Image and Sensor Fusion for Airborne Hyperspectral Sensors

Ähnliche Dokumente
Applying Pléiades in the ASAP project HighSens

Using TerraSAR-X data for mapping of damages in forests caused by the pine sawfly (Dprion pini) Dr. Klaus MARTIN

Hyperspektral in Oberpfaffenhofen: Das EnMAP Bodensegment und die CHB

Remote Sensing Products for Environmental Assessment at Offshore Platforms and Pipelines

DEMMIN. Durable Environmental Multidisciplinary Monitoring Information Network

Industrial USB3.0 Miniature Camera with color and monochrome sensor

Aktuelle Anwendung von Fernerkundungsdaten

Dynamic Hybrid Simulation

A parameterised 3D-Structure-Model for the state of Bremen (Germany)

Using satellite data for power flow estimation of an electrical low voltage grid with a high amount of photovoltaic systems

Newest Generation of the BS2 Corrosion/Warning and Measurement System

Webbasierte Exploration von großen 3D-Stadtmodellen mit dem 3DCityDB Webclient

Wakefield computation of PETRAIII taper section Laura Lünzer

Climate change and availability of water resources for Lima

Tube Analyzer LogViewer 2.3

Air-Sea Gas Transfer: Schmidt Number Dependency and Intermittency

Lufft UMB Sensor Overview

IFM-Institut für Fahrzeugtechnik und Mobilität. Report. No. S Comparison of RDE evaluation software

the automatic atmospheric correction service by the German Remote Sensing Data Center (DFD)

Fernerkundung - Stand der Technik aktuelle Entwicklungen - neue Sensoren

Advanced Track and Tire Modeling using SIMPACK User Routines

Test report. Bericht Nr.: PH001/10. Gruppe Physik Seite 1 von 6. Liquisol Mr. Tom Huymans Lindberg Oelegem BELGIUM. Client: Order No.

Level of service estimation at traffic signals based on innovative traffic data services and collection techniques

POST MARKET CLINICAL FOLLOW UP

How can the connectivity of the greenway network in Southwest Montreal be improved? Scenarios for enhancing the wellbeing of biodiversity and humans

Workshop Aktuelle Entwicklungen bei der Auswertung von Fernerkundungsdaten für forstliche Aufgabenstellungen

TomTom WEBFLEET Tachograph

Atline Inspection of Casting Production Process at Volkswagen using VG Inline

Who we are and what we do.

Grossflächige hochaufgelöste Schneehöhenkarten aus digitalen Stereoluftbildern

Bestimmung der Biomasse durch Fernerkundung

Ways and methods to secure customer satisfaction at the example of a building subcontractor

Workflows, Ansprüche und Grenzen der GNSS- Datenerfassung im Feld

FEM Isoparametric Concept

Sensorenvergleich (Zeilen vs. Flächenscanner) Prof. Dr.-Ing. Manfred Ehlers

Ion beam sputtering of Ag: Properties of sputtered and scattered particles

Bayesian updating in natural hazard risk assessment

Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit Pool water quality the German philosophy

Shock pulse measurement principle

Efficient Monte Carlo Simulation of Tunnel Currents in MOS Structures

GRIPS - GIS basiertes Risikoanalyse-, Informations- und Planungssystem

Technische Information Stand : 08 / 2016

Meteorological measurements at the Offshore Platform FINO 2 - new insights -

Eingebettete Taktübertragung auf Speicherbussen

Digitale Luftbildkamera ADS40 (Airborne Digital Sensor)

Big Data Analytics. Fifth Munich Data Protection Day, March 23, Dr. Stefan Krätschmer, Data Privacy Officer, Europe, IBM

Vulnerability: sensitivity of groundwater quality to contaminant load

eurex rundschreiben 094/10

Use of ALOS-PALSAR for Oceanography

- Characteristic sensitive Small temperature differences. - Low Sensitivity 42,8 µv/k for Cu-Constantan

Ewald s Sphere/Problem 3.7

Satellitenbilddaten und Datenquellen

Cleanroom Fog Generators Volcano VP 12 + VP 18

Dienstleistungsmanagement Übung 5

Deceleration Technology. Rotary Dampers with high-torque range WRD-H 0607 WRD-H 0805 WRD-H 1208 WRD-H 1610 WRD-H

