Adressierung. Fragmentierung und Reassemblierung. Identifizierung über Namen, Adressen und Wege



Ähnliche Dokumente
KN Das Internet

Einführung in die Netzwerktechnik

Prof. Dr. Klaus Lang, Fachhochschule Bingen. rwho rhosts.. NIS YP ... NFS RIP/OSPF/EGP ARP/RARP SLIP/PPP. Modem/V24/ISDN

Verbindungslose Netzwerk-Protokolle

Internetprotokoll TCP / IP

Grundlagen der Rechnernetze. Internetworking

Vorlesung SS 2001: Sicherheit in offenen Netzen

Folgende Voraussetzungen für die Konfiguration müssen erfüllt sein: - Ein Bootimage ab Version Optional einen DHCP Server.

Adressen im Internet (Wdh.)

Anbindung des eibport an das Internet

DNÜ-Tutorium HS Niederrhein, WS 2014/2015. Probeklausur

Client-Server mit Socket und API von Berkeley

3 Das verbindungslose Vermittlungsprotokoll IP

15 Transportschicht (Schicht 4)

CCNA Exploration Network Fundamentals. ARP Address Resolution Protocol

2.1 Adressierung im Internet

2. Architektur von Kommunikationssystemen

Internet und WWW Übungen

Einführung in IP, ARP, Routing. Wap WS02/03 Ploner, Zaunbauer

Die Subnetzmaske/Netzwerkmaske

Multimedia und Datenkommunikation

Black Box erklärt. Subnetzmasken

TCP/IP-Protokollfamilie

Übung 6. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen MI-T7 / DO-T5 SS 2015) Michael Schwarz

2.3 Applikationen. Protokolle: TCP/IP. Telnet, FTP, Rlogin. Carsten Köhn

Rechnernetzwerke. Rechnernetze sind Verbünde von einzelnen Computern, die Daten auf elektronischem Weg miteinander austauschen können.

Einführung: Grundlegende Design-Prinzipien des Internet B. Plattner, H. Lubich Internet Intro 1

RARP, BOOTP, DHCP Wie ermittelt ein Client seine IP-Adresse?

Voraussetzungen für die Nutzung der Format Rechenzentrumslösung (Hosting)

Internet Interconnected Networks - Geschichte -

HBF IT-Systeme. BBU-NPA Übung 4 Stand:

ICMP Internet Control Message Protocol. Michael Ziegler

Test Grundlagen der Kommunikationstechnik

C.M.I. Control and Monitoring Interface. Zusatzanleitung: Datentransfer mit CAN over Ethernet (COE) Version 1.08

Internet Routing am mit Lösungen

Vorlesung 11: Netze. Sommersemester Peter B. Ladkin

Stefan Dahler. 1. Remote ISDN Einwahl. 1.1 Einleitung

How-to: Webserver NAT. Securepoint Security System Version 2007nx

8. Bintec Router Redundancy Protocol (BRRP) 8.1 Einleitung

Man unterscheidet zwischen LAN (Local Area Network) und WAN (Wide Area Network), auch Internet genannt.

Routing im Internet Wie findet ein IP Paket den Weg zum Zielrechner?

Netzwerke. NW: Firewall. Vorlesung von Reto Burger. by Reto Burger, dipl. Informatik. Ing. HTL. Netzwerke

Ether S-Net Diagnostik

Online-Publishing mit HTML und CSS für Einsteigerinnen

IAC-BOX Netzwerkintegration. IAC-BOX Netzwerkintegration IACBOX.COM. Version Deutsch

Kontrollfragen: Internet

Konfigurationsanleitung Access Control Lists (ACL) Funkwerk. Copyright Stefan Dahler Oktober 2008 Version 1.0.

ARCHITEKTUR VON INFORMATIONSSYSTEMEN

Gemeinsam statt einsam - ein Internet-Zugang für mehrere Rechner Wie geht das? - Tricks und Verfahren einer Technik, die wirklich Geld spart.

