THE NEW DIMENSIONS OF WELDING WÄRMEREDUZIERTES FÜGEN DÜNNSTER BLECHE

Ähnliche Dokumente
ABICOR- Innovationspreis 2006 für EWM-cold Arc

Dieter Kocab Oktober EWM HIGHTEC WELDING GmbH

ColdArc, ForceArc új dimenzók a hegesztésben

Innovatives Schweißen im Anlagen-, Behälter- und Rohrleitungsbau manuell und mechanisiert

THE NEW DIMENSIONS OF WELDING. EWM-spotArc WIG-PUNKTSCHWEISSEN ... UND BLECHE SIND PERFEKT VERBUNDEN!

Cold Metal Transfer (CMT) Ein neuer Prozess in der Fügetechnik

Neuere Entwicklungen in der Lichtbogenschweißtechnik

Die neue Revolution des digitalen MSG-Schweißens

THE NEW DIMENSIONS OF WELDING MIT FORCIERTER TECHNIK ZU KÜRZEREN FERTIGUNGSZEITEN UND MEHR QUALITÄT

Innovative Schweißprozesse

PATENTIERT. Innovative EWM MIG/MAG-Schweißprozesse. Phoenix. forcearc. forcearc coldarc pipesolution Impuls superpuls Verfahrensumschaltung.

TIME TWIN - Schneller MSG-Schweißen mit zwei Drahtelektroden

MIG-LÖTEN VON VERZINKTEN DÜNNBLECHEN UND PROFILEN

Neue Lichtbogenformen für hohe Wirtschaftlichkeit und Nahtqualität

Einstieg in professionelle MIG/MAG-Impulstechnik. Nahezu spritzerfreies Schweißen für minimierte Nacharbeit mit der Picomig 305 puls von EWM

30% SCHNELLER SCHWEISSEN

Das Schweißen. Mehr Effizienz durch moderne Prozesse

Hochleistungsschweißen auch in PC Zwangslage

Die natürliche Steigerung der Produktivität. - Steigerung der Produktivität. - Verbesserung der Metallurgie

Hyper MIG. Wire speed. DPS Plus-3 Hyper MIG Bedieneinheit. Nutzbarer Bereich

Innovative EWM MIG/MAG-Schweißprozesse PATENTIERT. forcearc. forcearc. forcearc. s u p e r P u l s Verfahrensumschaltung

DIX MEDD TWIN DOPPELDRAHT

Energiereduziertes Lichtbogen-Fügeverfahren für wärmeempfindliche Werkstoffe

Tipps für Praktiker. Instandsetzungsschweissen an Fahrzeugkarosserien.

Lincoln Electric Deutschland

CITOPULS III 320C CITOSTEEL III 320C

30% SCHNELLER SCHWEISSEN

Einsatzmöglichkeiten und Vorteile der neuen PerfectArc-Stromquelle in der modernen Großrohfertigung

Pressemitteilung 03/2016

Das Schweißen. Mehr Effizienz durch moderne Prozesse

FTMT. Fügen. Schweißverfahren (Übersicht) Hn 1107

Pressemitteilung. Merkle Schweißanlagen-Technik GmbH auf der SCHWEISSEN & SCHNEIDEN in Essen vom 16. bis 21. September 2013 Halle 3.

WIG-Hochleistungsschweißen InFocus - Prinzip und Anwendungen - M. Schnick, M. Dreher, H. Schuster

1 Cold Metal Transfer Einordnung des Schweißverfahrens

Notizen Notes

Schweißtechnik für die Landwirtschaft

Fülldraht- und Tandemschweißen. Draht gegen Maschine. Fachkonferenz Schweißtechnologie , Dr. R. Vallant

MicroPulse 302MFK DEU

Die Fügetechnik als Schlüsseltechnologie für den Karosseriemischbau

Plasmalöten in der Fertigung der Automobilindustrie

Trends beim Schweißen im Automobilbau

ARCAL Prime Die universelle Schutzgaslösung. ARCAL Chrome Die hochwertige Schutzgaslösung. ARCAL Speed Die produktive Schutzgaslösung

Schweißen von Stahl und Aluminium. Grundlagen, Herausforderungen, Lösungen

Bericht 5121/2003. Nr /685 60/946/01/1896/02/1897/03 Nr /892 60/947/01/1898/02/1899/03

E-Hand WIG. DC DC Puls. DC DC Puls. E-Hand-Schweißen leicht gemacht. Pico 160 cel puls.

MIG/MAG-Multiprozess-Schweißgeräte

Die Lorch M 3030 automotive. MIG-Lötschweissen und MIG-MAG in einer. Die Antwort auf immer mehr neue Materialien und Vorschriften.

SCHWEIßVERFAHRENSPRÜFUNG DIE NEUE DIN EN ISO

Der mobile Allrounder - MIG/MAG - E-Hand und WIG in einem Gerät. Rundum-Sorglos-Paket in aufmerksamkeitsstarker POS(Point-of-sale)-Verpackung

TIPTIG- Schweissen Die Evolution im TIG- Schutzgasschweissen

Wie können Schweißverfahren grundsätzlich eingeteilt werden?

MIG-Schweißen von Magnesiumlegierungen

Neue Marktchancen und kundenspezifische Lösungsansätze durch den Einsatz optimierter Lichtbogentechnologien. Jens Steinbach / PlaTec GmbH

Anwenderbericht Firma Ebner rüstet ihre Schweißfertigung auf EWM-Maschinen um

Masters of Speed Denn Speed = Produktivität

Prüfungsschwerpunkte Fertigungstechnik

Blue Evolution. Die Nachhaltigkeitsinitiative von den Entdeckern des Code des Schweißens. Geld sparen. Arbeitsplätze sichern.

Tipps für Praktiker. Gase zum Schweissen und Formieren.