Call Centers and Low Wage Employment in International Comparison

2 Grad globale Erwärmung: Was bedeutet das für unser Klima?

MULTI PHYSICS SIMULATION IN MANUFACTURING

Lukas Hydraulik GmbH Weinstraße 39 D Erlangen. Mr. Sauerbier. Lukas Hydraulik GmbH Weinstraße 39 D Erlangen. edraulic rescue equipment

AUSBILDUNG für INDUSTRIELLE BILDVERARBEITUNG - Skizze für tertiären Bereich

a) Name and draw three typical input signals used in control technique.

Mobile JENCOLOR Evaluation Kits with Windows 8 Smart PC for Color Measurement Applications

High Power Langpass-/Kurzpass- Spiegelbeschichtungen. High Power Long-pass/Short-pass Mirror Coatings

Methodik. zur prozessübergreifenden Integration. der Digitalen Fabrik. der Rechts- und Wirtschaftswissenschaftlichen Fakultät

Lukas Hydraulik GmbH Weinstraße 39 D Erlangen. Mr. Sauerbier. Lukas Hydraulik GmbH Weinstraße 39 D Erlangen

History and Future at the Dresden Elbe Gauge. Data Mining and Results from the viewpoint of a hydraulic engineer.

JPlus Platform Independent Learning with Environmental Information in School

Schnelle 3D Farbbilderfassung / High Speed 3D Color Imaging

Die Ressource Boden Neue Informationen aus optischen Satellitenbild-Zeitreihen

Einleitung. BildVERarbeitung. BildBEarbeitung. Astrofotografie Farbkanäle gezielt manipulieren

Geostatistics for modeling of soil spatial variability in Adapazari, Turkey

USBASIC SAFETY IN NUMBERS

MERTIS und ESA s BepiColombo Mission zum MERKUR. MErcury Radiometer & Thermal Infrared Spectrometer. Mission: 6+ Years / 2022

Kuhnke Technical Data. Contact Details

Which habitats in core areas of ecological networks in Germany are most affected by climate change?

ATEX-Check list. Compiled by: Date: Signature: Acceptable practice at the determination of flash point: Closed cup according to ISO 2719

auf differentiellen Leitungen

Sampling Rate / Sample rate. Modulation (gem. DVB-Standard) Modulation (DVB standard) 16 QAM 256 QAM QPSK, 16 QAM, 64 QAM

Internationale Energiewirtschaftstagung TU Wien 2015

Cycling and (or?) Trams

The scientific approach of scale-up of a fluid bed

When Distance, Quality and Bandwidth are Essential

Eigenschaften und Verarbeitung topobathymetrischer. Wellenform zum DGM

Extended Petri Nets for. Systems Biology. LFE Practical Informatics and Bioinformatics. Department Institut für Informatik.

Machine presentation. SCHAUDT FlexGrind M

Chemical heat storage using Na-leach

Contaminant Mass Discharge Estimation in Groundwater Based on Multi-Level Well Data. Evaluation of Expected Errors. Markus Kübert, Michael Finkel

Ultra-broadband THz-mid-infrared pulses from two-color photo-induced gas plasmas:

Summary Details for Performance, Duration and Acoustic Measurements for the. Aircon 10S Wind Turbine. UK MCS Certification Summary

Simulating the Idle: A New Load Case for Vehicle Thermal Management

assembly hall Project number : sample system Customer : Processed by : Siteco Light Consulting Date : 10/ 2013

DATA ANALYSIS AND REPRESENTATION FOR SOFTWARE SYSTEMS

New Trends in Business Management Theory Consequences for SME. Neue Trends in der Managementlehre Konsequenzen für KMU

Near Real Time - SAR basierte Anwendungen im maritimen Bereich

Radio Frequency Systems

FEM Isoparametric Concept

FIVNAT-CH. Annual report 2002

Introduction FEM, 1D-Example

Separation of Manure and Digestate with the Aim of Phosphore and Biogas Utilization

Production of titanium structural parts for aeroplanes - Requirements for high performance milling -

Transkript:

