Data Warehouse Grundlagen
|
|
|
- Julian Fürst
- vor 10 Jahren
- Abrufe
Transkript
1 Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015
2 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Firmen und beziehen sich auf Eintragungen in den USA oder USA-Warenzeichen. Weitere Logos und Produkt- oder Handelsnamen sind eingetragene Warenzeichen oder Warenzeichen der jeweiligen Unternehmen. Kein Teil dieser Dokumentation darf ohne vorherige schriftliche Genehmigung der weitergegeben oder benutzt werden. Die besitzt folgende Geschäftsstellen Adressen der Westernmauer D Paderborn Tel.: (+49) / An der alten Ziegelei 5 D Münster Tel.: (+49) / Welser Straße 9 D Gersthofen Tel.: (+49) / Kreuzberger Ring 13 D Wiesbaden Tel.: (+49) / Wikingerstraße D Köln Tel.: (+49) / Internet: [email protected] Seite 2 Version: 2.10
3 Inhaltsverzeichnis 1 Einführung Geschichtliches Motivation Hintergrund Ist-Situation Modernes Informationssystem Was ist ein Data Warehouse? Multiple Datenquellen Unternehmensspezifisch skalierbar Universelle Abfragen möglich Hochleistungsplattform für Reporting Analysen (Vergangenheit/Zukunft) Ziele Gründe für ein separates DWH Abgrenzung zu OLTP Abgrenzung zu OLTP-Anfragen Abgrenzung zu OLTP-Daten Abgrenzung zu OLTP-Anwender Abgrenzung zu OLTP - Zusammenfassung Definition Definition nach Inmon Themenorientierung Integrierte Datenbasis Persistente Datenbasis Chronologisierte Daten Anwendungsgebiete Multidimensionales Datenmodell Überblick Normalisierung Überblick Normalisierung von Daten Redundanzen Normalform Normalform Normalform Normalform Zusammenfassung Normalformen Kennzahlen Additive Kennzahlen Semi-Additive Kennzahlen Nicht-Additive Kennzahlen Dimensionen Eigenschaften von Dimensionen Einfache Hierarchie Parallele Hierarchie Aufbau Dimensionstabelle Beispiel Beispiel Junk Dimension Junk Dimension Beispiel Fakten- und Dimensionstabellen Aufbau Faktentabelle Varianten von Fakten Ereignis Fakt Snapshot Fakt Beispiel Faktentabelle DWH Datenmodelle Version: 2.10 Seite 3
4 2.6.1 Starschema Vor- und Nachteile Abfragen im Starschema Snow Flake Schema Schematische Darstellung Vorteile Nachteile Abfragen im Snow Flake Schema Mischformen Galaxy Schema - Überblick Slowly Changing Dimensions Slowly Changing Dimension Anwendungsbereiche Slowly Changing Dimensions - Fachlicher Schlüssel Typ 1 keine Historierung Typ 2 Historisierung Typ 2 Ablaufprinzip Typ 2 Beispiel Typ 3 Teilweise Historisierung Designprozess Überblick Beispiel Grundlagen der Architektur Überblick Architekturschichten Schematischer Aufbau ETL-Tools Staging Area Landing Area Cleansing Area Metadaten Core Data Warehouse Data Marts Überblick Extraktarten Vorteile Data Mart Arten Abhängige Data Marts Unabhängige Data Marts Virtuelle Data Marts Entwurf eines Data Warehouse Systems Vorgehensmodell Modellierungsschritte Analyse des Informationssystems / Anforderungsanalyse Informationsbedarfsanalyse Analysemodell / Prozessmodell Objektmodell Konzeptioneller Entwurf Beispiel MERM Diagramm Logischer Entwurf Technische Implementierung Test Softwareauswahl Auswahlkriterien Marktrecherche Bewertung der Auswahl Kosten der Software Speicherstrukturen Seite 4 Version: 2.10
