Kabelfehlerortung an Energiekabeln. Vororten Impulsreflexionsverfahren



Ähnliche Dokumente
6 Vorortungs- und Impulsreflexionsverfahren

Fehlerortung an Energiekabeln

Die Kombination funktioniert in den folgenden frei wählbaren Varianten: Reihenfolge in der Wertung der Performance

Kabelfehlerortung an Energiekabeln. Vororten Transiente Verfahren

file://c:\documents and Settings\kfzhans.BUERO1\Local Settings\Temp\ e...

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Elektrischer Widerstand

FttN: Wie gelangt das DSL-Signal zu Dir nach Hause? KVz. HVt

Lineare Gleichungssysteme

Technical Note Nr. 101

Überprüfung der digital signierten E-Rechnung

FORUM HANDREICHUNG (STAND: AUGUST 2013)

Primzahlen und RSA-Verschlüsselung

YouTube: Video-Untertitel übersetzen

Physik & Musik. Stimmgabeln. 1 Auftrag

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten

AZK 1- Freistil. Der Dialog "Arbeitszeitkonten" Grundsätzliches zum Dialog "Arbeitszeitkonten"

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang

SCHRITT 1: Öffnen des Bildes und Auswahl der Option»Drucken«im Menü»Datei«...2. SCHRITT 2: Angeben des Papierformat im Dialog»Drucklayout«...

RG58

Versuch 3. Frequenzgang eines Verstärkers

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Die Online-Meetings bei den Anonymen Alkoholikern. zum Thema. Online - Meetings. Eine neue Form der Selbsthilfe?

Berechnungsgrundlagen

PV-Anlagen vor Blitz und Überspannungen schützen

Festigkeit von FDM-3D-Druckteilen

AUF LETZTER SEITE DIESER ANLEITUNG!!!

Anwendungsbeispiele. Neuerungen in den s. Webling ist ein Produkt der Firma:

Professionelle Seminare im Bereich MS-Office

Umstellung News-System auf cms.sn.schule.de

How to do? Projekte - Zeiterfassung

Zunächst ist dieser Service nur für Mac OS verfügbar. Drucken unter Windows wird Ihnen im Laufe des Semesters zur Verfügung stehen.

Updatehinweise für die Version forma 5.5.5

Geneboost Best.- Nr Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist.

1. Die Maße für ihren Vorbaurollladen müssen von außen genommen werden.

HOWTO Update von MRG1 auf MRG2 bei gleichzeitigem Update auf Magento CE 1.4 / Magento EE 1.8

Prüfung von Blitzschutzsystemen Messen in der Praxis - Hinweise

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu])

Das Experimentierbrettchen (Aufbau, Messpunkte): A B + 9V

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Installation eines BM-33k6/ISDN pro USB an einem Windows XP-Rechner

Die Beschreibung bezieht sich auf die Version Dreamweaver 4.0. In der Version MX ist die Sitedefinition leicht geändert worden.

1. Arbeiten mit dem Touchscreen

WinVetpro im Betriebsmodus Laptop

teamsync Kurzanleitung

Bundesverband Flachglas Großhandel Isolierglasherstellung Veredlung e.v. U g -Werte-Tabellen nach DIN EN 673. Flachglasbranche.

Pflegende Angehörige Online Ihre Plattform im Internet

infach Geld FBV Ihr Weg zum finanzellen Erfolg Florian Mock

Fachbereich Physik Dr. Wolfgang Bodenberger

Wellen. 3.&6. November Alexander Bornikoel, Tewje Mehner, Veronika Wahl

LX 16 Akustisches Variometersystem Handbuch

WLAN Konfiguration. Michael Bukreus Seite 1

Datenbank-Verschlüsselung mit DbDefence und Webanwendungen.

Aber zuerst: Was versteht man unter Stromverbrauch im Standby-Modus (Leerlaufverlust)?

Handbuch Programmierung teknaevo APG

Einführung in. Logische Schaltungen

1 Einleitung. Lernziele. automatische Antworten bei Abwesenheit senden. Einstellungen für automatische Antworten Lerndauer. 4 Minuten.