Untersuchung der Schweißbarkeit eines Schichtverbundwerkstoffes

Grundlagen des Lichtbogenlötens und Regelungsarbeiten AGV 2.4.8

DVS-Merkblatt 0973 zu modernen MSG- Varianten

Untersuchungen zu Festigkeit und Qualität von Laser-M IG-Hybridgeschweißten Aluminiumverbindungen

InFocus Schweißen mit hoher Leistungsdichte

Schweißtechnische Lehr- und Versuchsanstalt SLV München - Niederlassung der GSI mbh. Bericht 5147/2008

/ Perfect Welding / Solar Energy / Perfect Charging. Cold metal transfer. / Die Technologie.

Titelfolie. SpeedPulse - Der bessere Impulslichtbogen. Fachdokumentation Nr.: Y

MIG-Schweißen von Aluminiumwerkstoffen leicht gemacht

Technologie birgt noch spannende Entwicklungspotenziale

The Joy of Welding Around the World

DIE MICORMIG PULSE-SERIE

Pioneer Pulse 321MKS 321MSR

Blue Evolution. Die Nachhaltigkeitsinitiative von den Entdeckern des Code des Schweißens. Geld sparen. Arbeitsplätze sichern.

Inhaltsverzeichnis. Vorwort

Schweißtechnik. 1. Qualifikation in WIG für Stahl. Teilnehmer mit Grundkenntnissen in WIG Schweißen. Sonderlehrgang mit Prüfungsabschluss

EWM Titan XQ puls-baureihe mit neuem Modell: Titan XQ C puls. Kompakt mit großem Aktionsradius

MARC. Hülsenschweißen mit magnetisch bewegtem Lichtbogen

Standort INOCON. Wien. München. INOCON Technologie

BVM-AH-002 Qualifizierung des Schweißverfahrens nach EN ISO 15610

Wieso ist Schutzgas wichtig für das Schweißen? 1. Aufgabe und Wirkung von Schutzgasen Seite Sondergase Seite 4

Blue Evolution. Die Nachhaltigkeitsinitiative von den Entdeckern des Code des Schweißens. /// simply more

Moderne Schweißverfahren im Großrohrleitungsbau Fortbildung für Schweißaufsichtspersonen 1

Schweißschutzgase Zusammensetzung Anwendung

WiseFusion VERBLÜFFEND SCHNELLES MIG/MAG-SCHWEISSEN

Lichtbogenhartlöten - Innovativ, sicher und wirtschaftlich

Gerätekatalog Schweißgeräte und Zubehör

Kemppis Reduced Gap Technology (RGT- Technologie) stellt die herkömmliche Nahtvorbereitung

WiseFusion VERBLÜFFEND SCHNELLES MIG/MAG-SCHWEISSEN. "Mit WiseFusion ist es möglich, mit einem 10-mm- Luftspalt zu schweißen."

Bauserie MobiMIG. Die tragbaren Multitalente! MIG/ MAG TIG ELECTRODE

MIG/MAG Lichtbogenvarianten Pipe Solution, Root Arc, Force Arc

DISCOVERY 300 T. Deutsch SYN. 2,5KHz

Höhere Prozessgeschwindigkeiten beim WIG-Schweißen durch das Drahtvorschubgerät tigspeed von ewm

Immer wieder verändern Erfindungen die Welt.

QINEO BASIC. Die günstige Alternative für professionelles Handschweißen. Carl Cloos Schweißtechnik GmbH Industriestraße D Haiger

QINEO BASIC. Die günstige Alternative für professionelles Handschweißen

Inhalt. Grundlagen des Plasmalichtbogen-Schwei. Schweißenen. Verfahrensvarianten Gase zum Plasmalichtbogen-Schwei. Brenner und Brennerausrüstung

Schweißen und Löten im Karosseriehandwerk leicht gemacht

Wenn es ums Löten geht...

Pressemitteilung 10/2016

MAG-Schweißen mit Fülldrahtelektroden

Transkript:

THE NEW DIMENSIONS OF WELDING EWM-coldArc ABICOR- Innovationspreis 2006 für EWM-cold Arc WÄRMEREDUZIERTES FÜGEN DÜNNSTER BLECHE

EWM-coldArc WÄRMEREDUZIERTES FÜGEN DÜNNSTER BLECHE 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 1 09.2008

Der Energiereduzierte kurze Lichtbogen......Unmögliches wird möglich! Übersicht Prinzip, Lösungsansatz und Werkstoffübergang des EWM-coldArc Wärmereduziertes Schweißen dünnster Bleche Wärmereduzierte Löten mit CuSi und niedrig schmelzendem Zink-Lotdraht Mischverbindungen Manuelle und automatisierte MAG-Standardanwendungen 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 2 09.2008

Prinzip wärmeminimierter coldarc Phase 1 Lichtbogen brennt Phase 2 Kurzschluss Phase 3 Kurzschlussauflösung und erneute Brennphase U s Zünden im Standard- Kurzlichtbogen, 1,0 mm ZnAl4-Lot I s t Prinzip des EWM-coldArc t 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 3 09.2008

Lösungsansatz Der modifizierte Kurzlichtbogen wird ausschließlich lich in der Energiequelle geregelt : neuartige hochdynamische Inverterschaltung sehr schnelle, digitale Prozessregelung Mit Standard Brenner drastische Verminderung der Leistungsspitze beim Lichtbogen-Wiederzünden erhebliche Reduzierung des Wärmeeintrags während der Aufschmelzphase 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 4 09.2008

Werkstoffübergang Aus dem nahezu leistungslosen Werkstoffübergang und der reduzierten Wärmeeinbringung resultiert: Erhebliche Verringerung der Blechdicke möglich Äußerste Spritzerarmut Hervorragende Spaltüberbrückung Nahtgeometrie individuell beeinflussbar Geringster Materialverzug Der Werkstoffübergang erfolgt beim EWM-coldArc ohne mechanische Unterstützung durch den Drahtantrieb, d.h. v Draht = const. HG-Film, 8.000 B/s 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 5 09.2008