Image and Sensor Fusion for Airborne Hyperspectral Sensors M. Bachmann a, S. Holzwarth a, R. Richter a, M. Habermeyer a, E. Borg b and A. Müller a (martin.bachmann@dlr.de) a DLR-DFD DFD,, D-82234 D Wessling b DLR-DFD DFD,, D-17235 D Neustrelitz DIN-Workshop FUSION, Berlin, 20.11.2006

Contents Part 1: Introduction Airborne Optical Sensors at DLR C-AF, Oberpfaffenhofen Pre-Processing Chain for Hyperspectral Data Part 2: Data Fusion Fusion for Hyperspectral Data Selected Methods Image Fusion Example

Spectral Information Sensor Calibration and Atmospheric Correction Spectral information of carbonate, clay minerals, water, cellulose Reflectance Spectral information of vegetation condition Spectral information of Fe 2+,3+ content VNIR SWIR- I SWIR- II 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 Wavelength [µm] Mixture of Green Vegetation & Kaolinite

Spectral Information Multi-spectral Hyper-spectral chlorite calcite dolomite alunite gypsum Few fixed bands minimum identification field knowledge and labanalysis required low confidence Contiguous bands maximum identification increased classification accuracy high confidence kaolinite

Übersicht über Facility Airborne Optical Remote Sensing am C-AF Oberpfaffenhofen DFD-US, Arbeitsgruppe Abbildende Spektroskopie IMF-EV, Experimentelle Verfahren

ARES (Airborne Reflective Emissive Spectrometer) RES

Basic Spectrometer Design e.g. ARES, HyMap e.g. ROSIS

Flugzeugsensoren (hyperspektral) am C-AF Oberpfaffenhofen Abbildendes Spektrometer ROSIS 03 Abbildendes Spektrometer ARES (ISPL) Multispektral-Scanner AADS 1268 (Daedalus) Abbildendes Spektrometer AISA (Specim) Aufnahmemodus Flächenarray, Pushbroom Whiskbroom Optomech. Spiegelabtaster Pushbroom Spektralbereich 0,43-0,86 µm 0,47 12,1 µm 0,4-14 µm 0,42 0,9 µm Bandbreite 4,0 nm 16 150 nm 0,02-5 µm 1,5 1,7 nm FOV ±8 ±31 ±43 / ±22 47,6 / 19,2 IFOV 0,56 mrad 2,0 mrad 2,5 / 1.25 mrad 2,39 / 0,92 mrad Px / Zeile 512 Kanäle 115 Abtastrate Digitalisierung 62 Hz 14 Bit Kalibrier. im Flug Interne Spek.lampe Betrieb ab 1992/1999 Anwendung: Spektrale Feinstrukturen in Küstenzonen und Binnengewässern, Böden, Vegetation 813 155 35 Hz 16 Bit 3 Flächenstrahler, Spek.lampen 2007 Thematische Erkundung, Geologie, Hydrologie, Vegetation, Exploration, Thermale Aufnahmen 716 11 100 Hz 8 Bit 2 Schwarzkörper 1986 Thematische Kartierung, Landnutzung, Stadtklima, Thermal Aufnahmen 392 286 50 Hz 12 Bit ----- 2005 Feldspektrometer zur Unterstützung von Flugmesskampagnen, Vegetation, Hydrologie

ROSIS ARES AADS 115 Spectral Layout 28 29 29 29 30 8 1 1 1 115 channels 155 channels 11 channels UV VIS NIR SWIR I II MIR 100 TIR FIR Transmission [%] 0 0.3 0.5 1.0 1.5 2.0 3.0 5.0 10.0 15.0 20.0 Wavelength (log) [µm]