Anmeldung, Registrierung und Elternkontrolle des MEEP!-Tablet-PC

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Der Avalanche-Generator. Funktionsprinzip und Versuche

Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik).

Über den Link erreichen Sie unsere Einstiegsseite:

EasyWk DAS Schwimmwettkampfprogramm

WORKSHOP für das Programm XnView

BSV Software Support Mobile Portal (SMP) Stand

Arbeiten mit Standorten und Freimeldungen

Berechnung der Erhöhung der Durchschnittsprämien

Konzentration auf das. Wesentliche.

Car-Net über WLAN Aufbau einer Internet-Verbindung über WLAN zur Nutzung von Car-Net

Frische Luft in den Keller sobald die Sonne scheint ist Pflicht.

plus Flickerfeld bewegt sich nicht

Easy-Monitoring Universelle Sensor Kommunikations und Monitoring Plattform

DELFI. Benutzeranleitung Dateiversand für unsere Kunden. Grontmij GmbH. Postfach Bremen. Friedrich-Mißler-Straße Bremen

Solarstrom selbst erzeugen und speichern so geht s!

I P A S M M D Innovative Software zur Prozessoptimierung. Prozessoptimierung durch Mensch-Maschine-Diagramm

Info zum Zusammenhang von Auflösung und Genauigkeit

SEPA Lastschriften. Ergänzung zur Dokumentation vom Workshop Software GmbH Siemensstr Kleve / /

Windows 7: Neue Funktionen im praktischen Einsatz - Die neue Taskleiste nutzen

Partitionieren in Vista und Windows 7/8

Schnittstelle DIGI-Zeiterfassung

Benutzerhandbuch MedHQ-App

So gelingt Ihre Online-Bewerbung!

Sie werden sehen, dass Sie für uns nur noch den direkten PDF-Export benötigen. Warum?

Hilfe zur Dokumentenverwaltung

Inhalt. Inhalt Voraussetzungen Liegenschaften und Adressen auswählen Abgleich mit Internet-Office Dokumente...

ACDSee 2009 Tutorials: Rote-Augen-Korrektur

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Binärdarstellung von Fliesskommazahlen

Welche Unterschiede gibt es zwischen einem CAPAund einem Audiometrie- Test?

Leichte-Sprache-Bilder

Diese Ansicht erhalten Sie nach der erfolgreichen Anmeldung bei Wordpress.

Mitarbeiterbefragung als PE- und OE-Instrument

Marketing-Leitfaden zum. Evoko Room Manager. Touch. Schedule. Meet.

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge

FlowFact Alle Versionen

Fotos in Tobii Communicator verwenden

40-Tage-Wunder- Kurs. Umarme, was Du nicht ändern kannst.

Die Größe von Flächen vergleichen

Urlaubsregel in David

Transkript:

Kabelfehlerortung an Energiekabeln Vororten Impulsreflexionsverfahren

Inhalt: 1. Einleitung 2. Grundlagen 3. Messmethoden Beispiele Anhang: Tabelle Ausbreitungsgeschwindigkeiten v/2 Umrechnung: NVP v / 2 Tabelle Reflexionsfaktoren 1. Einleitung Der punktgenauen Ermittlung, d.h. der Nachortung, eines Kabelfehlers sollte eine Vorortung vorausgehen, um die verschiedenen Nachortungsverfahren nur auf kurzen Kabellängen anwenden zu müssen. Damit ist eine wesentliche Verkürzung der Gesamtortungszeit bei gleichzeitiger Kabelschonung zu erreichen. Auf Grund der Impuls-Reflexionsgesetze müssen die vorzuortenden Fehler bestimmte Werte aufweisen, um ortbar zu sein. Durch Wandlungen - dauerhafte durch Brennen oder kurzzeitige bei Hochspannungs-Messverfahren sind auch Grenzfälle vorortbar. Bei den Vorortungsmethoden wird unterschieden in: Impulsreflexions basierte verfahren (TDR) Transiente Methoden (HV-Methoden) 2. Grundlagen Am Kabelanfang wird ein Impuls eingespeist, der mit der kabeltypischen Ausbreitungsgeschwindigkeit v/2 bis zur Fehlerstelle läuft und dort zum Kabelanfang reflektiert wird (Bild 1). Die Zeit, die der Impuls für den Hin- und Rückweg benötigt, wird gemessen und mit v/2 multipliziert. Dieses Resultat entspricht der Entfernung bis zur Fehlerstelle. Bild1: Reflexion am Fehler (negativ), Reflexion am Kabelende (positiv) Reflexion an einer Muffe (positiv/negativ oder negativ/positiv) 2

