorithmus SorGeren von n Dezimalzahlen der Länge d: RADIXSORT (A, d) 1: FOR i = 1 TO d 2: Ordne A nach i-ter Ziffer v.h. in Fächer ein (Streuphase) 3: Fasse die Fächer in aufsteigender Reihenfolge wieder in A zusammen (Sammelphase) T(n) = O(d*n) linear, wenn d als konstant betrachtet wird! Nach den ersten k Durchläufen sind die Zahlen, eingeschränkt auf die letzten k Ziffern, sorgert Wich$g: Die vorige Reihenfolge innerhalb der Fächer muss aufrechterhalten werden [email protected] 7

8 RadixSort Beispiel für einen nicht vergleichsoriengerten SorGeralgorithmus Wenn d nicht konstant: z.b. Auffüllen mit Nullen [email protected] 8

9 Eigenschaoen von SorGerverfahren Ein SorGerverfahren ist stabil: Elemente mit idengschen SorGerschlüsseln erscheinen in Input und Output in gleicher Reihenfolge adap$v: (teilweise) vorsorgerte Folgen werden effizienter sorgert (besseres Laufzeitverhalten für fast sorgerte Folgen) worst case op$mal: Jede Eingabefolge wird in O(n*log n) Zeit sorgert (der unteren Schranke für vergleichsbasierte SorGerverfahren) in place: außer für einzelne Variablen (i, j, ) wird kein Zusatzspeicher (Hilfsfelder, ) benöggt [email protected] 9

10 Vergleich von SorGerverfahren Oo werden KombinaGon verwendet z.b.: für n < 10 InserGon Sort sonst Quick Sort [email protected] 10

11 Elementare Datenstrukturen (Tafel mit Keilschrio, Priester von Adab, 4600 Jahre alt) Peru Inca, Aufzeichnungsform [Aus K. Mehlhorn and P. Sanders: Data Structures and Algorithms. Springer Verlag, 2008]

12 Gestreute Speicherung (Hashing) Wir suchen eine Datenstruktur, die das Wörterbuchproblem effizient löst Wörterbuchopera$onen: Einfügen Suchen Enyernen Anwendungen: Telefonbuch, Wörterbuch, Symboltabelle beim Kompilieren, Lineares Feld: Einfügen O(1) Zeit, Suchen und Enyernen O(n) Zeit

13 Gestreute Speicherung (Hashing) Idee: AnstaT zu suchen, berechne die Adresse eines Datums aus seinem Wert in O(1) Zeit Hashtabelle: lineares Feld T[0..m 1]; Datum mit Wert w wird in T[h(w)] gespeichert Hashfunk$on: h: U {0, 1,, m 1} U = Universum aller möglichen Schlüssel Aktuelle Schlüssel w h(w) = j Kollision h (w) = h (w ) j = 0 j = 1 j = m 2 Hashtabelle T j = m [email protected] 13

14 Gestreute Speicherung (Hashing) Einfaches Beispiel für RadixSort (Tafel) U = Universum aller möglichen Schlüssel Aktuelle Schlüssel w h(w) = j Kollision h (w) = h (w ) j = 0 j = 1 j = m 2 Hashtabelle T j = m [email protected] 14

15 Gestreute Speicherung (Hashing) Die HashfunkGon sollte möglichst wenig Kollisionen liefern Ideale Hashfunk$on: Pr 1 m [ h( w) = j] = w U, j {0,..., m 1} Behandlung von Kollisionen: Überläuferlisten (Chaining) Offene Adressierung Lineare und quadragsche Sondierung Doppeltes Hashing [email protected] 15

16 Hash FunkGonen Was ist eine gute HashfunkGon? Jeder Index j=0,,m 1 sollte gleichwahrscheinlich sein, um möglichst wenig Kollisionen zu liefern h(w) soll möglichst effizient berechnet werden Ähnliche Werte sollten möglichst gut getrennt werden h(w) soll unabhängig von Mustern in den Daten sein Wir kennen selten die genaue Verteilung der Werte HeurisGsche Wahl der HashfunkGon Wir betrachten h: N {0, 1,, m-1} [email protected] 16