Minimierte Lichtbogen-Leistung beim Wiederzünden Standard-Kurzlichtbogen EWM-coldArc -Lichtbogen Leistung beim Wiederzünden 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 6 09.2008

Lichtbogenbereiche Spannung [V] RLB (Highspeed) KLB coldarc ILB ÜLB SLB forcearc ILB = Impulslichtbogen KLB = Kurzlichtbogen ÜLB = Übergangslichtbogen SLB = Sprühlichtbogen RLB = Rotierender Lichtbogen Stromstärke [A] 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 7 09.2008

Übersicht Anwendungsgebiete EWMcoldArc ermöglicht: MSG-Schweißen das Fügen verzinkter Bleche MSG-Löten das wärmereduzierte Fügen dünnster Bleche ab 0,3 mm (auto), ab 0,7 mm (man) Mischverbindung erstmals das wärmeminimierte Löten mit niedrigschmelzenden Zusatzwerkstoffen auf Zink-Basis (auto) sehr gut beherrschbares Schweißen von Wurzellagen in allen Zwangslagen Mischverbindungen St verzinkt-aluminium St verzinkt-magnesium Aluminium-Magnesium das Schweißen von Magnesiumlegierungen 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 8 09.2008

Verfügbare Kennlinien MSG-Schweißen Werkstoff Blechdicke (mm) Gase Draht Ø [mm] Drahtwerkstoff Anwendung Stahl 0,2/0,3-1,5 (2,0) 82% Argon + 18% CO2 0,8; 1,0; 1,2 artgleich Auto Stahl 0,7-1,5 (2,0) 82% Argon + 18% CO2 0,8; 1,0; 1,2 artgleich Man Stahl 0,2/0,3-1,5 (2,0) 100% CO2 0,8; 1,0; 1,2 artgleich Auto Stahl 0,7-1,5 (2,0) 100% CO2 0,8; 1,0; 1,2 artgleich Man CrNi-Stahl 0,2/0,3-2,5 97,5% Argon + 2,5% CO2 0,8; 1,0; 1,2 artgleich Auto CrNi-Stahl 0,7-2,5 97,5% Argon + 2,5% CO2 0,8; 1,0; 1,2 artgleich Man 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 9 09.2008

Verfügbare Kennlinien MSG-Löten Werkstoff Blechdicke (mm) Gase Draht Ø [mm] Drahtwerkstoff Anwendung Stahl 0,2/0,3-1,5 (2,0) 100% Argon 0,8; 1,0; 1,2 CuSi/CuAl/AlBz8 Auto Stahl 0,7-1,5 (2,0) 100% Argon 0,8; 1,0; 1,2 CuSi/CuAl/AlBz8 Man Stahl 0,2/0,3-1,5 (2,0) 99% Argon + 1% CO2 (S1) 0,8; 1,0; 1,2 CuSi/CuAl/AlBz8 Auto Stahl 0,7-1,5 (2,0) 99% Argon + 1% CO2 (S1) 0,8; 1,0; 1,2 CuSi/CuAl/AlBz8 Man St verzinkt 0,2/0,3-1,5 (2,0) 100% Argon 0,8; 1,0; 1,2 CuSi/CuAl/AlBz8 Auto St verzinkt 0,7-1,5 (2,0) 100% Argon 0,8; 1,0; 1,2 CuSi/CuAl/AlBz8 Man St verzinkt 0,2/0,3-1,5 (2,0) 99% Argon + 1% CO2 (S1) 0,8; 1,0; 1,2 CuSi/CuAl/AlBz8 Auto St verzinkt 0,7-1,5 (2,0) 99% Argon + 1% CO2 (S1) 0,8; 1,0; 1,2 CuSi/CuAl/AlBz8 Man 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 10 09.2008

Verfügbare Kennlinien Mischverbindungen Werkstoff A Werkstoff B Blechdicke (mm) Gase Draht Ø [mm] Drahtwerkstoff Anwendung St verzinkt Al 0,3 1,5 100% Argon 1,0 AlSi Auto St verzinkt Al 0,7 1,5 100% Argon 1,0 AlSi Man 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 11 09.2008

Anwendung in der Produktion, Reparatur sowie in Handwerksbetrieben Branche Automobilindustrie Zulieferer Automobilindustrie Fahrzeugbau Bedachungen Fassadenbau Lüftungsbau Metallbau Schaltschrank-/ Gehäuse Blechbearbeitung Lebensmittelindustrie Chemieindustrie Luft-/ Raumfahrt KFZ Karosseriereparatur Kunstgewerbe 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 12 09.2008

Anwendung Branche Produktion Handwerk Anwendungen man auto man auto Automobilindustrie x x x x Abgasanlagen Seitenwände Achsträger Türscharniere Zulieferer Automobilindustrie x Abgasanlagen Sitze Fahrzeugbau x x Bedachungen x x Rinnen Rohre Einfassungen Lichtschächte Fassadenbau x x Verkleidungen Rahmen Profile Lüftungsbau x x Rohre Formstücke Metallbau x x Fassandenbau Verkleidungen Schutzbleche Schaltschrank x x Gehäuse Scharniere Blechbearbeitung x x Konsolen Trichter Gefäße Profile Lebensmittelindustrie x x Konsolen Trichter Gefäße Auffangwannen Chemieindustrie x x Auffangwannen Trichter Schalungen Profile Luft-/Raumfahrt Kfz-Karosseriereparatur x Apparatebau 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 13 09.2008