Ausbreitungsgeschwindigkeit des Impulses v/2 1 x = v t 2 v lg = 2 t l x = Fehlerentfernung l g = Gesamtlänge des Kabels l = Laufzeit in µs Die erreichbare Messgenauigkeit wird nur in geringem Maße durch das Impuls- Echo-Messgerät bestimmt, sondern hauptsächlich durch äußere Faktoren. Dazu gehören vor allem ungenaue Kenntnisse über die Ausbreitungsgeschwindigkeit v/2, deren Wert durch das Isoliermittel des Kabels bestimmt wird. Die Ausbreitungsgeschwindigkeit ändert sich mit:der Impedanz dem Material des Dielektrikums z.b. VPE, PVC, Öl-Papier (PILC), Farbe der Isolierung dem Alter des Kabels der Temperatur der Feuchtigkeit (Wasser im Kabel), die eine Reduzierung der v/2 auf ca. 65 m/µs bewirkt der Lage der Adern im Kabel (Nachrichtenkabel) dem Kabelhersteller (Zusammensetzung des Isolierungsmaterials und Additive) 212 m bei v/2=80,0 m/µs 199 m bei v/2=75,0 m/µs 238 m bei v/2=90,0 m/µs Bild 2: Längenmessungen bei unterschiedlichen Ausbreitungsgeschwindigkeiten v/2 3

Reflexionsfaktor r Jede Änderung des homogenen Kabelaufbaus führt zu einer Änderung der Induktivität und/oder Kapazität sowohl an dieser Stelle als auch in der Ableitung G - und damit zu einer Änderung des Wellenwiderstandes Z. Diese so entstandene Stoßstelle mit der Wellenwiderstandsänderung reflektiert einen gewissen Anteil des ankommenden Messimpulses in Richtung Einspeisequelle. Falls nur ein Teil des Impulses reflektiert wird, so läuft der Restimpuls weiter bis zur nächsten Reflexionsstelle, um von dort aus zum Kabelanfang zurückzulaufen. Die Größe des reflektierten Impulses wird zum einen durch den Reflexionsfaktor [ r ] bestimmt, andererseits auch von der Dämpfung des Kabels. Kabel mit geringem Querschnitt und großer Länge setzen deutlich akzentuierte Fehler, sehr nieder- oder sehr hochohmige, voraus, um sicher eingemessen werden zu können. R = Längswiderstand R L L = Induktivität G C G = Leitwert C = Kapazität Bild 3: Ersatzschaltbild elektrische Leitung Keine Impedanzänderung im Kabel Große Impedanzänderung im Kabel Kurzschluss und Unterbrechung - keine Reflexion - große Reflexion - Totalreflexion Bei Kabelfehlern haben wir oft Fehlerwiderstände, die fast unendliche Werte haben. Diese Fehler sind daher mit einer normalen Reflexionsmessung nicht sichtbar. Hier kommt die Fehlerwandlung zum Tragen. Impulsbreite In Abhängigkeit von der Kabellänge (Fehlerentfernung) müssen Impulse mit unterschiedlichen Impulsbreiten verwendet werden. Schmale Impulse bedeuten zwar kurze Reichweiten, aber auch eine sehr hohe Auflösung. Breite Impulse hingegen müssen an langen Kabeln verwendet werden. Die Auflösung nimmt ab und die Totzone vergrößert sich. Bei den meisten Reflexionsmessgeräten ist die Impulsbreite an den Messbereich gekoppelt, kann aber verändert werden. Typische Impulsbreiten: 1ns 3µs hochauflösende Reflektometer für Nachrichtenkabel (z.b. Digiflex Com) 35ns 5µs Reflektometer für Energiekabel (z.b. Teleflex T 30-E, Teleflex MX) 50ns 20µs Sonderausführungen für lange Kabel z.b. Seekabel und Freileitungen 4