Flugzeugsensoren (Kameras) am C-AF Oberpfaffenhofen Digitale Stereokamera ADS40 (LGGI) Digitalkamera EOS1Ds Mark II (Canon) Reihenmesskammer RMK A (Zeiss) Aufnahmemodus Spektralbereich FOV ±32 IFOV Pixel Kanäle Abtastrate Digitalisierung 3-Zeilen-Stereokamera RGB, Pan, NIR 0,1 mrad 2x 12000 (staggered) 3x PAN (Stereo), RGB, NIR 800 Hz Betrieb ab 2007 Anwendung: 12 Bit (8 Bit radiometrisch) Topografische Kartierung, Stereoaufnahmen, DGM 3-fach-Digitalkamera, Objektiv 50 mm RGB ±55 x ±13,5 (jeweils ±20 x ±13,5 ) 0,15 mrad 15000 x 3300 (jeweils 5000 x 3300) RGB 0,5 Hz kont., 3.. 8 Hz diskont. 2006 Verkehrsbeobachtung Zentralverschluss Filmtypen: Luftbildfilme in Schwarzweiß, Farbumkehr und Falschfarben eff. Bildformat 23 x 23 cm Wechselobjektive: ±20,5, ±37,0 und ±53,5 Diverse Filtervorsätze 1975 Topografische Kartierung

HyMap, Munich 2004 Example for a typical data acquisition scenario Altitude above ground ~2400m Swath width 2.6 km GSD ARES: 5m GSD ADS40: 0.24m

EnMAP Spaceborne Imaging Spectrometer Spectral range 420 nm 2450 nm Spectral bandwidth 5nm -10nm Ground sampling distance 30 m at nadir Swath width 30 km Target revisit time 4 days, 30 pointing Current Status Phase B Planned Launch 2010

Generic Processing System Automated pre-processing chain for airborne hyperspectral sensors, incl. System correction Parametric geocoding using ORTHO Atmospheric correction using ATCOR, incl. BRDF and terrain correction Archiving in DIMS

Generic Processing System Level 0 Product Laboratory Calibration System Correction Vicarious Calibration Attitude Data, Position Data, DEM Level 1 Product Radiative Transfer Model, Meteorologic Data Parametric Geocoding Atmospheric Correction Level 2a Product Level 2b Product Atmospheric Correction Parametric Geocoding Level 2 Product

Geometric Correction Process Level 1 Product Components External Orientation Additional Data Internal Orientation BSQ Quicklook Sync Processor DEM Boresight Angles Sync Nav Data BSQ ORTHO Scan Angle File

Geo-Correction Raw Sensor Data Georectified

Accuracy of Geo-Correction Highly critical for image fusion Typical accuracies in flat terrain: better than 1.4 pixels RMS in x and y For image fusion, additional image-to-image matching might be required HyMap, 6m GSD ROSIS, 2m GSD

Atmospheric Correction Process Level 1 Product Components longitude, latitude, time, flight altitude asl, heading, average ground elevation asl or DEM Internal Orientation BSQ Quicklook Additional Data External Orientation from geocoding or calculated slope, aspect, skyview Scan Angle File Sensor Characteristics Digital Elevation Model Reflectance/Temperature Cube ATCOR Value Added Products visibility map, water vapor map, surface emissivity, illumination, surface cover map

Illumination Correction Ground Reflectance Ground Reflectance after Terrain Correction

De-Shadowing Example: Hyperspectral Airb. Imagery HyMap, Chinchon, Spain, 12 July 2003 RGB=878/646/462 nm

Example: Multispectral Satellite Data, Ikonos Example of building shadows Ikonos Munich, 17 Sept. 2003, RGB=bands 4/3/2 Courtesy of European Space Imaging / European Space Imaging GmbH

Definition of Fusion Data Fusion is a formal framework in which are expresed means and tools for the alliance of data originating from different sources. It aims at obtaining information of greater quality; the exact definition of greater quality will depend upon the application. Wald, L. (1999): Some terms of reference in data fusion. IEEE Transactions on Geosciences and Remote Sensing, 37(3), pp. 1190-1193

Conceptual Levels of Fusion Relevant applications for fusion of hyperspectral data: Signal level Fusion of different detector arrays of sensor VNIR - TIR Image level High spectral res. ARES data with high spatial res. ADS40 High VNIR res. ROSIS with wider spec. range ARES Object level ADS40-derived Digital Surface Model (DSM) for object extraction, ARES for spectral material identification

http://www.eecs.lehigh.edu/spcrl/if/image_fusion.htm

Requirements Requirements on methods when fusing hyperspectral data: Spectral information must be preserved to a high degree DN of fused image must be related to physical properties (i.e. at-sensor-radiance or reflectance values) Large number of bands (>100) must be fused Handle low correlation between input images Higher spatial resolution including textural properties should be introduced in the fused image