Schweißen dünnster Bleche Aus der Minimierung des Energieeintrags mit digitaler Prozesskontrolle eines jeden Werkstoffübergangs resultiert: Kein Durchfallen der Schmelze, auch ohne Badstütze bei Dünnblech Hervorragende Spaltüberbrückbarkeit Sehr hohe Schweißgeschwindigkeiten Erweiterung des Blechdickenbereiches bis unter 0,3 mm Gewichtseinsparung EWM-coldArc -Schweißen, Bördelnaht an Doppelschalenschalldämpfer, Grundwerkstoff: 1.4301, 0,4 mm Zusatzwerkstoff: 1.4370, Ø 1,2 mm Schweißgesch.: v Schweiß = 3,5-4,0 m/min 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 14 09.2008

MIG-Löten Durch die Prozessregelung wird die Tropfen größe sowie auch das Nahtprofil individuell definierbar. Für das MIG-Löten resultiert daraus: Hervorragende Spaltüberbrückbarkeit Minimale Beschädigung der Zinkbeschichtung bei Cu-Basis-Lot Hervorragende Handhabbarkeit mit allen üblichen Brennersystemen Manuelles Löten in allen Positionen 4 mm Manuelle EWM-coldArc -Lötung, 4,0 mm Spalt Grundwerkstoff DC 04 ZE 75/75 1,0 mm Zusatzwerkstoff CuSi3-Draht Ø 1,0 mm Roboter- EWM-coldArc -Lötung, Grundwerkstoff 1,0 mm elektrolytisch verzinktes Stahlblech Zusatzwerkstoff CuSi3-Draht Ø 1,0 mm 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 15 09.2008

Zink eine Alternative zu Cu-Basis-Lot Cu Si Al Mg Zn Temperatur Schmelzen Sieden K K 1.357 2.840 1.683 2.628 934 2.740 922 1.380 693 1.180 Aluminium-Silizium-Legierungen: AlSi 5 AlSi 12 Zink-Aluminium-Legierungen: ZnAl 2 ZnAl 25 Löten von verzinktem Stahl Mischverbindungen von verzinktem Stahl mit Aluminium, Schweißen auf Aluminiumseite und Löten auf Stahlseite 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 16 09.2008

Niedrig schmelzendes Zink-Basis-Lot Erstmalig wird das MIG-Löten mit neuartigen Zusatzwerkstoffen auf Zinkbasis (T Schm. 400 C, T Siede 900 C) möglich: Keinerlei Beschädigung der Zinkschicht Hervorragende Korrosionsbeständigkeit Geringster Verzug vergleichbare Festigkeiten zu CuSi-Lot, 0,75 mm verzinkter Stahl: Kehlnaht am Überlappstoß: 340 MPa Stumpfnaht, I-Stoß: 200 MPa EWM-coldArc -Löten von verzinktem Stahl mit Zink-Basis-Draht 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 17 09.2008

Mischverbindungen Spröde intermetallische Phasen verhindern ein Schmelzschweißen von Leichtmetallen mit Stahl Mit EWM-coldArc lassen sich erstmalig im MSG- Prozess Zink und auch Magnesium zur Herstellung von Mischverbindungen verarbeiten: Aluminium-St verzinkt Magnesium-St verzinkt Aluminium-Magnesium Al St verzinkt EWM-coldArc -Fügen von Al- St-Mischverbindungen mit Zink- Basis-Draht Makroschliffe Al-St verzinkt- Mischverbindungen Überlappstoß Stumpfstoß 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 18 09.2008

EWM-coldArc -Hybridprozesse Die Unterstützung des relativ kalten EWMcoldArc durch Laser oder Plasma führt zu: hervorragender Benetzung des Lotes auf dickeren verzinkten Stahlblechoberflächen Erhöhung des tragenden Querschnittes der Lötung erheblich erhöhter Fügegeschwindigkeit Makroschliff Laser-unterstütztes EWM-coldArc -Fügen von 1,5mm DC04ZE75/75, Bördelnaht, 1 mm Spalt, P Laser =500W 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 19 09.2008

Anwendungsbeispiele EWM-coldArc Löten Verzinkter Stahl, 0,7 mm Kehlnaht am Überlappstoß, mit 1,0 mm Zink-Draht Al-St-Mischverbindung, 0,7 mm verzinkter Stahl und 1,0 mm AlMg Kehlnaht am Überlappstoß, mit 1,0 mm Zink-Draht Al-St-Mischverbindung, 1,0 mm AlMg und 0,7 mm verzinkter Stahl Kehlnaht am Überlappstoß, mit 1,0 mm AlSi5-Draht 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 20 09.2008

Anwendungsbeispiele EWM-coldArc Schweißen Stahlblech, 1,0 mm Stumpfstoß, 1 mm Spalt, 1,0 mm G4Si1-Draht CrNi-Blech, 0,5 mm Kehlnaht am Überlappstoß, 1,0 mm CrNi-Draht 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 21 09.2008

Typische Gerätekonfigurationen Automatisierte Anwendung PHOENIX DRIVE 4 ROB Roboter-Brenner Manuelle Anwendung Stromquelle PHOENIX DRIVE 4L P Handschweißbrenner 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 22 09.2008

MIG/MAG Robotersystem Anwendungsbeispiel wassergekühltes Master Feeder System PHOENIX RC2 MIG/MAG-Brenner Master Feeder 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 23 09.2008

MIG/MAG Robotersystem Anwendungsbeispiel wassergekühlter Brenner Standard/PushPull PHOENIX RC2 MIG/MAG-Brenner PushPull MIG/MAG-Brenner 2008 EWM HIGHTEC WELDING GmbH D_EWM-coldArc 24 09.2008