Totzone / Impulsbreite: 5 ns ca. 2m 500 ns ca. 90 m 3µs ca. 400 m Dies bedeutet, dass der gesendete Messimpuls selbst einen Bereich dieser Grösse abdeckt. Je nach Konstruktion des Reflektometers sind innerhalb dieses Bereiches fast keine anderen Effekte wie z.b. Fehler sichtbar. Daher wird dieser Abschnitt auch Totzone genannt. Eine solche Totzone bedeutet aber nicht automatisch, dass in diesem Bereich gar keine Details sichtbar sind. Zum einen sind die Veränderungen innerhalb des Startimpulses durchaus noch sichtbar. Zum anderen wird durch die bei SebaKMT verwendete Eingangsgabelschaltung der gesendete Impuls sofort unterdrückt (Kompensation), und dadurch werden alle Änderungen sofort deutlich dargestellt. Pulsweite Laufzeitreichweite 100 ns bis zu 6.25 µs bis zu 500 m 200 ns 6.25 µs 31.25 µs 500 m 2,5 km 500 ns 31.25 µs 93,75 µs 2,5 km 7,5 km 1 µs 93,75 µs 375 µs 7,5 km 30 km 2 µs 375 µs 750 µs 30 km 60 km 5 µs 750 µs 2 ms 60 km 160 km Entfernungsreichweite (bei V / 2 = 80 m/µs oder NVP = 0.533) Eine automatische Umschaltung der Impulsbreite sorgt immer für die beste Anpassung des Messimpulses an den Entfernungsbereich. Natürlich sind diese Anpassungen auch manuell veränderbar. Hier kann der Bediener über eine Reduzierung der Impulsbreite versuchen, noch mehr Details zu erzeugen. Wie die nachfolgenden Bildern veranschaulichen, wird ein breiter Messimpuls alle Reflexionen sehr groß und deutlich darstellen. Für eine höhere Messgenauigkeit und Detailtreue ist es wichtig, die Impulsbreite zu reduzieren. Erst dadurch lassen sich auch kleinere Veränderungen gut erkennen. Grenzen sind durch die Dämpfung gegeben, d.h. eine unendliche Reduzierung der Impulsbreite ist nicht möglich und wird auch vom System nicht unterstützt. 5

Impulsbreite 50 ns Hohe Auflösung Muffe Verstärkung 22 db Impulsbreite 50 ns Impulsbreite 1 µs Geringe Auflösung Verstärkung -3 db Impulsbreite 1 µs Bild 4: Reflexionen mit Impulsbreiten 50 ns (Verstärkung 22 db) und 1µs (Verstärkung -3 db) 6

Kabeldämpfung und Kabeldispersion Kabelquerschnitt und Länge führen dazu, dass der in das Kabel gesendete Impuls in der Amplitude und Form verändert wird. Impulsamplitude Dämpfung Bild 5: Kabeldämpfung und Kabeldispersion Entfernung Die Dämpfung führt dazu, dass die reflektierten Signale mit zunehmender Entfernung immer kleiner werden. Die Dämpfung wird in der Zeichnung durch die rote Linie dargestellt. Da die Dämpfung einer natürlichen Funktion (Exponentialfunktion) folgt, lässt sie sich auch berechen und damit korrigieren. Die Dispersion ist eine weitere Grösse, die das Erscheinungsbild beeinflusst. Dadurch, dass hohe Frequenzanteile der Signale stärker gedämpft werden als die niederfrequenten Anteile, erscheinen weiter entfernte Impulse deutlich breiter als die aus der Nähe. Als Folge der Kombination von Dämpfung und Dispersion sind diese Signale nur noch schwer zu erkennen. Diese so genannte entfernungsabhängige Amplitudenkorrektur ist im nachfolgenden Bild 6 dargestellt. Amplitude Verstärkung Maximales Signal Dämpfung Bild 6: Entfernungsabhängige Amplitudenkorrektur Entfernung Mit der entfernungsabhängigen Amplitudenkorrektur lassen sich alle Ereignisse unabhängig von der Entfernung mit der entsprechend korrigierten Größe darstellen. Dadurch wird eine relativ genaue Bewertung der Ereignisse möglich. 7