Idee des Paket-Filters

MC-Hx 006. Einbindung des MC-Hx Modul als MODBus TCP Slave. MB DataTec GmbH. Stand:

CCNA Exploration Network Fundamentals. Chapter 6 Subnetze

Prof. Dr. R. Sethmann Übungen: Datum: Rechnernetze und Telekommunikation

Netzwerke 3 Praktikum

Seminar: Konzepte von Betriebssytem- Komponenten

All People Seem To Need Data Processing: Application Presentation - Session Transport Network Data-Link - Physical

Internetzugang Modul 129 Netzwerk Grundlagen

Protokollbeschreibung Modbus TCP für EMU TCP/IP Modul

FOPT 5: Eigenständige Client-Server-Anwendungen (Programmierung verteilter Anwendungen in Java 1)

IPv6. Autor Valentin Lätt Datum Thema IPv6 Version V 1.0

Konfigurationsanleitung Network Address Translation (NAT) Funkwerk. Seite Copyright Stefan Dahler Oktober 2008 Version 1.

Unterrichtsbeispiele Sek.1 zum Themenbereich Computernetze

Port-Weiterleitung einrichten

Einführung. Das Tor Netzwerk. Fazit. Eine Einführung. Michael Gröning. Hochschule für Angewandte Wissenschaften Hamburg

Kontrollfragen Die nötigen Netzwerkgrundlagen

DNÜ-Tutorium HS Niederrhein, WS 2014/2015. Probeklausur

CCNA 4 WAN Technologies

Netzwerk- Konfiguration. für Anfänger

Internet, Multimedia und Content Management

TCP/IP Protokollstapel

Technische Grundlagen von Internetzugängen

Referat von Sonja Trotter Klasse: E2IT1 Datum Jan Subnetting

VRRP. Bild zeigt die Adressangaben in einem IP-Paket bei dessen Übermittlung über die Grenze eines IP-Subnetzes hinweg.

IP routing und traceroute

Konfigurationsanleitung IGMP Multicast - Video Streaming Funkwerk / Bintec. Copyright 5. September 2008 Neo-One Stefan Dahler Version 1.

Peer-to-Peer- Netzwerke

Proxy. Krishna Tateneni Übersetzer: Stefan Winter

Chapter 9 Troubleshooting. CCNA 2 version 3.0 Wolfgang Riggert, FH Flensburg auf der Grundlage von

Computeranwendung in der Chemie Informatik für Chemiker(innen) 5. Internet

Modem: Intern o. extern

IP-Adressen und Ports

Fachbereich Medienproduktion

R-ADSL2+ Einrichthinweise unter Windows 98/ME

Telekommunikationsnetze 2

Einführung in die. Netzwerktecknik

Einrichten von Arcor-KISS-DSL

Transition vom heutigen Internet zu IPv6

Überblick. Systemarchitekturen. Netzarchitekturen. Stichworte: Standards, Client-Server usw. Stichworte: Netzwerke, ISO-OSI, TCP/IP usw.

1 Mit einem Convision Videoserver über DSL oder ISDN Router ins Internet

Vorwort Vorwort zur deutschen Übersetzung... 11

TCP/IP. Internet-Protokolle im professionellen Einsatz

Pädagogische Hochschule Thurgau. Lehre Weiterbildung Forschung

WLAN Konfiguration. Michael Bukreus Seite 1

Thema IPv6. Geschichte von IPv6

1. Der Router ist nicht erreichbar Lösungsansatz: IP Adresse des Routers überprüfen ( entweder irgendwo auf dem Gerät aufgeklebt oder im Handbuch )

Seite Wireless Distribution System (Routing / Bridging) 3.1 Einleitung

Fragen und Antworten. Kabel Internet

SIMP 1.01 Protokollspezifikation (Mindestanforderung)

Grundkurs Routing im Internet mit Übungen

Transkript:

Adressierung Identifizierung über Namen, Adressen und Wege "The name of a resource indicates WHAT we seek, an address indicates WHERE it is, and a route tells HOW TO GET THERE." [Shoch 78] Ziele : Globales Adressierungskonzept für ES Einfache Vergabe von Adressen Adresse unabhängig von Lage des Quell- und Ziel-ES Art und Topologie der Subnetze Adressierungsstandards X.121 Adressierung durch CCITT/ITU genormt für öffentliche Daten-Netze, u.a von X.25 benutzt OSI Adressierung verwendet hierarchische Adressierung Adressen können als nur lokal geltend vereinbart werden Internet Adressierung verwendet flache/globale Adressierung Adressen gelten global siehe Adressierung im Internet Protokoll IP Fragmentierung und Reassemblierung unterschiedliche Paketgrößen in den Subnetzen erfordern ggf. Fragmentierung und Reassemblierung Transparente Fragmentierung G1 zerlegt zu G2 re- G3 zerlegt G4 setzt große Pakete assembliert erneut wieder zusammen Nicht-transparente Segmentierung G1 zerlegt zu Die fragmentierten Pakete werden erst beim große Pakete Empfänger = Host wieder zusammengesetzt