5 5.1 Überblick ROLAP MOLAP HOLAP DOLAP Multidimensional Expressions (MDX) Befüllung Überblick ETL-Tool Monitoring Quellsystem Überblick Triggerbasiert Replikationsbasiert Zeitstempelbasierte Monitoringstrategie Log-basierte Monitoringstrategie Snapshot-basierte Monitoringstrategie Extraktionsstrategien Staging Area Überblick Ausprägungen Cleansing Area Transformation Ursache von fehlerhaften Daten Überblick Filterung Überblick Klassen Beispiele Harmonisierung Aggregation Anreicherung Laden Data Mart Deploymentprozess Deploymentprozess Aufbau der Testdatenbank Deploymentprozess ETL Prozesse Entwickeln Deploymentprozess Testen Deploymentprozess Deployment auf Produktion Multidimensionale Operatoren OLAP Operatoren Standard Operatoren Bewegen im Multidimensionalen Datenmodell Pivotierung/Rotation Roll-up/Drill-down Beispiel Drill Across Drill Through Slice/Dice Slice Dice Split / Merge Beispiel Reporting Frontend Tools Verteilung der Anwender Dashboard Statische Reports Version: 2.10 Seite 5
6 8.5 Dynamische Berichte Ad-Hoc Berichte Data Mining Auswahl Reporting Tool Datenbankoptimierung Überblick Laden von Daten Überblick Einzelsatzverarbeitung Lade Tool Beispiel Oracle Beispiel DB Beispiel Informix Partitionierung Überblick Range Partitionierung List Partitionierung Hash Partitionierung Komprimierung Datenbank Caches Blockgröße Seitengröße Reservierter Freiplatz bei der Tabellenerstellung Referenzielle Integrität Materialisierte Sichten und Tabellen Merge Anweisung Beispiel Parallelisierung Spaltenorientierte Speicherung und In-Memory-Funktionalität Überblick Beispiel Oracle Beispiel DB Hardwareoptimierungen Big Data Größe ist relativ Potential Wirkprinzipien Die 3 V s Velocity (Geschwindigkeit) Volume (Datenmengen) Variety (Vielfalt) Big Data ist nicht nur ein Tool Big Data in Aktion Übungen / Lösungen Übungen Normalisierung von Daten Multidimensionales Datenmodell Snowflakeschema Befüllung Lösungen Normalisierung von Daten Multidimensionales Datenmodell Snowflakeschema Befüllung Anhang- ETL Tools Anhang- Reporting Tools Seite 6 Version: 2.10
Data Warehouse Grundlagen
Seminarunterlage Version: 2.13 Version 2.13 vom 27. August 2018 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen
IBM DB2 für Linux/Unix/Windows Monitoring und Tuning
IBM DB2 für Linux/Unix/Windows Monitoring und Tuning Seminarunterlage Version: 4.05 Version 4.05 vom 9. Februar 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt-
Big Data Informationen neu gelebt
Seminarunterlage Version: 1.01 Copyright Version 1.01 vom 21. Mai 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen
IT-Projektcontrolling
Seminarunterlage Version: 3.02 Version 3.02 vom 20. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen
Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien
Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis ix 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...
Data Warehouse Technologien
Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...............