Kompensation und Anpassung Kompensation ist eine der grundlegenden Methoden der Messtechnik. Die zu messende Größe wird mit einer Kompensationsgröße verglichen. Diese Größe ist physikalisch gleichartig, einstellbar und in ihrem Wert bestimmbar. Sie wird so lange nachgestellt, bis Gleichheit festgestellt wird (Abgleich). Mit dem Potentiometer R wird der Widerstandswert mit der Impedanz des Kabels verglichen. Durch eine Gabelschaltung wird der Sendeimpuls unterdrückt. In der Praxis sollte im kleinsten Messbereich über die Kompensation der Sendeimpuls so eingestellt werden, dass positive und negative Reflexion gleich groß sind und im Idealfall Null betragen. Anpassung bedeutet die Einstellung oder die Angleichung eines Zustandes an einen anderen. Beim Reflektometer erfolgt eine Impedanzanpassung an das Kabel in der Regel über einen Transformator, so dass die maximale Energie des Impulses übertragen werden kann. Dies gilt für den Sende- und Empfangsimpuls gleichermaßen. Kompensation Anpassung Gabelschaltung I Teleflex Z R Z Z Kabelimpedanz Pulsgenerator Kompensation über Potentiometer Kompensation durch zweites identisches Kabel oder Anpassungsglied Übertragung der maximalen Energie in das Kabel durch Anpassung über einen Transformator an die Impedanz des Kabels Bild 7: Gabelschaltung, Kompensation und Anpassung im Reflektometer 8

3. Messmethoden - Beispiele Verbesserungen bei der Auswertung der erzielten Messergebnisse sind durch Vergleichsmessungen zu erzielen, da sich hier die Fehlerstellen deutlicher anzeigen. Beim Vorhandensein von Speichermöglichkeiten für Echogramme sind auch einadrige Kabel mit sich selbst zu vergleichen, wenn die Messungen zeitlich versetzt durchgeführt werden. Zwischen beiden Messungen sind Manipulationen am Kabel, z.b. Brennen, möglich. Für intermittierende Fehler, die mit dem Lichtbogen- Stoß-Verfahren (ARM), der spannungsgekoppelten Ausschwing- oder der Strom- Impuls-Methode ortbar sind, stehen folgende Geräte zur Verfügung: Teleflex 30-E, Teleflex MX. Ablauf einer Reflexionsmessung 1. Ermittlung des Fehlerwiderstandes mit einem Ohmmeter, dessen Messbereich kleiner als 1 kohm sein muss, um 10 Ohm-Widerstände noch zu erkennen. Anschluss des Impuls-Echo-Messgerätes am Fehlerkabel und Einstellung der für das Kabel typischen Fortpflanzungsgeschwindigkeit. 2. Messbereich so wählen, dass zu Beginn der Messung die gesamte Kabellänge sichtbar ist. Wichtige Regel: Sicherstellen, dass das Ende sichtbar ist! 3. Kompensation so einstellen, dass am Anfang des Echogramms eine möglichst waagrechte Kurve entsteht, wobei die trotzdem sichtbaren Ablenkungen nach oben und unten einigermaßen symmetrisch sein sollten. Übersteuerungen vermeiden. 4. Die Fehlerstelle durch die Verstärkereinstellung sichtbar machen und anmessen, dazu evtl. Messbereich verkleinern. 5. Einmessen der Fehlerstelle mit digitaler Anzeige der Fehlerentfernung. Das genaue Anmessen an die Fehlerstelle geschieht mit Vertikal-Cursor. 6. Wenn möglich, sollte immer ein Vergleich zwischen Fehler- und Gesundader vorgenommen werden. Das sich hier an der Fehlerstelle abzeichnende Auseinanderdriften der beiden Echogramme (Splitting) lässt sich messtechnisch besonders gut einmessen, wodurch eine größere Messgenauigkeit erreicht wird. 9