17 Hash FunkGonen Divisionsmethode: Dividiere den Wert durch m und nimm den Rest: h( w) = wmod m z.b.: w=100, m=12, h(100) = 100 mod 12 = 4 Vorteil: schnell berechenbar Nachteil: nicht für alle m gut m=2 k, m=10 k : hängt nur von den letzten k Bits/Ziffern ab Gut für m Primzahl und nicht zu nahe an 2 k, 10 k [email protected] 17

18 Hash FunkGonen Mul$plika$onsmethode: MulGpliziere den Wert mit einer fixen Konstante A, 0<A<1, und mulgpliziere den gebrochenen Teil des Resultates mit m: h( w) = m frac( w A) Vorteil: m ist unkrigsch (m=2 k : durch Shio OperaGonen effizient berechenbar) Guter Wert für A: A = , [email protected] 18

19 Behandlung von Kollisionen Überläuferlisten (Chaining) Offene Adressierung Lineare und quadragsche Sondierung Doppeltes Hashing U = Universum aller möglichen Schlüssel Aktuelle Schlüssel w h(w) = j Kollision h (w) = h (w ) j = 0 j = 1 j = m 2 Hashtabelle T j = m [email protected] 19

20 Überläuferlisten (Chaining) Bei einer Kollision werden die Daten in einer verketeten Liste angelegt: Einfügen: Am Beginn der Liste T[h(w)] Suchen: Durchsuchen der Liste T[h(w)] Löschen: Suchen von w, Ausklinken aus Liste T[h(w)]

21 Überläuferlisten (Chaining) Bei einer Kollision werden die Daten in einer verketeten Liste angelegt: Erwartete Laufzeit Einfügen: O(1) Suchen: O(1+α) Löschen: O(1+α) α = Worst case: Θ(1+ n) für Suchen, Löschen wenn zufällig alle Werte in dieselbe Liste gestreut [email protected] 21 n m Belegungsfaktor der Hashtabelle O(1+α) = O(1), wenn n=o(m) prob = 1 m n 1

22 Offene Adressierung AlternaGve Methode zur Behandlung von Kollisionen Alle Werte werden in T[0..m 1] selbst gespeichert α=n/m 1 Bei einer Kollision wird solange eine neue Adresse berechnet, bis ein freier Platz gefunden wird h(w,i) = j i = 1 { 0,1,, m 1} { 0,1,, 1} h : U m i 0,1,2, m 1 Versuchzahl (Probing) noch frei i = 2 besetzt [email protected] 22

23 Offene Adressierung Ideale Hashfunk$on: Für jeden Wert w ist h(w,0), h(w,1),, h(w,m 1) mit Wahrscheinlichkeit 1/m! eine der m! PermutaGonen von 0, 1,, m 1. In der Praxis verwendete Näherungen: Linear Probing: Problem: benachbarte Felder wahrscheinlicher belegt (primary clustering) Quadra$c Probing: h( w, i) = + h( w, i) = + [ h ( w) i] modm [ h ( w) f ( i) ] modm f(i) quadragsche FunkGon; bei einer Kollision immer noch dieselbe Indexfolge (secondary clustering) Double Hashing: [ h ( w) ih ( w) ] modm h( w, i) = [email protected] 23

24 Offene Adressierung Einfügen und Suchen: Problem beim Enaernen: Erwartete Laufzeit 1 O 1 α w 1, w 2 eingefügt, w 1 enyernt w 2 wird nicht mehr gefunden enyernte Werte markieren [email protected] 24

25 Danke für Ihre Aufmerksamkeit! Bis zum nächsten Mal. (Donnerstag, 6. Dez. 2012, 11:15, i13)

Hashing II. Übersicht. 1 Hashing und Verkettung. 2 Offene Adressierung

Hashing II. Übersicht. 1 Hashing und Verkettung. 2 Offene Adressierung Übersicht Datenstrukturen und Algorithmen Vorlesung 13: 1 Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-15/dsal/ 2 Effizienz