WebSphere Application Server Installation
WebSphere Application Server Installation und Administration Seminarunterlage Version: 3.04 Copyright Version 3.04 vom 16. Mai 2013 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte
MySQL Administration. Seminarunterlage. Version 3.02 vom
Seminarunterlage Version: 3.02 Version 3.02 vom 23. Oktober 2014 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen
Tomcat Konfiguration und Administration
Tomcat Konfiguration und Administration Seminarunterlage Version: 8.01 Version 8.01 vom 4. Februar 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen
JSP und Servlet Programmierung
Seminarunterlage Version: 5.02 Copyright Version 5.02 vom 1. März 2013 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen
Oracle Backup und Recovery
Seminarunterlage Version: 11.05 Version 11.05 vom 27. Mai 2010 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen
IBM Informix Dynamic Server Hochverfügbarkeits-Technologien unter Unix
2 IBM Informix Dynamic Server Hochverfügbarkeits-Technologien unter Unix Version: 11.02 ORDIX Seminarunterlagen einfach. gut. geschult. Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte
PHP Programmierung. Seminarunterlage. Version 1.02 vom
Seminarunterlage Version: 1.02 Version 1.02 vom 27. August 2013 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen
Apache HTTP Server Administration
Seminarunterlage Version: 11.04 Copyright Version 11.04 vom 9. Januar 2014 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen
Linux Cluster mit Pacemaker und Heartbeat 3
Linux Cluster mit Pacemaker und Heartbeat 3 Seminarunterlage Version: 5.04 Copyright Version 5.04 vom 13. Juni 2012 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle
Java Performance Tuning
Seminarunterlage Version: 5.04 Version 5.04 vom 16. Januar 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen
C09: Einsatz SAP BW im Vergleich zur Best-of-Breed-Produktauswahl
C09: Einsatz SAP BW im Vergleich zur Best-of-Breed-Produktauswahl Ein Seminar der DWH academy Seminar C09 Einsatz SAP BW im Vergleich zur Best-of-Breed- Produktauswahl Befasst man sich im DWH mit der Auswahl
IBM Informix SQL. Seminarunterlage. Version 11.04 vom
Seminarunterlage Version: 11.04 Version 11.04 vom 27. April 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen
IBM Informix Tuning und Monitoring
Seminarunterlage Version: 11.01 Copyright Version 11.01 vom 25. Juli 2012 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen
Linux Hochverfügbarkeits-Cluster
Seminarunterlage Version: 5.05 Version 5.05 vom 23. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen
Oracle Backup und Recovery mit RMAN
Oracle Backup und Recovery mit RMAN Seminarunterlage Version: 12.04 Copyright Version 12.04 vom 16. Juli 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt-
OLAP mit dem SQL-Server
Hartmut Messerschmidt Kai Schweinsberg OLAP mit dem SQL-Server Eine Einführung in Theorie und Praxis IIIBibliothek V dpunkt.verlag Teil OLAP undder Microsoft SQL-Server 1 1 Theoretische Grundlagen 3 1.1
Inhaltsverzeichnis. Teil I OLAP und der Microsoft SQL-Server 1. 1 Theoretische Grundlagen 3
vii Teil I OLAP und der Microsoft SQL-Server 1 1 Theoretische Grundlagen 3 1.1 Was ist OLAP?......................................... 3 1.1.1 Business Intelligence............................... 4 1.1.2
Oracle Cloud Control. Seminarunterlage. Version 12.03 vom
Seminarunterlage Version: 12.03 Version 12.03 vom 1. Oktober 2013 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen
Teil II: Architektur eines Data-Warehouse-Systems... 57
O:/Wiley/Reihe_Dummies/9783527714476_Gerken/3d/ftoc.3d from 08.08.2018 14:02:02 Auf einen Blick Einleitung... 19 Teil I: Was ist ein Data Warehouse?... 25 Kapitel 1: Ein Beispiel zur Einführung..... 27
Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link
Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Konrad Linner, solvistas GmbH Nürnberg, 20.November 2012 Inhaltsverzeichnis Vorstellung solvistas
Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten
Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten Michael Hahne T&I GmbH Workshop MSS-2000 Bochum, 24. März 2000 Folie 1 Worum es geht...