Messmethoden Direkte Reflexionsmessung Bild 8: Reflexionsmessung an einem 8 km langen Kabel Adervergleich Voraussetzung zur Anwendung des Adervergleichs ist eine gesunde Ader, denn durch wechselseitige Anschaltung der Fehlerader mit der Gesundader zeigt sich eine Differenz der beiden Echogramme, die deutlich auf die Fehlerstelle verweist. Bild 9: L2 positive Reflexion Kabelende, Muffe sichtbar L1 negative Reflexion Kurzschluss in Muffe 10

IFL Mode (Fehlerortung von Wackelkontakten) Bild 10: Teleflex MX am Kabelende kurzzeitig Kurzschluss hergestellt Differenzmessung Bei der Differenz-Methode werden Gesund- und Fehlerader über einen Differential- Transformator gleichzeitig an das Impuls-Echo-Messgerät angeschaltet. In dieser Schaltung wird eine Ader normal angemessen. Bei der Vergleichsader hingegen werden durch den Differential-Transformator alle Reflexionen in der Polarität gedreht. In der Differenzschaltung zeigen sich damit nur echte Differenzen an. Fehler gleicher Größe oder alladrige Abrisse sind dabei nicht sichtbar, da keine Differenz besteht. Hinweis: Bei der Anwendung der Differenz-Methode ist auf saubere Führung der Messleitungen zu achten. Vertauschungen führen zur Polaritätsänderung des Fehlerechos. Mittelwertbildung (Averaging) Induktive Kopplungen rufen Störungen im Bildaufbau hervor. Durch den Mode Mittelwertbildung über insgesamt 256 Messungen können diese kompensiert werden. 11

Parallele Fehler mit unterschiedlichen Fehlerwiderständen (negative Reflexion) Fehlerwiderstand Parallelfehler Bild 11: Kabelmuffe, Parallelfehler R = 0 Ohm, Kabelende Bild 12: Muffe, Parallelfehler R = 100 Ohm 12

Längsfehler mit unterschiedlichen Fehlerwiderständen (positive Reflexion) Fehlerwiderstand Längsfehler Bild 13: Muffe, Längsfehler R = 100 Ohm Bild 14: Muffe, Längsfehler R = unendlich, offenes Kabelende 13

Geräte: TDR Microflex Das TDR Microflex misst die Länge von Kabeln und kann Fehlerentfernungen bis zu einem Bereich von 3.500 Metern bei fast allen Arten von Kabeln anzeigen. TDR Miniflex Das TDR Miniflex ist ein tragbares Laufzeitmessgerät (Time Domain Reflektometer) mit einem Gewicht von nur 350 Gramm und wird zum Orten von Fehlern in metallischen Strom-, Daten- und Kommunikationskabeln bis zu einer Länge von 6.000 Metern eingesetzt. Durch einen Nahbereich von 7 m und einer Totzone von 0,5 m eignet es sich besonders für die Ortung von Fehlern im Nahbereich. TDR Easyflex Com Das Easyflex Com ist ein kompaktes, leichtes und einfach zu bedienendes, digitales Impulsechomessgerät zur Fehlerortung an symmetrischen Fernmeldeleitungen, Steuerkabeln, Straßenbeleuchtungs- und Niederspannungsnetzen. Durch einen Nahbereich von 10 m und einer Totzone von 1 m eignet es sich besonders für die Ortung von Fehlern im Nahbereich, z.b. Hausanschlusskasten - Hauptkabel. TDR Digiflex Com Das Digiflex Com ist ein kompaktes, leichtes und einfach zu bedienendes, digitales Impulsechomessgerät zur Fehlerortung an symmetrischen Fernmeldeleitungen, Steuerkabeln, Straßenbeleuchtungs- und Niederspannungsnetzen. Durch einen Nahbereich von 5 m und einer Totzone von 0,5 m (kleinste Impulsbreite 5 ns) eignet es sich besonders für die Ortung von Fehlern im Nahbereich, z.b. Hausanschlusskasten - Hauptkabel. 14