Mehr

13. Hashing. AVL-Bäume: Frage: Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n)

13. Hashing. AVL-Bäume: Frage: Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n) AVL-Bäume: Ausgabe aller Elemente in O(n) Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n) Frage: Kann man Einfügen, Löschen und Suchen in O(1) Zeit? 1 Hashing einfache Methode

Mehr

12. Hashing. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete.

12. Hashing. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete. Worst-case Zeit für Search: Θ(n). In der Praxis jedoch sehr gut. Unter gewissen

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil Hash-Verfahren Version vom: 18. November 2016 1 / 28 Vorlesung 9 18. November 2016

Mehr

Karlsruher Institut für Technologie Institut für Theoretische Informatik. Übungsklausur Algorithmen I

Karlsruher Institut für Technologie Institut für Theoretische Informatik. Übungsklausur Algorithmen I Vorname: Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Jörn Müller-Quade 21.06.2017 Übungsklausur Algorithmen I Aufgabe 1. Kleinaufgaben 8 Punkte Aufgabe 2. Hashing 6 Punkte

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 11. Übung Verkettete Listen, Sortieren Insertionsort, Mergesort, Radixsort, Quicksort Clemens Lang Übungen zu AuD 19. Januar 2010 Clemens Lang (Übungen zu AuD) Algorithmen

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (11 Hashverfahren: Allgemeiner Rahmen) Prof. Dr. Susanne Albers Das Wörterbuch-Problem (1) Das Wörterbuch-Problem (WBP) kann wie folgt beschrieben

Mehr

2 Sortieren durch Vergleichen Eingabefolge a 1, a 2,..., a n 2, 1, 3 Sortieralg. Für festes n ist ein vergleichsbasierter Sortieralg. charakterisiert

2 Sortieren durch Vergleichen Eingabefolge a 1, a 2,..., a n 2, 1, 3 Sortieralg. Für festes n ist ein vergleichsbasierter Sortieralg. charakterisiert 1 Algorithmen und Datenstrukturen Wintersemester 2014/15 9. Vorlesung Sortieren in Linearzeit Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Sortieren durch Vergleichen Eingabefolge a 1, a 2,...,

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Untere Schranken für Sortieren Sortieren mit linearem Aufwand Mediane und Ranggrössen 2 Wie schnell können wir sortieren?

Mehr

Hashtabellen. Hashverfahren, was ist das eigentlich?

Hashtabellen. Hashverfahren, was ist das eigentlich? Hashverfahren, was ist das eigentlich? Das Hashverfahren ist ein Algorithmus zum Suchen von Datenobjekten in großen Datenmengen. Es basiert auf der Idee, dass eine mathematische Funktion die Position eines

Mehr

Klausur Algorithmen und Datenstrukturen SS August Arbeitszeit 90 min

Klausur Algorithmen und Datenstrukturen SS August Arbeitszeit 90 min TU Ilmenau, Fakultät für Informatik und Automatisierung FG Komplexitätstheorie und Effiziente Algorithmen Univ.-Prof. Dr. M. Dietzfelbinger, Dipl.-Ing. C. Mattern Klausur Algorithmen und Datenstrukturen

Mehr

Übungsklausur Algorithmen I

Übungsklausur Algorithmen I Jun.-Prof. Hofheinz, Jun.-Prof. Meyerhenke (ITI, KIT) 08.06.2015 Übungsklausur Algorithmen I Aufgabe 1. (Algorithm Engineering) Nennen Sie zwei Konzepte, die Algorithm Engineering im Gegensatz zu theoretischer

Mehr

Datenstrukturen und Algorithmen. Vorlesung 10

Datenstrukturen und Algorithmen. Vorlesung 10 Datenstrukturen und Algorithmen Vorlesung 10 Hashtabelle als Erinnerung Hashtabellen sind Tabellen (Arrays), wo aber die Elemente nicht von links nach rechts eingefügt werden, wie bei typischen Arrays

Mehr

Beweis: Die obere Schranke ist klar, da ein Binärbaum der Höhe h höchstens

Beweis: Die obere Schranke ist klar, da ein Binärbaum der Höhe h höchstens Beweis: Die obere Schranke ist klar, da ein Binärbaum der Höhe h höchstens h 1 2 j = 2 h 1 j=0 interne Knoten enthalten kann. EADS 86/600 Beweis: Induktionsanfang: 1 ein AVL-Baum der Höhe h = 1 enthält