Aufgabe 1: [Logische Modellierung]
Aufgabe 1: [Logische Modellierung] a) Entwerfen Sie für das von Ihnen entworfene Modell aus Aufgabe 2 des 1. Übungsblattes ein Star-Schema. b) Entwerfen Sie für das vorangegangene Modell einen Teil eines
Verwandt, logisch kohärent, zweckspezifisch, an reale Welt orientiert. Entität kann in einer oder mehreren Unterklassen sein
1 Definitionen 1.1 Datenbank Verwandt, logisch kohärent, zweckspezifisch, an reale Welt orientiert Integriert, selbstbeschreibend, verwandt 1.2 Intension/Extension Intension: Menge der Attribute Extension:
IT-basierte Kennzahlenanalyse im Versicherungswesen
Angelina Jung IT-basierte Kennzahlenanalyse im Versicherungswesen Kennzahlenreporting mit Hilfe des SAP Business Information Warehouse Diplomica Verlag Angelina Jung IT-basierte Kennzahlenanalyse im Versicherungswesen:
BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004
BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick
Objektorientierung in Oracle
Seminarunterlage Version: 11.10 Version 11.10 vom 12. September 2013 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen
Oracle Capacity Planning
Seminarunterlage Version: 2.03 Version 2.03 vom 8. Juli 2014 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen oder
Allgemeines zu Datenbanken
Allgemeines zu Datenbanken Was ist eine Datenbank? Datensatz Zusammenfassung von Datenelementen mit fester Struktur Z.B.: Kunde Alois Müller, Hegenheimerstr. 28, Basel Datenbank Sammlung von strukturierten,
Oracle Cloud Control. Seminarunterlage. Version vom
Seminarunterlage Version: 12.04 Version 12.04 vom 7. November 2016 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen
Seminar C02 - Praxisvergleich OLAP Tools
C02: Praxisvergleich OLAP Tools Ein Seminar der DWH academy Seminar C02 - Praxisvergleich OLAP Tools Das Seminar "Praxisvergleich OLAP-Tools" bietet den Teilnehmern eine neutrale Einführung in die Technologien
erfolgreich steuern Datenqualität rä dpunkt.verlag Ldwi Praxislösungen für Business-Intelligence-Projekte Rüdiger Eberlein Edition TDWI
Detlef Apel Wolfgang Behme Rüdiger Eberlein Christian Merighi Datenqualität erfolgreich steuern Praxislösungen für Business-Intelligence-Projekte 3., überarbeitete und erweiterte Auflage Edition TDWI rä
Hetero-Homogene Data Warehouses
Hetero-Homogene Data Warehouses TDWI München 2011 Christoph Schütz http://hh-dw.dke.uni-linz.ac.at/ Institut für Wirtschaftsinformatik Data & Knowledge Engineering Juni 2011 1 Data-Warehouse-Modellierung
Datenqualität erfolgreich steuern
Edition TDWI Datenqualität erfolgreich steuern Praxislösungen für Business-Intelligence-Projekte von Detlef Apel, Wolfgang Behme, Rüdiger Eberlein, Christian Merighi 3., überarbeitete und erweiterte Auflage
Data Warehouse Technologien
mitp Professional Data Warehouse Technologien von Veit Köppen, Gunter Saake, Kai-Uwe Sattler 2. Auflage 2014 Data Warehouse Technologien Köppen / Saake / Sattler schnell und portofrei erhältlich bei beck-shop.de
Oracle AWR und ASH Analyse und Interpretation
Oracle AWR und ASH Analyse und Interpretation Seminarunterlage Version: 2.02 Version 2.02 vom 11. März 2013 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen
good. better. outperform.
good. better. outperform. Quo Vadis Oracle BI Relational oder besser multidimensional? DOAG 2013 Business Intelligence, 17.04.2013 Dirk Fleischmann Director Business Intelligence & DWH Business Intelligence
Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH
Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Dani Schnider Principal Consultant Business Intelligence BI Trilogie, Zürich/Basel 25./26. November 2009 Basel Baden Bern Lausanne Zürich
Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH
Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -
Datawarehouse Architekturen. Einheitliche Unternehmenssicht
Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA
Survival Guide für Ihr Business Intelligence-Projekt
Survival Guide für Ihr Business Intelligence-Projekt Sven Bosinger Solution Architect BI Survival Guide für Ihr BI-Projekt 1 Agenda Was ist Business Intelligence? Leistungsumfang Prozesse Erfolgsfaktoren
IT-basierte Kennzahlenanalyse im Versicherungswesen
Angelina Jung IT-basierte Kennzahlenanalyse im Versicherungswesen Kennzahlenreporting mit Hilfe des SAP Business Information Warehouse Diplomica Verlag Angelina Jung IT-basierte Kennzahlenanalyse im Versicherungswesen:
eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator
eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator Agenda Was ist Business Intelligence? Was ist OLAP? Unterschied zwischen OLAP und OLTP? Bestandteile
ETL in den Zeiten von Big Data
ETL in den Zeiten von Big Data Dr Oliver Adamczak, IBM Analytics 1 1 Review ETL im Datawarehouse 2 Aktuelle Herausforderungen 3 Future of ETL 4 Zusammenfassung 2 2015 IBM Corporation ETL im Datawarehouse
SAP HANA als In-Memory-Datenbank-Technologie für ein Enterprise Data Warehouse
www.osram-os.com SAP HANA als In-Memory-Datenbank-Technologie für ein Enterprise Data Warehouse Oliver Neumann 08. September 2014 AKWI-Tagung 2014 Light is OSRAM Agenda 1. Warum In-Memory? 2. SAP HANA
Seminar C16 - Datenmodellierung für SAP BW
C16: Datenmodellierung für SAP BW Ein Seminar der DWH academy Seminar C16 - Datenmodellierung für SAP BW Dieses Seminar soll einen umfassenden Einblick in die Datenmodellierung beim Einsatz von SAP BW
Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch
Marketing Intelligence Vorstellung der Softwarekomponenten Josef Kolbitsch Manuela Reinisch Übersicht Übersicht über die Systemlandschaft Übersicht über die Werkzeuge Workshop Systemlandschaft 1/8 Klassische
Vorwort zur 5. Auflage... 15 Über den Autor... 16
Vorwort zur 5. Auflage...................................... 15 Über den Autor............................................ 16 Teil I Grundlagen.............................................. 17 1 Einführung
Logische Modellierung von Data Warehouses
Logische Modellierung von Data Warehouses Vertiefungsarbeit von Karin Schäuble Gliederung. Einführung. Abgrenzung und Grundlagen. Anforderungen. Logische Modellierung. Methoden.. Star Schema.. Galaxy-Schema..
MIS by Franziska Täschler, Winformation GmbH [email protected] Ausgabe 01/2001
MIS Glossar by Franziska Täschler, Winformation GmbH [email protected] Ausgabe 01/2001 Aggregat Data Cube Data Marts Data Mining Data Warehouse (DWH) Daten Decision Support Systeme (DSS)
Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik
Data Warehousing Sommersemester 2005 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte
ENTERBRAIN Reporting & Business Intelligence
Überblick Vorhandene Listen/Analysen in ENTERBRAIN Die Daten in ENTERBRAIN Das Fundament des BI - Hauses Details zur ENTERBRAIN Staging Area Reports und Cubes auf Basis der Staging Area Data Mining mit
Refactoring relationaler Datenbank. Shaoke Wu
Refactoring relationaler Datenbank Shaoke Wu Überblick Einführung Bad Smells Probleme bei Database Refactoring Durchführung von Database Refactoring Visualisierung Refactoring relationaler DB Einführung
Business Intelligence für Controller
Controllers Best Practice Fachbuch Business Intelligence für Controller Hermann Hebben und Dr. Markus Kottbauer Verlag für ControllingWissen ÄG, Freiburg und Wörthsee Ein Unternehmen der Haufe Mediengruppe
Modellierung von OLAP- und Data- Warehouse-Systemen
Andreas Totok Modellierung von OLAP- und Data- Warehouse-Systemen Mit einem Geleitwort von Prof. Dr. Burkhard Huch Deutscher Universitäts-Verlag Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis
Nach Data Warehousing kommt Business Intelligence
Nach Data Warehousing kommt Business Intelligence Andrea Kennel Trivadis AG Glattbrugg, Schweiz Schlüsselworte: Business Intelligence, Data Warehouse Zusammenfassung Data Warehouse bedeutet, dass operative
Möglichkeiten für bestehende Systeme
Möglichkeiten für bestehende Systeme Marko Filler Bitterfeld, 27.08.2015 2015 GISA GmbH Leipziger Chaussee 191 a 06112 Halle (Saale) www.gisa.de Agenda Gegenüberstellung Data Warehouse Big Data Einsatz-
THEOBALD XTRACT PPS IXTO GMBH. Mathias Slawik, Linda Kallinich
THEOBALD XTRACT PPS IXTO GMBH Mathias Slawik, Linda Kallinich Projekt BWA: Analytische Anwendungen, WS 2010/2011 Agenda 2/14 Projektaufgabe Technologien / Xtract PPS Projektablauf Dashboard-Prototyp Bewertung
Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. [email protected]
Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick [email protected] Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen
Einführung in die objektorientierte Programmierung
Einführung in die objektorientierte Programmierung Seminarunterlage Version: 4.04 Copyright Version 4.04 vom 17. Juni 2016 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten.