Teleflex T 30 Das T 30-E ist ein tragbares, digitales TDR (Time Domain Reflektometer, Laufzeitmessgerät). Es ist konstruiert für die Kabelfehler-Vorortung an Mittel- und Niederspannungskabelnetzen. Das Gerät ist in einem wetterfesten, stabilen Gehäuse eingebaut. Das Gerät ist mit Netz und Akku-Stromversorgung ausgeführt und somit als Einzelgerät oder fest installiert in einem Kabelmesswagen zu betreiben. Das Teleflex T 30-E bietet fünf Betriebsarten zur Kabelfehlerortung: Reflexionsmessung (Laufzeitmessung / Impuls-Echo-Messung), ARM (Arc Reflection Method / Lichtbogenstabilisierung), ICE (Stromauskopplung), Decay (Spannungs-Ausschwing-Methode), ARM Quick Steps (vereinfachte Bedienung mit ARM), Teilentladungs-Nachortung 15

Teleflex MX Das Teleflex MX kann als zentrales Steuerelement in verschiedenen Messwagen der Firma SebaKMT (z.b. Centrix, Classic, R30) zum Einsatz kommen. Die verfügbaren Fehlerortungstechnologien richten sich dabei nach der Ausstattung des Messwagens. Darüber hinaus gibt es das Teleflex MX portable welches unabhängig von einem Messwagen als Stand-alone-Version oder im Zusammenspiel mit dem passenden HV-Equipment eingesetzt werden kann. Das Teleflex MX portable verfügt wahlweise auch über einen Multiplexer, der verschiedene Anschaltmöglichkeiten für HV-Equipment und Testobjekte bietet. Ohne zusätzlich angeschlossenes Equipment können mit dem Teleflex MX die folgenden TDR-Messungen durchgeführt werden: - Teleflex dreiphasige TDR-Messung - Teleflex IFL (Intermittent Fault Locating) Im Zusammenspiel mit externem HV-Equipment (z.b. als Messwageneinbau) unterstützt das Teleflex MX eine Vielzahl weiterer Technologien: - ARM (Arc Reflection Method), - Decay-Methode, - Stromauskopplungsmethoden und Lichtbogenbrennen. 16

Tabelle Ausbreitungsgeschwindigkeiten v/2 Nachrichten und Steuerkabel Kabel (Kx = Koaxialkabel) Isolierung (Verseilung) Bemerkung v/2 [m/µs] A2YF(L)2Y A- 2YF(St)2Y A- PE PE 96 96 PMbc Papier Steuerkabel 112 A-PWE2Y Papier 118 Schaltkabel PVC 85 TF-Kabel Papier 0,4 mm Ader Prüfkabel 105 Kx-Schaltkabel Voll-PE 0,5/3,0 96 TF-Schaltleitung Symm. Kabel 98 Kx-RGU 220 Voll-PE 50 Ohm 99 KX-179BU Teflon 75 0hm 99 Kx-Schaltkabel Voll-PE 0,7/4,4 99 Kx-Schaltkabel Voll-PE 1,0/6,5 99 Bezirks- und Fernkabel Kunststoff PE(SLK) Symm. 99 TN-Kabel Kunststoff Symm. 100 Kx-HF-Kabel Voll-PE 2,3/10 60 Ohm 100 TN-Kabel Kunststoff gefüllt Symm. 104 TN-Kabel Papier Symm. 107 Bezirks- und Fernmeldekabel Papier Symm. 110 Papierkabel Paarverseilt 0,6 mm Ader 112 TF-Kabel Stern, Styropor Trägerfrequenz 113,5 Bezirks- und Fernmeldekabel Kunststoff TF-Vierer 117 Papierkabel DM, Stern, Papier 0,8 mm Ader 117 Papier Stern, Papier 1,2 mm Ader 119 Papier DM, Papier 1,4 mm Ader 120 Kx-Mini 0,6/2,7 Zell-PE 75 Ohm 120 Kx CATV 1,7/11,5 2,0/9 0,8/3,7 Voll-PE/AI Zell-PE/AI Zell-PE/Cu 75 0hm 124 Kx5/12 Styroflex 65 Ohm 126 Kx5/18 Styroflex oder Frequenta 70 Ohm 136 Kx 1,2/4,4 75 0hm 140 Kx 2,6/9,5 75 0hm 141 Kx 2,6/9,5 Styroflex 75 0hm 144 17