Mehr

Übungsklausur Algorithmen I

Übungsklausur Algorithmen I Name: Vorname: Matrikelnr.: Tutorium: Jun.-Prof. Hofheinz, Jun.-Prof. Meyerhenke (ITI, KIT) 08.06.2015 Übungsklausur Algorithmen I Aufgabe 1. (Algorithm Engineering) [2 Punkte] Nennen Sie zwei Konzepte,

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 8 (13.5.2016) Hashtabellen I Algorithmen und Komplexität Dictionary mit sortiertem Array Laufzeiten: create: O(1) insert: O(n) find: O(log

Mehr

Dictionary Definition

Dictionary Definition Kapitel ADS:IV IV. Datenstrukturen Record Linear List Linked List Stack Queue Priority Queue Dictionary Direct-address Table Hash Function ADS:IV-60 Datenstrukturen POTTHAST 2018 Dictionary Definition

Mehr

Algorithmen und Datenstrukturen II: Hashverfahren

Algorithmen und Datenstrukturen II: Hashverfahren Algorithmen und Datenstrukturen II: Hashverfahren Prof. Dr. Oliver Braun Letzte Änderung: 10.05.2017 16:21 Algorithmen und Datenstrukturen II: Hashverfahren 1/28 Hashverfahren bisher jeder Datensatz durch

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 156, Seite 56 im Skript) Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die letzte Ebene vollständig besetzt ist,

Mehr

Algorithmen und Datenstrukturen II: Hashverfahren

Algorithmen und Datenstrukturen II: Hashverfahren Algorithmen und Datenstrukturen II: Hashverfahren Fakultät für Informatik und Mathematik Hochschule München Letzte Änderung: 10.05.2017 16:21 Inhaltsverzeichnis Hashverfahren....................................

Mehr

Teil VII. Hashverfahren

Teil VII. Hashverfahren Teil VII Hashverfahren Überblick 1 Hashverfahren: Prinzip 2 Hashfunktionen 3 Kollisionsstrategien 4 Aufwand 5 Hashen in Java Prof. G. Stumme Algorithmen & Datenstrukturen Sommersemester 2009 7 1 Hashverfahren:

Mehr

Hashing. Überblick Aufgabe Realisierung

Hashing. Überblick Aufgabe Realisierung Überblick Aufgabe Realisierung Aufgabe Realisierung Anforderungen Wahl einer Hashfunktion mit Verkettung der Überläufer Offene Universelles 2/33 Überblick Aufgabe Realisierung Aufgabe Dynamische Verwaltung

Mehr

Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Sommersemester Dr. Tobias Lasser

Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Sommersemester Dr. Tobias Lasser Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 06 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

Wiederholung. Datenstrukturen und. Bäume. Wiederholung. Suchen in linearen Feldern VO

Wiederholung. Datenstrukturen und. Bäume. Wiederholung. Suchen in linearen Feldern VO Wiederholung Datenstrukturen und Algorithmen VO 708.031 Suchen in linearen Feldern Ohne Vorsortierung: Sequentielle Suche Speicherung nach Zugriffswahrscheinlichkeit Selbstanordnende Felder Mit Vorsortierung:

Mehr

Heapsort / 1 A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Heapsort / 1 A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] Heapsort / 1 Heap: Ein Array heißt Heap, falls A [i] A [2i] und A[i] A [2i + 1] (für 2i n bzw. 2i + 1 n) gilt. Beispiel: A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] Heapsort / 2 Darstellung eines Heaps als

Mehr

Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS Oktober 2014

Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS Oktober 2014 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.813 Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS 2014 22. Oktober

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen VO 708.031 Um was geht es? Datenstrukturen Algorithmen Algorithmus Versuch einer Erklärung: Ein Algorithmus nimmt bestimmte Daten als Input und transformiert diese nach festen

Mehr

Eine universelle Klasse von Hash-Funktionen

Eine universelle Klasse von Hash-Funktionen Eine universelle Klasse von Hash-Funktionen Annahmen: U = p, mit Primzahl p und U = {0,, p-1} Seien a {1,, p-1} und b {0,, p-1} Definiere wie folgt Satz: Die Menge ist eine universelle Klasse von Hash-Funktionen..