Requirements Consequence: Standard approaches often unsuitable Brovey & color-related (e.g. IHS) fusion: => 3 bands only, correlation between images required Component substitution techniques: (PCT, multiresolution representation by high-pass filter / wavelets) => sometimes loss of information, no spectral fidelity

MMT nach Zhukov et al. Prinzip (stark vereinfacht): Klassifikation des geometrisch hochaufgelösten Bilds Ermittlung der durchschnittlichen Spektralsignatur im spektral hochaufgelösten Bild für jede Klasse Zuweisung dieser Spektralsignatur zu jeder Klasse des geometrisch hochaufgelösten Bilds Vorteil: Benötigt keine Korrelation zwischen Input-Images Fusion unterschiedlicher Wellenlängenbereiche möglich (VIS-TIR) Physikalischer Zusammenhang bleibt erhalten Sensor-Charakteristik (PSF) wird berücksichtigt Nachteil: Spektralsignatur wird über jede Klasse im Bild / Moving Window gemittelt ZHUKOV, B., OERTEL, D., LANZL, F. and REINHAECKEL, G. (1999): Unmixing-based multisensor multiresolution image fusion. IEEE Transactions on Geoscience and Remote Sensing, 37, pp. 1212 1225.

RESOLUTION - Prozessoraufbau Modularer, itertiver Ansatz Physikalisch - leistungsbasiert, d.h. Berücksichtigung der spektralen und räumlichen Energiebilanzierung Nachteil: spektrale Überlappung erforderlich Multispektral- und panchromatische Daten Vorverarbeitung VV Multispektrale Leistungsbilanz ML Datenfusion F Qualitätskontrolle Q Höher aufgelöste Multispektraldaten Räumliche Leistungsbilanz RL Iterative Verbesserung Schematische Darstellung des Resolution-Prozessors

RESOLUTION First Results Landsat7 ETM+ Fusion of full scene Pan-Merge, 1 Iteration Calculation time: <6 min PAN Band 4-3-2 Fused Image (4-3-2)

Synthetic Scenes

Without Fusion MMT WI MMT MW Fusion - Results Synthetic Scene Reference PCA Fusion LowRes 126 bands VNIR/SWIR HighRes 4 bands VNIR Spatial improvement by factor 5

Fusion Scene Simulation HyMap scene Barrax, La Mancha (126 fused bands, CIR band combination) Left half: HyMap-Data, geometric resolution decreased by a factor of 5 using PSF simulation Right half: Reconstructed to original resolution using MMT-WI fusion

Fusion - Results Reference PCT Fusion MMT WI MMT WI with improved parameters Without Fusion MMT MW Classified input scene for MMT HyMap-Scene Barrax, Spain (Subset) Red: Band 25 Green: Band 40 Blue: Band 105

Fusion - Results When fusing hyperspectra data, spectral fidelity of fused image must be guaranteed!

Measuring Fusion Performance Visual assessment Scene statistics (bandwise mean, stdev, dynamic range) Difference to reference scene (correlation, RMSE) Spectral properties of fused image (spectral errors) Accuracy of image classification Methodology by Wald et al. (ERGAS) Universal Image Quality Index by Wang & Bovik

Conclusions Fusion of hyperspectral data requires Adequate pre-processing Image-to-image co-registration Adequate fusion algorithms Perspective from 2007 onward: State-of-the-art VIS, SWIR & TIR ARES data & very high spatial res. ADS40, incl. DSM available operationally on the same platform Full potential and the synergy of both sensors can be exploited by data fusion

References Bachmann, M.; Habermeyer, M. (2003): Evaluation of Image Fusion Techniques for Large-Scale Mapping of Non-Green Vegetation. In: Proc. 3rd EARSeL Workshop on Imaging Spectroscopy, Herrsching, 13-16 May 2003 Colditz, R.; Wehrmann, T.; Bachmann, M.; Steinnocher, K.; Schmidt, M.; Strunz, G.; Dech, S. (2006): Influence of Image Fusion Approaches on Classification Accuracy A Case Study. International Journal of Remote Sensing, 27 (15)