Energiereduziertes Lichtbogen-Fügeverfahren für wärmeempfindliche Werkstoffe S.-F. Goecke, EWM Mündersbach Der moderne Ultraleichtbau stellt Anforderungen an die Schweißtechnik, die mit den herkömmlichen Schutzgasschweißprozessen nicht erfüllt werden können. Es mussten Varianten des robusten Lichtbogenschweißprozesses entwickelt werden, die extrem wenig Wärme in den Werkstoff einbringen und doch sichere Verbindungen gewährleisten. Der coldarc ist eine Variante des MIG/MAG-Prozesses, der diese Forderungen erfüllt. Dabei erfolgen alle Eingriffe in den Prozessablauf direkt in der Stromquelle ohne mechanischen Eingriff in den Drahtvorschub, so daß mit gewöhnlichen Schweißbrennern gearbeitet werden kann und das Verfahren auch vorzüglich manuell anzuwenden ist. 1 Einleitung Zu den Prämissen höher, weiter, schneller, welche unsere moderne Welt der Technik schon seit Jahren stellt, ist in letzter Zeit noch die Forderung leichter hinzugekommen. Die gilt vor allem für den Fahrzeugbau, wo sich beim Beschleunigen, beim Antrieb und beim Abbremsen durch Gewichtseinsparung Treibstoff einsparen läßt, was die Ressourcen schont, Kosten senkt und die Umwelt schützt. Die letzte Forderung führt zu immer leichteren Bauweisen, die nur mit dünneren hochfesten Stahlblechen, die meist beschichtet sind, und leichteren Werkstoffen, wie Aluminium und Magnesium möglich werden. Diese Leichtbauweise stellt aber Anforderungen an die Schweißtechnik, die mit herkömmlichen Schweißgeräten gar nicht zu erfüllen sind. Es ist daher notwendig, neue Prozesse zu entwickeln, die extrem wenig Wärme beim Schweißen in die Verbindung hineinbringen. Der coldarc ist ein solcher Prozess. 2 Der Kurzlichtbogen, die konventionelle Methode energiearm zu schweißen Der Kurzlichtbogen tritt beim MIG/MAG-Schweißen im unteren Leistungsbereich, d.h. bei niedrigen Stromstärken und niedriger Spannung auf. Dabei stellt sich eine Werkstoffübergangsform ein, die durch zyklisch wiederkehrende Lichtbogenphasen und Kurzschlussphasen gekennzeichnet ist, Bild 1. Bild 1 Phase 1 Lichtbogen brennt U s I s Phase 2 Kurzschluss Phase 3 Kurzschlussauflösung und erneute Brennphase Werkstoffübergang (schematisch), Stromund Spannungsverlauf beim Kurzlichtbogenschweißen 2005 EWM HIGHTEC WELDING GmbH 1/5 t t Nach einer gewissen Lichtbogenbrenndauer hat sich ein Tropfen an der Elektrodenspitze gebildet, der, da der Lichtbogen relativ kurz ist, bald in Kontakt mit dem Schmelzbad kommt, und der Lichtbogen erlischt. Die Oberflächenspannung des Bades zieht den Tropfen von der Elektrodenspitze ab in der letzten Phase der Ablösung, wenn die Brücke schon eingeschnürt ist, hilft dabei der Pinch-Effekt durch die Lorentz-Kraft und auch die Joule sche Erwärmung aus der stark zunehmenden Stromdichte mit und nach dem Abreißen der schmelzflüssigen Brücke zwischen Elektrode und Werkstück zündet der Lichtbogen wieder. Was sich elektrisch dabei abspielt, ist ebenfalls aus Bild 1 zu ersehen. Mit dem Beginn des Kurzschlusses fällt die Spannung ab, weil der elektrische Widerstand der flüssigen Brücke jetzt geringer ist, als vorher der Widerstand im Lichtbogen. Gleichzeitig beginnt der Strom bis auf den Wert des Kurzschlussstromes zu steigen. Unmittelbar mit dem Aufreißen der Brücke zwischen Elektrode und Werkstück steigt die Spannung nun sehr schnell an, denn zum Zünden des Lichtbogens besteht ein erhöhter Spannungsbedarf. Der nun beginnende Abfall des Stromes erfolgt aber wegen der Induktivitäten im Schweißstromkreis sehr langsam, so daß das Wiederzünden unter einer relativ hohen elektrischen Leistung erfolgt. Dabei kann ein Teil der flüssigen Brücke explosionsartig verdampfen, wenn nicht durch ausreichende Drosselwirkung im Stromkreis vorher dem Anstieg des Stromes entgegengewirkt wird. Die Folge ist entweder eine starke Spritzerbildung oder eine sehr geringe Dynamik des Prozesses bis hin zur Instabilität. Bei Schweißaufgaben, die geringe Wärmeeinwirkung erfordern, z.b. beim Schweißen sehr dünner Bleche mit schlechter Passung, ist es aber viel schädlicher, wenn das Schweißgut an der Wiederzündstelle durchfällt und ein Loch entsteht. Beim Schweißen oberflächenveredelter Bleche, z.b. solche mit Zinküberzug, besteht zudem die Gefahr, daß die Oberflächenbeschichtung neben der Naht und auf der Rückseite verdampft und verbrennt. Bei höherfesten Stählen kann es bei zu großer Wärmezufuhr zu Erweichungen kommen. Der normale Kurzlichtbogen, sonst ein hervorragendes Werkzeug zum Schweißen von Dünnblech, ist daher für solche Schweißaufgaben, die extrem wärmeempfindlich sind, nicht geeignet.