SemTalk Services Stand: Februar 2015
SemTalk Services Stand: Was sind SemTalk Services? Navigation, Suche, Kommentierung, Reporting und andere Funktionalitäten über eine große Menge von Prozessen, Objekten und Dokumenten in veröffentlichten
Business Intelligence Data Warehouse. Jan Weinschenker
Business Intelligence Data Warehouse Jan Weinschenker 28.06.2005 Inhaltsverzeichnis Einleitung eines Data Warehouse Data Warehouse im Zusammenfassung Fragen 3 Einleitung Definition: Data Warehouse A data
Perl Programmierung Grundlagen
Seminarunterlage Version: 4.06 Copyright Version 4.06 vom 17. Dezember 2018 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen
Performanceaspekte in der SAP BI Modellierung
Performanceaspekte in der SAP BI Modellierung SAP BW 7.3 & SAP HANA Performance Indizes Aggregate DSO & InfoCube BWA SAP HANA Empfehlung 2 Performance Performance bedeutet, unter gegebenen Anforderungen
Das Multidimensionale Datenmodell
Das Multidimensionale Datenmodell Konzeptuelle Modellierung Umsetzung des Modells Beispiel ER-Modell 2 / 36 Probleme ER-Modellierung Keine Unterscheidung Klassifikation, Attribute, Kenngrößen Dimension
Komponenten und Architekturen von Analytischen Informationssystemen (AIS)
Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation 27. Juni 2013 Hinweis Diese Folien ersetzen keinesfalls den Übungsstoff des zugehörigen e-learning-kurses.
Rechnung WAWI01 zu WAWI Version 3.8.6x01
WAWI01 zu WAWI Version 3.8.6x01 EDV Hausleitner GmbH Bürgerstraße 66, 4020 Linz Telefon: +43 732 / 784166, Fax: +43 1 / 8174955 1612 Internet: http://www.edv-hausleitner.at, E-Mail: [email protected]
Inhouse-Seminar: Informationsbewirtschaftung im Data Warehouse mit dem ETL-Tool PowerCenter -4 Tage
Inhouse-Seminar: Informationsbewirtschaftung im Data Warehouse mit dem ETL-Tool PowerCenter -4 Tage Ein Inhouse-Seminar der DWH academy Informationsbewirtschaftung im Data Warehouse mit dem ETL-Tool PowerCenter
Business Intelligence im Krankenhaus
Business Intelligence im Krankenhaus Dr. Thomas Lux Holger Raphael IT-Trends in der Medizin 03.September 2008 Essen Gliederung Herausforderungen für das Management im Krankenhaus Business Intelligence
Modellbasierte Business Intelligence in der Praxis. Nürnberg, 10.11.2009
Modellbasierte Business Intelligence in der Praxis Nürnberg, 10.11.2009 I N H A L T 1. Warum Modelle für Business Intelligence (BI)? 2. Inhalte von Datenmodellen für BI 3. Inhalte von Prozessmodellen 4.