Mehr

U h(k 1 ) h(k 4 ) k 1 h(k 3 )

U h(k 1 ) h(k 4 ) k 1 h(k 3 ) 92 Kapitel 8 Hashing Hashing ist ein anderes Vorgehen, das auch ohne Baumstrukturen ein effizientes Suchen ermöglicht. Wie bei Bucketsort ist auch hier eine der grundsätzlichen Eigenschaften, dass Hashing

Mehr

A7.1 Untere Schranke. Algorithmen und Datenstrukturen. A7.1 Untere Schranke. Algorithmen und Datenstrukturen. A7.2 Quicksort. A7.

A7.1 Untere Schranke. Algorithmen und Datenstrukturen. A7.1 Untere Schranke. Algorithmen und Datenstrukturen. A7.2 Quicksort. A7. Algorithmen und Datenstrukturen 14. März 2018 A7. III Algorithmen und Datenstrukturen A7. III Marcel Lüthi and Gabriele Röger Universität Basel 14. März 2018 A7.1 Untere Schranke A7.2 Quicksort A7.3 Heapsort

Mehr

Algorithms & Data Structures 2

Algorithms & Data Structures 2 Algorithms & Data Structures Digital Sorting WS B. Anzengruber-Tanase (Institute for Pervasive Computing, JKU Linz) (Institute for Pervasive Computing, JKU Linz) WIEDERHOLUNG :: UNTERE SCHRANKE FÜR SORTIEREN

Mehr

Hashing Hashfunktionen Kollisionen Ausblick. Hashverfahren. Dank an: Beate Bollig, TU Dortmund! 1/42. Hashverfahren

Hashing Hashfunktionen Kollisionen Ausblick. Hashverfahren. Dank an: Beate Bollig, TU Dortmund! 1/42. Hashverfahren Dank an: Beate Bollig, TU Dortmund! 1/42 Hashing Überblick Aufgabe Realisierung Aufgabe Realisierung Anforderungen Wahl einer Hashfunktion mit Verkettung der Überläufer Offene Universelles Hashing 2/42

Mehr

Hashing I. 1 Direkte Adressierung. 2 Grundlagen des Hashings. 3 Kollisionsauflösung durch Verkettung. 4 Hashfunktionen. 5 Offene Adressierung

Hashing I. 1 Direkte Adressierung. 2 Grundlagen des Hashings. 3 Kollisionsauflösung durch Verkettung. 4 Hashfunktionen. 5 Offene Adressierung Übersicht Datenstrukturen und Algorithmen Vorlesung 2: Hashing Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-4/ datenstrukturen-und-algorithmen/ Diese

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen A7. Sortieren III Marcel Lüthi and Gabriele Röger Universität Basel 14. März 2018 Untere Schranke Sortierverfahren Sortieren Vergleichsbasierte Verfahren Nicht vergleichsbasierte

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 9 (28.5.2014) Hashtabellen III Algorithmen und Komplexität Offene Adressierung : Zusammenfassung Offene Adressierung: Alle Schlüssel/Werte

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO INF.02031UF (2-4)-Bäume [email protected] 1 7. Bäume Bäume als Datenstruktur Binärbäume Balancierte Bäume (2-4)-Bäume Anwendung: Mischbare Warteschlangen

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 27.10.2011 [email protected] 1 Wiederholung Wir vergleichen Algorithmen anhand des ordnungsmäßigen Wachstums von T(n), S(n), Asymptotische Schranken: O-Notation:

Mehr

NAME, VORNAME: Studiennummer: Matrikel:

NAME, VORNAME: Studiennummer: Matrikel: TU Ilmenau, Fakultat IA Institut für Theoretische Informatik FG Komplexitätstheorie und Effiziente Algorithmen Prof. Dr. (USA) M. Dietzfelbinger Klausur Algorithmen und Datenstrukturen SS08, Ing.-Inf.