3 Ansätze zur Verbesserung des Kurzlichtbogenprozesses Phase 1 Lichtbogen brennt Phase 2 Kurzschluss Phase 3 Kurzschlussauflösung und erneute Brennphase Es hat nicht an Versuchen gefehlt, das Verhalten des Kurzlichtbogens vor allem beim Wiederzünden nach dem Kurzschluss zu verbessern und ihn mit reduziertem Wärmeeinbringen zu betreiben. Schon in den 80iger Jahren wurde versucht, den Strom unmittelbar vor der Auflösung der Kurzschlussbrücke herunter zu fahren und daran anschließend zum Erleichtern des Wiederzündens einen hohen Spannungsimpuls aufzubringen. Die Spritzerbildung konnte dadurch zwar reduziert werden, das Wärmeeinbringen aber nur geringfügig, [1] und [2]. Weitere Schritte auf diesem Wege waren der modifizierte Kurzlichtbogen ChopArc, [3] und [4], mit dem als prozesssicherer MAG-Schweißprozess erhebliche Fortschritte insbesondere im Dünnstblechbereich 0,8 0,2 mm erzielt worden sind. Darüber hinaus wurde hier ein adaptives Regelsystem entwickelt, das die Prozessqualität in Echtzeit optimiert, [5]. Neuere Entwicklungen arbeiten mit einem diskontinuierlichen Drahtvorschub, d.h. die Dauer des Kurzschlusses wird dadurch verkürzt, daß die Drahtelektrode beim Kurzschluss etwas zurückgezogen wird, damit sich die Kurzschlussbrücke besser auflöst. Damit läßt sich ein energiearmer Schweißprozess mit geringer Spritzerbildung erreichen, [6]. Weil dazu aber ein Push-Pull- Antrieb mit zwei Vorschubmotoren mit hoher Dynamik notwendig ist, eignet sich dieser Prozess vorzugsweise für das automatisierte Schweißen und wird ausschließlich in Verbindung mit Schweißrobotern eingesetzt. 4 coldarc erfolgreiches Fügen bei Aufgaben, die wenig Wärme erfordern Entwicklungsarbeiten mit dem Ziel, einen energiearmen Prozess auch ohne mechanischen Eingriff in den Drahtvorschub zu erreichen, führten zu einer Prozessvariante, bei der alle notwendigen Einflussnahmen sich ausschließlich in der Stromquelle abspielen. Auch diese, coldarc genannte Variante des MIG/MAG-Prozesses, ist ein Kurzlichtbogenprozess, und deshalb gekennzeichnet durch einen zyklischen Wechsel zwischen Lichtbogen- und Kurzschlussphasen. Da die elektrische Leistung beim Wiederzünden ein entscheidendes Kriterium für einen erfolgreichen Dünnblechschweißprozess ist, wird aber aktiv Einfluss genommen auf den Verlauf des Energieeintrags des gesamten Prozesses, also während der Lichtbogenphase, in der Kurzschlussphase und vor allem beim Wiederzünden des Lichtbogens, Bild 2. Der Verlauf der Spannung bleibt wie beim normalen Kurzlichtbogenprozess erhalten. Bild 2 U s I s Werkstoffübergang (schematisch) und Strom- und Spannungsverlauf beim coldarc-prozess Sie dient als Führungsgröße bei der Regelung der Stromstärke. Dazu ist aber ein kontinuierliches Messen der Spannung mit entsprechendem Reagieren auf alle Spannungsänderungen notwendig (hochdynamische Momentanwertregelung). Über einen digitalen Signalprozessor (DSP) ist es dann möglich, die Energie unmittelbar vor dem Wiederzünden in einem Zeitraum von weniger als 1 μs aus dem Lichtbogen herauszuziehen, Bild 2, so daß das Wiederzünden sehr sanft erfolgt. Damit sich sofort wieder eine genügende Menge schmelzflüssigen Materials an der Elektrodenspitze bilden kann, besteht aber jetzt ein erhöhter Energiebedarf. Unmittelbar nach dem Wiederzünden des Lichtbogens wird deshalb die Stromstärke zu einem so genannten Aufschmelzimpuls kurzzeitig definiert wieder hochgefahren. Erst danach wird der Strom auf ein extrem niedriges Grundniveau abgesenkt, um ein weiteres Aufschmelzen zu minimieren, und der nächste Zyklus beginnt. Durch diesen Aufschmelzimpuls nach jedem Kurzschluss wird eine immer gleich große schmelzflüssige Kuppe an der Elektrode erzeugt, was zu einem sehr gleichmäßigen Prozessablauf führt. Dadurch wird es überhaupt erst ermöglicht, in den Phasen zwischen den Kurzschlüssen mit extrem niedrigen Stromstärken zu arbeiten, ohne daß es zu weiterem Aufschmelzen des Drahtes oder zum Erlöschen des Lichtbogens kommt. Dies alles macht den sehr energiearmen coldarc-prozess aus. Bild 3 zeigt eine Sequenz von Bildern aus einem Hochgeschwindigkeitsfilm, die den sehr gleichmäßigen Werkstoffübergang und das sanfte Zünden des Lichtbogens verdeutlichen. 5 Was der coldarc-prozess kann Den Verlauf der Lichtbogenleistung beim Wiederzünden des Lichtbogens zeigt Bild 4. Die Vorteile des coldarc-prozess im Vergleich zum Standard Kurzlichtbogen im Moment des Wiederzündens und unmittelbar danach werden daraus sehr deutlich. Hier liegt die Leistung im Moment der Wiederzündung des Lichtbogens nicht nur absolut erheblich niedriger. t t 2005 EWM HIGHTEC WELDING GmbH 2/5