Kampagnenmanagement mit Siebel Marketing/Oracle BI ein Praxisbericht
Kampagnenmanagement mit Siebel Marketing/Oracle BI ein Praxisbericht Thomas Kreuzer ec4u expert consulting ag Karlsruhe Schlüsselworte: Kampagnenmanagement Praxisbericht Siebel Marketing Oracle BI - ec4u
DW42: DWH-Strategie, Design und Technik
DW42: DWH-Strategie, Design und Technik Ein Seminar der DWH academy Seminar DW42 - DWH-Strategie, Design und Technik In diesem Seminar lernen Sie durch praxiserfahrene Referenten ein Data Warehouse spezifisches
2 Datenbanksysteme, Datenbankanwendungen und Middleware... 45
Vorwort 15 Teil I Grundlagen 19 i Einführung In das Thema Datenbanken 21 I.I Warum ist Datenbankdesign wichtig? 26 i.2 Dateisystem und Datenbanken 28 1.2.1 Historische Wurzeln 29 1.2.2 Probleme bei der
Oracle Weblogic Administration Grundlagen
Oracle Weblogic Administration Grundlagen Seminarunterlage Version: 1.07 Version 1.07 vom 14. September 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen
Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH)
Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH) Verteilung und Integration von Informationen im Verkehrsbereich Thema: OLAP in verteilten Data-Warehouse- Umgebungen Vortrag: Christian
Objektorientierte Datenbanken
OODB 11 Slide 1 Objektorientierte Datenbanken Vorlesung 11 vom 01.07.2004 Dr. Sebastian Iwanowski FH Wedel OODB 11 Slide 2 Inhalt heute: Datenbanken in betriebswirtschaftlichen Anwendungen OTLP (SAP) Data
Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle
??? Zusammenfassung, Ergänzung, Querverbindungen, Beispiele A.Kaiser; WU-Wien MIS 188 Data Warehouse Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle
White Paper. Konfiguration und Verwendung des Auditlogs. 2012 Winter Release
White Paper Konfiguration und Verwendung des Auditlogs 2012 Winter Release Copyright Fabasoft R&D GmbH, A-4020 Linz, 2011. Alle Rechte vorbehalten. Alle verwendeten Hard- und Softwarenamen sind Handelsnamen
Einführungsveranstaltung: Data Warehouse
Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring
Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse
Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher
Datenbanken und Informationssysteme
Datenbanken und Informationssysteme Lehrangebot Stefan Conrad Heinrich-Heine-Universität Düsseldorf Institut für Informatik April 2012 Stefan Conrad (HHU) Datenbanken und Informationssysteme April 2012
PHP Programmierung. Seminarunterlage. Version 1.07 vom
Seminarunterlage Version: 1.07 Version 1.07 vom 19. Dezember 2018 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen
SP03: Datenmodellierung in SAP NetWeaver BI im Vergleich zum klassischen Data Warehousing
SP03: Datenmodellierung in SAP NetWeaver BI im Vergleich zum klassischen Data Warehousing Ein Seminar der DWH academy Seminar SP03 - Datenmodellierung in SAP NetWeaver BI im Vergleich zum klassischen Data
Data Warehousing mit Oracle
Data Warehousing mit Oracle Business Intelligence in der Praxis von Claus Jordan, Dani Schnider, Joachim Wehner, Peter Welker 1. Auflage Hanser München 2011 Verlag C.H. Beck im Internet: www.beck.de ISBN
Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)
Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team
Oracle Datenbankprogrammierung mit PL/SQL Grundlagen
Oracle Datenbankprogrammierung mit PL/SQL Grundlagen Seminarunterlage Version: 12.05 Version 12.05 vom 29. Januar 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt-
Business Intelligence Praktikum 1
Hochschule Darmstadt Business Intelligence SS 2014 Fachbereich Informatik Praktikumsversuch 1 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 07.05.2014 Business Intelligence Praktikum
Ein Orientierungssystem für Menschen mit Sehbehinderung auf Java ME
Daniel Hänßgen Ein Orientierungssystem für Menschen mit Sehbehinderung auf Java ME Konzeption und Implementierung Diplomica Verlag Daniel Hänßgen Ein Orientierungssystem für Menschen mit Sehbehinderung
Lkw-Stempelhebebühne DUPLEX Anhang
Installationsprotokoll Die Hebebühne vom Typ Duplex T 2-15-1900 Duplex L 2-15-1900 Duplex T 3-15-1900 Duplex L 3-15-1900 Duplex T 4-15-1900 Duplex L 4-15-1900 mit der Serien Nr. wurde installiert am bei
Oracle Datenbankadministration Grundlagen
Oracle Datenbankadministration Grundlagen Seminarunterlage Version: 12.02 Version 12.02 vom 14. April 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen
Requirement Management Systeme
Özgür Hazar Requirement Management Systeme Suche und Bewertung geeigneter Tools in der Software-Entwicklung Diplomica Verlag Özgür Hazar Requirement Management Systeme: Suche und Bewertung geeigneter Tools