Energiekabel Kabeltyp Isoliermaterial Querschnitt in mm 2 Spg. in kv Impulsgeschw. v/2 [m/µs] StYHS2Y (Filterk.) PE 1 x 25 rm/10 bis 110 69,6 A2YHS2Y PE 1 x 300 rm/50 110 86,7-87,6 A2YHS2Y PE 1 x 300 rm/50 30 86,7 NHEKBA Papier/Öl 3 x 70 rm 30 80 NHEKEBA Papier/Öl 3 x 95 rm 30 80 NHKBA Papier/Öl 3 x 70 rm 30 80 A2YHSY PE 1 x 50 rm/16 20 85 A2XHS2Y PE 1 x 120 rm/16 20 83,5-84 A2YHSY PE 1 x 150 rm/25 20 86,1-87 A2YHSY PE 1 x 185 rm 20 87 NHEKBA Papier/Öl 3 x 50 rm 20 73 NHEKBA Papier/Öl 3 x 120 rm 20 73,5 NAKLEY Papier/Öl 1 x 120 rm NKBA Papier/Öl 3 x 25 sm 10 81,5-82,5 NKBA Papier/Öl 3 x 35 sm 10 82,5-83,5 NKBA Papier/Öl 3x70 10 79 NKY Papier/Öl 3x50 10 58,5 NA2YSY PE 3 x 150/16 10 76 NA2XS (F) 2Y VPE 3 x 150 rm/25 10 81 NAKBA Papier/Öl 3 x 95 sm 10 81,5 NAKBA Papier/Öl 3 x 185 sm 10 82 NAKBA Papier/Öl 3 x 240 sm 10 81,5 NEKBA (Dreim.) Papier/Öl 3 x 120 rm 10 74 NKBA Papier/Öl 4 x 10 re 1 73 NKBA Papier/Öl 4x25sm 1 78,5 NKBA Papier/Öl 4 x 50 sm 1 74,5-80 NKBA Papier/Öl 3 x 70/35 sm 1 87-88 NAKLEY Papier/Öl 3 x 95 sm 1 87,5 NAKLEY Papier/Öl 3 x 95 se 1 81,5 NYY PVC 4x1,5Cu 1 90 NYY PVC 4 x 4 Cu 1 79 NYY PVC 4 x 10 Cu 1 76 NYY PVC 4 x 16 Cu 1 74,5 NYY PVC 4 x 70 Cu 1 86,5 NYCY PVC 3 x 16/16 1 75 NYCY PVC 4 x 120/70 1 79 NAYCWY PVC 3 x 95 /95 1 69 NA2XY VPE 4x95 1 80 NA2XY VPE 4 x 95+1,5 1 80 NA2XY VPE 4 x 150 1 Leitermaterial Aluminium, soweit nicht anders gekennzeichnet 18

Umrechnung: NVP v / 2 Umrechnung NVP v / 2 (in m / μs ) EQ \F (v,2) = \F(NVP 299,79 \F (m,µs),2) Umrechnung v / 2 (in m / μs ) NVP EQ NVP = \F(2 \F(v,2), 299,79 \F (m,µs) ) typ. Verkürzungsfaktor bzw. Impulslaufgeschwindigkeit Isolierung v / 2 in m/µs v / 2 in ft/µs RATIO Ölimprägniertes Papier 75 84 246 276 0,50 0,56 Poly vernetzt 78 87 256 286 0,52 0,58 Poly mit Petrolatfüllung 96 316 0,64 Polyethylen 100 328 0,67 PTFE 106 346 0,71 Papier 108 132 354 433 0,72 0,88 Poly geschäumt 123 403 0,82 Luft 141 147 463 482 0,94 0,98 Tabelle Reflexionsfaktoren Parallele Fehler R Ohm 0,5 1 2 5 10 20 50 100 200 500 1000 Z = 20 r% 95 91 83 66 50 33 16 9 5 2 1 Z = 60 r% 98 96 93 85 75 60 37 23 13 5 3 Z = 120 r% 99 98 96 92 85 75 54 37 23 10 5 Längsfehler R Ohm 2000 1000 500 200 100 50 20 10 5 2 1 Z = 20 r% 98 96 92 83 71 55 33 20 11 5 3 Z = 60 r% 94 89 80 62 45 29 14 8 4 2 1 Z = 120 r% 89 80 67 45 29 17 8 4 2 1 19