Bild 3 Sequenz des Werkstoffübergangs vom coldarc-prozess aus Hochgeschwindigkeitsaufnahmen, 8.000 B/s Vielmehr wird unmittelbar mit dem Zünden des Lichtbogens die Leistung äußerst dynamisch und geregelt heruntergefahren und anschließend, nach Erreichen einer Stabilisierung des Lichtbogens, impulsartig erhöht zum definierten Aufschmelzen der Elektrodenspitze. Ein solcher Prozesses kann für viele Schweißaufgaben vor allem im Fahrzeugbau dort eingesetzt werden, wo der normale Kurzlichtbogen nicht mehr geeignet ist. Noch vor wenigen Jahren ging man davon aus, daß der MIG/MAG-Prozess bei Stahl ab einer Blechdicke von 0,7 mm und bei Aluminium ab etwa 3 mm anzuwenden ist [7]. Die Blechdicken im Fahrzeugbau werden heute aber immer geringer. Sie gehen schon jetzt bis auf 0,3 mm herunter, 0,2 mm sind für Verbundbauweisen bereits in Erprobung. Die Schwierigkeiten eine gleichmäßige Naht zu erzeugen steigen noch, wenn größere Luftspalte zu überbrücken sind. Dies ist eine typische Aufgabe für den coldarc-prozess. Stromstärke von 50 A und einer Spannung von 13,5 V coldarc-gelötet wurden. Die Cu-Basislote haben ein Schmelzintervall, das um 1000 C liegt. Im Vergleich zum artgleichen MAG- Schweißen wird damit schon die Wärmebelastung der Oberflächenschichten erheblich verringert. Noch mehr geschont werden diese aber wenn mit Zinkbasisloten MIG-gelötet wird, deren Schmelzintervalle nur bei etwa 450 C liegen. Die Verwendung dieser Lote ist aber nur möglich, wenn der Kurzschlussstrom entscheidend begrenzt wird und auch das allgemeine Wärmeeinbringen erheblich reduziert wird. Die Verdampfungstemperatur der zum Lichtbogenlöten verwendeten ZnAl-Legierungen liegt bei knapp über 900 C, also noch unterhalb der Schmelztemperatur von Cu-Legierungen. Standard-Kurzlichtbogen P S coldarc-lichtbogen Leistung beim Wiederzünden Bild 4 Minimierte Lichtbogenleistung des coldarc- Prozesses beim Wiederzünden An oberflächenbeschichteten Blechen wird schon lange nicht mehr artgleich geschweißt, sondern unter Einsatz von Cu-Basisloten lichtbogengelötet. Dies schont die Zinkschicht, jedoch kann es Schwierigkeiten geben, wenn größere Luftspalte vorliegen. Mit dem coldarc-prozess lassen sich dagegen auch größere Luftspalte mit dem Lot überbrücken. Bild 5 zeigt 0,8 mm dicke verzinkte Stahlbleche, die manuell mit Luftspalten von sogar 4 mm in Pos. PG mit 1,0 mm CuSi3-Draht bei einer mittleren 2005 EWM HIGHTEC WELDING GmbH 3/5 Bild 5 manuelle coldarc-lötung von 0,8 mm elektrolytisch verzinktem Stahlblech mit 4,0 mm Luftspalt, 1,0 mm CuSi3-Draht

Ein direktes Schmelzschweißen dieser beiden Werkstoffe ist nicht möglich, da sich intermetallische Al-Fe-Phasen bilden, die äußerst spröde sind, Bild 8. Bild 6 Elektrolytisch verzinkte Stahlbleche, Kehlnaht am Überlappstoß, mit Zn-Draht coldarc-gelötet Beim Wiederzünden würde deshalb die Kurzschlussbrücke sofort explosionsartig verdampfen und das leichte Schweißgut weggeblasen, wenn der Kurzschlußstrom nicht wesentlich gesenkt würde. Mit dem coldarc-prozess ist nun das MIG-Löten mit Zn-Basisloten erstmals uneingeschränkt möglich. Bild 6 zeigt die Oberfläche und die Rückseite eines Überlappstoßes an 0,75 mm dicken verzinkten Blechen, die mit diesem niedrig schmelzenden Lot gefügt wurden. Sowohl unmittelbar neben der Naht als auch auf der Rückseite ist die Zinkschicht noch vollständig erhalten. Sie war beim Lötprozess zwar flüssig geworden, aber sie wurde nicht verdampft. Im Fahrzeugbau werden zunehmend auch Mischverbindungen zwischen Stahl und Aluminium eingesetzt. Bild 7 Fügen von Aluminium-Stahl-Mischverbindungen mit Drähten auf Zinkbasis; Oben: Übersichtsaufnahme; Links unten: Mikroschliff Rechts unten: Pkw-Tür Bild 8 Phasendiagramm Eisen-Aluminium Aus dem Phasendiagramm ist ersichtlich, daß Eisen bzw. Stahl und Aluminium praktisch ineinander unlöslich sind. Es entstehen bei jedem Mischungsverhältnis FeAl-Phasen, die durch ein sprödes Verhalten gekennzeichnet sind. Erfahrungsgemäß ist daher der Anteil von Al-Fe- Phasen im Schmelzgut von mehr als 10 % in jedem Fall zu vermeiden. Mit dem Einsatz vom Zink als Drahtwerkstoff kann nun eine Verbindung zwischen diesen beiden hergestellt werden, wo das Aluminium partiell angeschmolzen wird, während der Stahl, um Sprödigkeit im Schmelzgut zu vermeiden, vom Lot nur benetzt werden darf. So entsteht auf der einen Seite eine Schweiß- und auf der anderen eine Lötverbindung. In Bild 7 sind eine Übersichtsaufnahme und ein Mikroschliff aus einer solchen Verbindung zu sehen, die mit Zn-Basislot coldarc gelötet wurde, sowie eine Anwendung aus dem Karosseriebau. Die mit Zn-Drähten in der Kehlnaht am Überlappstoß erreichbaren Festigkeitswerte liegen im Bereich der Festigkeiten von Al-Knetlegierungen sowie auch von MIG-Lötungen mit Cu-Basis-Lot. Bei Stumpfstößen muß mit etwas niedrigeren Festigkeiten gerechnet werden. Selbst hier ist die Verwendung von Push-Pull- Brennern ist nicht erforderlich, es können ganz normale MIG/MAG-Schweißbrenner für das coldarc Schweißen und coldarc Löten verwendet werden. Weitere typische Anwendungen zum coldarc-löten und coldarc Schweißen sind in Bild 9 bis Bild 14 dargestellt. 2005 EWM HIGHTEC WELDING GmbH 4/5