Mehr

Übungsklausur Algorithmen I

Übungsklausur Algorithmen I Universität Karlsruhe, Institut für Theoretische Informatik Prof. Dr. P. Sanders 26.5.2010 svorschlag Übungsklausur Algorithmen I Hiermit bestätige ich, dass ich die Klausur selbständig bearbeitet habe:

Mehr

7. Sortieren Lernziele. 7. Sortieren

7. Sortieren Lernziele. 7. Sortieren 7. Sortieren Lernziele 7. Sortieren Lernziele: Die wichtigsten Sortierverfahren kennen und einsetzen können, Aufwand und weitere Eigenschaften der Sortierverfahren kennen, das Problemlösungsparadigma Teile-und-herrsche

Mehr

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Suchen. Lineare Suche. Such-Algorithmen. Sommersemester Dr.

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Suchen. Lineare Suche. Such-Algorithmen. Sommersemester Dr. Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 0 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Fortgeschrittene Datenstrukturen Such-Algorithmen

Mehr

Übersicht. Datenstrukturen und Algorithmen. Einführung (II) Einführung (I) Vorlesung 12: Hashing I (K11) Counting Sort. Joost-Pieter Katoen

Übersicht. Datenstrukturen und Algorithmen. Einführung (II) Einführung (I) Vorlesung 12: Hashing I (K11) Counting Sort. Joost-Pieter Katoen Übersicht Datenstrukturen und Algorithen Vorlesung 2: (K) Joost-Pieter Katoen Lehrstuhl für Inforatik 2 Software Modeling and Verification Group https://oves.rwth-aachen.de/teaching/ss-8/dsal/ 4. Juni

Mehr

Ein sortiertes Feld kann in O(log n) durchsucht werden, z.b. mit Binärsuche. Der Algorithmus 1 gibt den Pseudocode der binären Suche an.

Ein sortiertes Feld kann in O(log n) durchsucht werden, z.b. mit Binärsuche. Der Algorithmus 1 gibt den Pseudocode der binären Suche an. 2.5 Suchen Eine Menge S will nach einem Element durchsucht werden. Die Menge S ist statisch und S = n. S ist Teilmenge eines Universums auf dem eine lineare Ordnung definiert ist und soll so gespeichert

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen von Prof. Dr. Thomas Ottmann, Universität Freiburg und Prof. Dr. Dr. Peter Widmayer, Eidgenössische Technische Hochschule Zürich 2., vollständig überarbeitete und erweiterte

Mehr

Kollision Hashfunktion Verkettung Offenes Hashing Perfektes Hashing Universelles Hashing Dynamisches Hashing. 4. Hashverfahren

Kollision Hashfunktion Verkettung Offenes Hashing Perfektes Hashing Universelles Hashing Dynamisches Hashing. 4. Hashverfahren 4. Hashverfahren geg.: Wertebereich D, Schlüsselmenge S = {s 1,..., s n } D Menge A von Speicheradressen; oft: A = {0,..., m 1} jedes Speicherverfahren realisiert h : D A mögliche Implementierungen von

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 7 (21.5.2014) Binäre Suche, Hashtabellen I Algorithmen und Komplexität Abstrakte Datentypen : Dictionary Dictionary: (auch: Maps, assoziative

Mehr

Algorithmen und Datenstrukturen VO 3.0 Vorlesungsprüfung 19. Oktober 2007

Algorithmen und Datenstrukturen VO 3.0 Vorlesungsprüfung 19. Oktober 2007 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 1 186.089 VO 3.0 Vorlesungsprüfung 19. Oktober

Mehr

Kap. 3ff: Untere Laufzeitschranke und Lineare Verfahren

Kap. 3ff: Untere Laufzeitschranke und Lineare Verfahren Kap. 3ff: Untere Laufzeitschranke und Lineare Verfahren Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 8. VO DAP2 SS 2009 12. Mai 2009 1 1. Übungstest Termin:

Mehr

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). 8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame

Mehr

Themen. Hashverfahren. Stefan Szalowski Programmierung II Hashverfahren

Themen. Hashverfahren. Stefan Szalowski Programmierung II Hashverfahren Themen Hashverfahren Einleitung Bisher: Suchen in logarithmischer Zeit --> Binärsuche Frage: Geht es eventuell noch schneller/effektiver? Finden von Schlüsseln in weniger als logarithmischer Zeit Wichtig

Mehr

Humboldt-Universität zu Berlin Berlin, den Institut für Informatik

Humboldt-Universität zu Berlin Berlin, den Institut für Informatik Humboldt-Universität zu Berlin Berlin, den 15.06.2015 Institut für Informatik Prof. Dr. Ulf Leser Übungen zur Vorlesung M. Bux, B. Grußien, J. Sürmeli, S. Wandelt Algorithmen und Datenstrukturen Übungsblatt

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Thomas Ottmann / Peter Widmayer Algorithmen und Datenstrukturen 4. Auflage Spektrum Akademischer Verlag Heidelberg Berlin Inhaltsverzeichnis 1 Grundlagen 1.1 Algorithmen und ihre formalen Eigenschaften

Mehr

Carlos Camino Grundlagen: Algorithmen und Datenstrukturen SS 2015

Carlos Camino Grundlagen: Algorithmen und Datenstrukturen SS 2015 Themenüberblick Dieses Dokument stellt eine Art Checkliste für eure Klausurvorbereitung dar. Zu jedem Thema im Skript sind hier ein paar Leitfragen aufgelistet. Ab Seite 4 findet ihr alle Zusammenfassungen,

Mehr

Kapitel 6 HASHING. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm

Kapitel 6 HASHING. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm Kapitel 6 HASHING Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm Übersicht 1 1. Einführung 2. Algorithmen 3. Eigenscha?en von Programmiersprachen 4. Algorithmenparadigmen 5. Suchen & SorGeren

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2015/16 12. Vorlesung Hashing Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Übungen Begründen Sie grundsätzlich alle Behauptungen außer die Aufgabe

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Überlaufbehandlung ohne Verkettung

Überlaufbehandlung ohne Verkettung 3.2 Statische Hash-Verfahren direkte Berechnung der Speicheradresse (Seitenadresse) eines Satzes über Schlüssel (Schlüsseltransformation) Hash-Funktion h: S {, 2,..., n} S = Schlüsselraum, n = Größe des

Mehr

Untere Schranke für allgemeine Sortierverfahren

Untere Schranke für allgemeine Sortierverfahren Untere Schranke für allgemeine Sortierverfahren Prinzipielle Frage: wie schnell kann ein Algorithmus (im worst case) überhaupt sein? Satz: Zum einer Folge von n Keys mit einem allgemeinen Sortierverfahren

Mehr

Datenstrukturen und Algorithmen. 7. Suchen in linearen Feldern

Datenstrukturen und Algorithmen. 7. Suchen in linearen Feldern Datenstrukturen und Algorithmen 7. Suchen in linearen Feldern VO 708.031 Suchen in linearen Feldern [email protected] 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische

Mehr

Pro Informatik 2009: Objektorientierte Programmierung Tag 18. Marco Block-Berlitz, Miao Wang Freie Universität Berlin, Institut für Informatik

Pro Informatik 2009: Objektorientierte Programmierung Tag 18. Marco Block-Berlitz, Miao Wang Freie Universität Berlin, Institut für Informatik Tag 18 Marco Block-Berlitz, Miao Wang Freie Universität Berlin, Institut für Informatik 09.09.2009 Agenda Tag 16 Datenstrukturen Abstrakte Datentypen, ADT Folge: Stack, Queue, Liste, ADT Menge: Bäume:

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 8 (14.5.2018) Hashtabellen III Algorithmen und Komplexität Hashtabellen mit Chaining Jede Stelle in der Hashtabelle zeigt auf eine verkette

Mehr

Probeklausur Computerorientierte Mathematik II

Probeklausur Computerorientierte Mathematik II Technische Universität Berlin SS 2012 Fakultät II, Institut für Mathematik Sekretariat MA 5 1, Frau Klink Prof. Dr. Rolf Möhring Torsten Gellert Jan-Philipp Kappmeier Jens Schulz Catharina Broermann, Christian

Mehr