X.25 Beispiel für verbindungsorientiertes Protokoll Paketdienst in öffentlichen Netzen Eigenschaften von X.25 komplexes Management, viele Handshakes nicht geeignet für hohe Datenraten mehrere Kommunikationsmechanismen, u.a. a) Permanent virtual circuit (PVC) kein Verbindungsaufbau und -Abbau analog Standleitung b) (Switched) virtual call (VC) 3-phasige Interaktion analog Wählverbindung DTE: DCE: DSE: Data Terminal Equipment (User Equipment) = Endsystem ES Data Circuit-Terminating Equipment (Network Node oder Packet Exchange) Data Switching Exchange = Intermediate System = IS Definiert die Schichten 1 bis 3 im ISO/OSI-Referenzmodell Anwendung in Datex-P und ISDN Schicht 1: X.21 Schicht 2: LAPB (ISDN) oder HDLC (Datex-P) Schicht 3: X.25 PLP (Packet Layer Protocol) nur Interface zwischen DTE und DCE keine Wegewahl, aber Segmentierung + Flußsteuerung

DATEX-P Internet: Ursprung und Entwicklung Einige Daten X.25 basiertes Paketdatenübertragungsnetz der Telekom AG ca. 90.000 Teilnehmer (1995) 1-stufige Hierarchie, 132 Orte mit Vermittlungsstellen Verbindungsdauer im Durchschnitt 300 s Verbindungsaufbauzeit ca. 500 ms 300 Bit/s... 64 kbit/s, preisabhängig Träger für weitere Anwendungsdienste, z.b. T-Online: mit MODEM über Telefonnetz DATEX L: Standleitungsnetz mit ca. 10000 Teilnehmern (1995) Ursprung war das ARPANET gestartet 1969 und finanziert durch ARPA (Advanced Research Projects Agency des U.S. Department of Defense (DoD), heute DARPA) Zweck: zunächst: dann: ein gegen Atomkrieg robustes Netz Verbindung wissenschaftlicher und militärischer Einrichtungen Entwicklung: Normung von Protokollen für Kommunikation zwischen Netzwerken, z.b. 1983 TCP/IP langjährige Erprobung Aufbau und Anbindung militärischer Subnetze (z.b. MILNET) von Satellitennetzen Anbindung der LANs von Universitäten und Behörden Berkeley Unix BSD verwendet TCP/IP weite Verbreitung 1990 wird ARPANET durch Internet als den Sammelbegriff für verbundene Netze ersetzt Stand >10 Mio. angeschlossene Rechner Dienste: Email, ftp, Remote Login, WWW, Usenet,...

Internet: Aufbau und Struktur Subnetze im Internet 1983 Gründung des IAB (Internet Architecture Board) zur Einbindung der Wissenschaftler ins damalige ARPANET heute oberstes Gremium im Internet beaufsichtigt/benennt IETF (Internet Engineering Taskforce) als technisches Leitungsgremium diese arbeitet in einer Vielzahl von working groups 1992 Gründung der Internet Society zur Verbreitung der Internet Techniken und -Dienste Festlegung der Standards als Empfehlung in RFCs (Request for Comments) Heutige Aufgaben im INTERNET Verbindung unterschiedlicher Netze über Gateways Definition von Protokollen, die auf allen Subnetzen arbeiten Festlegung einer einheitlichen Adressierung und des zugehörigen globalen Routings Ethernet LANs - hauptsächlich große Campus-Netze LAN-Ringe - hauptsächlich kleinere/experimentelle Netze Arpanet - teilweise verbundenes Netzwerk mittels gemieteter Leitungen mit speziellen Protokollen NSFNet (National Science Foundation Network) - Backbone aus gemieteten Hochgeschwindigkeits-leitungen, die die NSF Supercomputer untereinander und mit regio-nalen Netzwerken und Campus-Netzen verbinden CSNET (X.25 NET) - Öffentliches Paketvermittlungs-Netzwerk mit X.25