Bild 9 Feuerverzinkte Stahlbleche, 0,7 mm, Kehlnaht am Überlappstoß, mit 1,0 mm Zn-Draht coldarc-gelötet mit 0,35 m/min, U=13,5 V, I=40 A Bild 14 CrNi-Blech, 0,5 mm, Kehlnaht am Überlappstoß, 0,8 mm Draht, coldarc-geschweißt mit 2,0 m/min, U=16,5 V, I=90 A Bild 10 Al-St-Mischverbindung, 0,7 mm feuerverzinkter Stahl und 1,0 mm AlMg, Kehlnaht am Überlappstoß, mit 1,0 mm Zn-Draht coldarcgelötet mit 0,35 m/min, U=13,5 V, I=40 A Bild 11 Al-St-Mischverbindung, 1,0 mm AlMg und 0,7 mm feuerverzinkter Stahl, Kehlnaht am Überlappstoß, mit 1,0 mm AlSi5-Draht coldarc-gelötet mit 1,1 m/min, U=14,5 V, I=60 A Bild 12 Stahlblech, 1,0 mm, Stumpfstoß, 1 mm Spalt, 1,0 mm G4Si1 Draht, coldarcgeschweißt mit 2,0 m/min, U=19 V, I=136 A Bild 13. AlMg3-Blech, 0,8 mm, Kehlnaht am Überlappstoß, 1,0 mm AlSi5-Draht, coldarcgeschweißt mit 1,2 m/min, U=13 V, I=55 A 6 Schrifttum [1] Kabushiki Kaisha Kobe Seiko Sho: output control of SC welding power source, PatNr.: US 4546234, Kobe Steel, Japan, 1984 [2] The Lincoln Electric company: STT Surface Tension Transfer, Pat.Nr.: EP 0324960 B1, USA, 1989, und EP 1232825 A3, USA, 2002 [3] Goecke, S.-F. und L. Dorn: Untersuchungen zum Einfluss der Prozessregelung und Schutzgaszusammensetzung auf Spritzerbildung und Nahtgeometrie beim MAG-Kurzlichtbogenschweißen von Stahl-Dünnblech unter 0,5 mm Dicke, Final Report DFG (Deutsche Forschungsgemeinschaft) Do 202/26-3, (2000) [4] Goecke, S.-F., L. Dorn und M. Hübner: MAG- ChopArc-Schweißen für Feinstblech 0,2 mm. Konferenz-Einzelbericht im Tagungsband Große Schweißtechnische Tagung - GST 2000, Nürnberg, 27.-29. Sep. 2000, DVS-Berichte Band 209, (2000), S. 163-168 [5] S-F Goecke, E Metzke, A Spille-Kohoff, M Langula: ChopArc - MSG-Lichtbogenschweißen für den Ultraleichtbau, bmb+f-gefördertes Verbundprojekt, Abschlussbericht, Fraunhofer IRB Verlag, 2005, ISBN 3-8167-6766-4 [6] G Huismann: Direct control of the material transfer, the Controlled Short Circuiting (CSC)- MIG process, ICAWT 2000: Gas Metal Arc Welding for the 21st Century, Dec. 6-8, 2000, Orlando, Florida [7] R Killing: Handbuch der Schweißverfahren, Teil 1 - Lichtbogenschweißen Fachbuchreihe Schweißtechnik Band 76/I, DVS-Verlag Düsseldorf 1999 [6] St Kröger und R Killing: Software zur Erstellung und Verwaltung von Parametern für das MIG/MAG-Schweißen, DVS-Jahrbuch 2004, S. 150-161, DVS-Verlag, Düsseldorf 2003 2005 EWM HIGHTEC WELDING GmbH 5/5

Weitere Informationen finden Sie unter www.ewm.de EWM HIGHTEC WELDING GmbH Dr. Günter-Henle-Straße 8 D-56271 Mündersbach Fon +49 2680 181-0 Fax +49 2680 181-244 www.ewm.de info@ewm.de EWM Tschechien / EWM Czech Republic EWM HIGHTEC WELDING s.r.o. Tr. 9. kvetna 718 CZ-407 53 Jirikov Fon +420 412 358-551 Fax +420 412 358-504 www.ewm.cz info@ewm.cz EWM HIGHTEC WELDING Sales s.r.o. Niederlassung Sales & Service / Sales & Service Branch Prodejní a poradenské centrum Tyršova 2106 CZ-256 01 Benešov u Prahy Fon +420 317 729-517 Fax +420 317 729-712 www.ewm.cz sales@ewm.cz EWM China EWM HIGHTEC WELDING (Kunshan) Ltd. No. 601 Hengchangjing Road Zhoushi Development Zone, CN-215337 Kunshan / Jiangsu Fon +86 512 57867188 Fax +86 512 57867182 www.ewm.cn info@ewm.cn EWM Handel / EWM Sales EWM SCHWEISSTECHNIK-HANDELS GmbH Hauptsitz / Headquarters In der Florinskaul 14-16 D-56218 Mülheim-Kärlich Fon +49 261 988898-0 Fax +49 261 988898-20 www.ewm-handel.de info@ewm-handel.de EWM SCHWEISSTECHNIK-HANDELS GmbH Niederlassung Köln / Cologne Branch Sachsstraße 28 D-50259 Pulheim-Brauweiler Fon +49 2234 697-047 Fax +49 2234 697-048 www.ewm-handel.de nl-koeln@ewm-handel.de EWM Österreich / EWM Austria EWM HIGHTEC WELDING GmbH Scharnsteinerstr. 15 A-4810 Gmunden, Österreich Fon +43 7612 77802-0 Fax +43 7612 77802-20 www.ewm.at office@ewm.at EWM HIGHTEC WELDING GmbH 2008 EWM-coldArc WM.0455.00 10.2008 Änderungen vorbehalten Verkauf, Beratung, Service