Internetprotokolle Internet Protokoll (IP) Übersicht Beispiel für verbindungsloses Protokoll über Datagramme Datagrammformat Transportschicht Vermittlungsschicht Sicherungsschicht Bitübertragungsschicht SMTP FTP TELNET UDP NFS TCP IP ICMP ARP Simple Mail Transfer Protocol File Transfer Protocol Remote Login Protocol User Datagram Protocol Network File System Transmission Control Protocol Internet Protocol Internet Control Message Protocol Address Resolution Protocol Unterschied zum ISO/OSI-Modell ISO-OSI Darstellungs- und Kommunikationssteuerungs-Ebene (presentation und session layer) nicht vorhanden Sicherungs- und Bitübertragungsebene fallen in einer Schicht zusammen Version Protokollversion z. Zt. IP v.4 zukünftig IP v.6 Length Länge des Headers (in 32 Bit Worten), min. 4, max. 60 Bytes Type of Service gedacht als simpler Quality of Service Indikator enthält z.b. Prioritäts- und Kanalwunsch-Information de facto durch Router ignoriert Total length Gesamtlänge incl. Daten, max. 65.535 Byte, meist ca. 1500 Byte

Internet Protokoll (IP), Fortsetzung Time to live Lebensdauer in Sekunden, max. 255 s, bei 0: Paket vernichten in Praxis: zählt die Hops durch Dekrementieren bei Unix oft auf 15-30 gesetzt, zu kleiner Wert Ziel unerreichbar Protocol Typ des sendenden (und damit auch empfangenden) höheren Protokolls, z.b. 1 = ICMP, 4 = IP, 6 = TCP Header checksum (HCS) enthält Einerkomplement der mod 2 16 Summation der Header- Worte außer HCS mod 2 16 Summation der Header-Worte incl. HCS ergibt bei Fehlerfreiheit Null in jedem Knoten wegen verändertem Time to live Feld neu zu berechnen Beachte: IP Datagramm enthält keine Datenprüfsumme, diese müssen vom höheren Protokoll und damit erst beim Empfänger verifiziert werden Internet Control Message Protocol (ICMP) spezielles IP-Datagramm für Steuerungs- und Fehlermeldungen, oft an den Sender des diese Kontrollnachricht auslösenden Datagramms gerichtet definiert durch Wert 1 im Protocol-Feld des Datagramm-Headers Format des Datenfeldes des Datagramms : IP-Datagramm Header Type und Code definieren Art der ICMP-Nachricht, z.b. Ziel nicht erreichbar Echo Anforderung (z.b. für Ping-Programm) Echo Antwort (Antwort auf Ping) Überlauf-Mitteilung an Quelle, ergibt Flußkontrolle Lebenszeit abgelaufen Source/destination address jeweils 32 Bit des Senders (für Routingalgorithmus erforderlich!) und Empfängers Padding auffüllen auf Wortgrenze

Internet Adressen Globales Adressierungskonzept für ES (und IS) im Internet 32 Bit Adresse (inzwischen zu wenig), Schreibweise a.b.c.d jede Adresse ist weltweit eindeutig, keine Hierarchie logische Aufteilung in 2 Paare: (Sub-)Net-ID + ES-ID je nach der Verteilung zwischen (Sub-)Netz- und Endsystemanteil unterscheidet man verschiedene Netzwerkklassen Klasse A Klasse B Klasse C Klasse D max. # Netze max. # Hosts A: 1.0.0.0-127.255.255.255 2 7 2 24 B: 128.0.0.0-191.255.255.255 2 14 2 16 C: 192.0.0.0-223.255.255.255 2 21 2 8 D: 224.0.0.0-239.255.255.255 (Multicast) 0.0.0.0 = Sonderfall Broadcast-Adressen: (Konvention: 11...1 für Host-Id) zwei Rechner können nur miteinander kommunizieren, wenn sie sich im gleichen Netzwerk befinden, also gleiche Net-ID aufweisen bei unterschiedlicher Net-ID muß Router (Rechner mit 2 IP-Adressen und 2 Netzwerkschnittstellen) zwischen den Teilnetzen vermitteln Vergabe der Adressen Klassenzuweisung und Net-ID durch Nummernteilbereich durch zentrales Network Information Center (NIC) Endsystem lokal, bei möglicher Subnetzbildung Problem Lokale Subnetze durch Subnetz-Maske lokale Netzstruktur entspricht i.a. nicht der zugeteilten Klasse, z.b. können bei einer einem Land zugeteilten Klasse A Adresse nicht alle 2 24 möglichen Hosts in einem Netz liegen Lösung lokale Entscheidung zur Aufteilung des Host-Anteils in einen Subnetz- Teil und Endsystem-Teil Festlegung mittels einer Subnetz-Maske 1 Subnet-ID 0 Host-ID Beispiele Standard Subnetz-Maske einer Klasse B Adresse ohne zusätzliche Subnetze: 255.255.0.0 Klasse B Adresse mit max. 63 Subnetzen 6 Bit für Subnetz Subnetz-Maske = 255.255.252.0 es ergibt sich eine Wegeleitung im Router mit 3 Hierarchiestufen Paket zu anderem Netz? zu diesem Router Paket zu lokalem ES? Paket abliefern Paket zu anderem Subnetz? zu diesem Router weiterleiten

Adreßauflösung Lokale Zielbestimmung Host-Identifikation und Leitwegbestimmung innerhalb eines Subnetzes basieren auf (lokalen) physischen Netzadressen der Endsysteme (z.b. Stationsadresse der Adapterkarte) Adreßauflösung Umsetzung der 32 Bit Internet (IP) auf die physische Netzadresse, meist 48 Bit, z.b. bei Ethernet-Karten Adressierungsebenen im Überblick Möglichkeiten der Adreßauflösung Adreßauflösungen im Quell-ES, wenn Ziel-ES lokal Gateway, wenn Ziel-ES entfernt Lösungen: direkte homogene Adressierung Falls physische Adresse vom Benutzer wählbar, wählt man: physische Adresse = Hostid der IP-Adresse Wenn die physische Adresse vorgegeben ist, oder ein anderes Format haben muß, verwendet man Konfigurationsdatenbank Abbildungstabelle (IP-Adresse Hardware-Adresse), z.b. im Gateway, oder Address Resolution Protocol (ARP) haupsächliche Anwendung in LANs mit Rundsende-Charakter (z.b. Ethernet)

Address Resolution Protocol (ARP) Subnetzübergreifendes ARP Endsystem nicht direkt über Broadcast erreichbar Beispiel: E1 möchte nach E5 senden 1. ARP request-datagramm rundsenden mit der physischen (HW) und der Internet-Adresse (IP) des Senders und der Internet-Adresse des Empfängers 2. ARP response-datagramm als Antwort mit physischer Adresse 3. Trage Paar (IP,HW) in den Cache ein für zukünftige Anfragen ARP erhält keine Antwort, da Ethernet Broadcast nicht über Router weitergeleitet wird Lösung A: Proxy ARP Lokaler Router kennt alle enfernten Netze mit deren Routern und antwortet auf lokalen ARP Lokales Endsystem E1 sendet Daten an E5 über lokalen Router, der die enthaltene IP-Adresse auswertet Lösung B: Entfernte Netz-Adresse bekannt E1 sendet Daten an entsprechenden entfernten Router Lokaler Router leitet Pakete weiter

Reverse Address Resolution Protocol (RARP) Interne und externe IP-Leitwegbestimmung Bestimmung der IP-Adresse aus der physischen Hardware-Adresse (Anwendung beim Booten von Rechner ohne Festplatte übers LAN) RARP Server antwortet mit IP-Adresse auf RARP-Broadcast Direktes Routing / Interne Protokolle Quell- und Ziel-ES liegen im gleichen Subnetz Quell-ES sendet Datagramm zu Ziel-ES Identifikation durch lokale Adresse Abbildung Pfad wird vollständig durch Leitweg-Algorithmus des Subnetzes bestimmt Indirektes Routing / Externe Protokolle Quell- und Ziel-ES liegen in unterschiedlichen Netzen Quell-ES sendet Datagramm zum nächsten Router Router bestimmt jeweils nächsten Router auf dem Pfad zum Ziel-ES Routing-Entscheidung basiert nur auf NetId - Teil der IP-Adresse

IP-Leitwegbestimmung Routing - Tabellen der Gateways (hier F, G und H) Routing Tabelle des Gateways G Zielhost im Ausgangspfad Netzwerk... 20.0.0.0 liefere direkt 30.0.0.0 liefere direkt 10.0.0.0 20.0.0.5 40.0.0.0 30.0.0.7 Gateways können unvollständige Routing-Informationen haben, dann gelten Default-Pfade