6. Licht, Farbe und Bilder

Ähnliche Dokumente
5. Licht, Farbe und Bilder

6. Licht, Farbe und Bilder

Wiederholung: 100 THz 100 GHz 100 MHz 100 khz 1 pm 1 nm 1 m 1 mm 1 m 1 km. Sichtbares Licht

Einführung in die Medieninformatik 1

Grundlagen digitaler Bildbearbeitung

Bildschirmauflösungen im Vergleich (verkleinert!)

Grafikformate. Grafikformate. Digitale Bildverarbeitung Bildkompression

Grafikformate. Auflösung Farbtiefe Farbmodelle

Bildbearbeitung: Grafikformate II und Farbmodelle

6. Licht, Farbe und Bilder

Digitale Bildverarbeitung (DBV)

JPEG, PDF & Co. JPEG, PDF & Co. Theorie und Praxis zu Bildern auf Computern und Druckern

Zielstellung - "bildhafte" Darstellung von Informationen. "Ein Bild sagt mehr als 1000 Worte"

Digital Imaging Einführung

Digitale Bilder. Ein Referat von Jacqueline Schäfer und Lea Pohl Am

Datenbanken und Informationssysteme. Bildbearbeitung. DI (FH) Levent Öztürk

Datenbanken und Informationssysteme. Bildbearbeitung. DI (FH) Levent Öztürk

EDV-Anwendungen im Archivwesen II

Farbtiefe. Gängige Farbtiefen

Grafikformate 2

FARBEN IM INTERNET FARBWERTE, FARBTIEFEN IN DER BILDBEARBEITUNG

Grafikformate: JPG - PNG

(frzlab.wifa.uni-leipzig.de)

Web Datei Formate GIF JPEG PNG SVG. Einleitung. GIF Graphic Interchange Format. JPEG Joint Photographic Expert Group. PNG Portable Network Graphic

Sitzung: Bilder für das WWW

Bilddatenformate BMP GIF JPG. Digitale Bildverarbeitung Liedtke 7.1. Bezeichnung: Microsoft Windows Bitmap, BMP, DIB

Kennen, können, beherrschen lernen was gebraucht wird

Photoshop Abspeichern von Dokumenten...

Grafikformate und ihre Anwendung

Übung zur Vorlesung. Digitale Medien. Vorlesung: Heinrich Hußmann Übung: Renate Häuslschmid, Hanna Schneider

PRODUKTION UND GESTALTUNG INTERAKTIVER MEDIEN

376 6 Bilder und Grafiken für das Web

Eine verlustbehaftete Komprimierung ist es, wenn wir einige Kleidungsstücke zu


JPEG-Format GIF-Format PNG-Format

Grafikformate Ein kurzer Überblick

Digitale Medien. Übung

Grafikformate. digitale Bilddateien. Andre Hoffmann - HS Bremerhaven - SoSe 2005

DATEIFORMATE 1 7 PHOTOSHOP CS6 DATEIFORMATE

Panorama der Mathematik und Informatik

10%, 7,57 kb 20%, 5,3 kb 30%, 4,33 kb 40%, 3,71 kb 50%, 3,34 kb. 60%, 2,97 kb 70%, 2,59 kb 80%, 2,15 kb 90%, 1,62 kb 99%, 1,09 kb

Komprimieren von Bildern

(Kurs B2 Grundlagen der Bildbearbeitung)

Format Kompression Farbtiefe Speicherbedarf Eigenschaften bmp. Windows Bilder Bitmap. Bis 16,7 Mio Austauschformat zwischen Welten

ITG Mathefritz Informationstechnische Grundbildung

Computergrafiken lassen sich grob in zwei Kategorien einteilen: Vektorgrafiken und Bitmap-Grafiken, die man auch Pixelgrafiken nennt.

Photoshop Elements 12. Inhalt

Foto und Grafik. Arbeitsheft für den Informatikunterricht. Fotos, Pixel und Vektoren sowie Bildbearbeitung am PC. Name. ... Klasse ...

Referat von Yvonne Kaiser und Carolin Siebert

Vergleich von Komprimierungsverfahren

WM01 - DEMO - ECDL Image Editing

Bitmap-Grafikformate

Graphiken und Bilder. Grundlagen

Grafiken Teil 4/3.1 Seite 1

FARBTIEFE / KANÄLE 1 5

DATENFORMATE IM INTERNET

Stefan Gössner Multimedia: Eine Einführung. Was ist Multimedia? Was ist ein Medium? Was ist Multimedia? Multimedia?

Grafikdateien. Bei Computergrafiken werden grundsätzlich drei Kategorien unterschieden: Vektor-Format

Das Graphics Interchange Format

Geschichte Eigenschaften von PNG Bits n Bytes Verfahren zur Kompression/Dekompression Fazit (Vorteile,Nachteile) Das PNG-Dateiformat

Webdesign mit Photoshop 5

JPEG - Kompression. Steffen Grunwald, Christiane Schmidt, Stephan Weck TIT01EGR BA-Mannheim 21. Mai 2002

Bilder im Zusammenhang mit Geoinformatik sind u.a.: Luftbilder, Satellitenbilder Synthetische Bilder (z.b. digitale Oberflächenmodelle)

Theorie und Praxis bei der Optimierung von Grafiken für das WWW

Proseminar Datenkomprimierung Dr. U. Tamm. Bildkompression WS 2002/03. Florian Strunk

Graphikformate Ein kurzer Überblick

Web-fähige Grafiken erstellen. PRODUKT: CorelDRAW 8

Bildbearbeitung für Internet/Intranet. Christoph Runkel christoph runkel internetprojekte

Photoshop. Adobe Photoshop. Ein Referat von Canan Turan und Ellen Nagel - Screendesign WiSe 05/06 - Dozent Andreas Naurath

EDV-gestütztes Publizieren

Photoshop CS6 Grundlagen. Inhalt

Heute. 1. Rastergraphiken 2. Vektorgraphiken 3. Arten von Graphikdateien 4. Graphik Ein und Ausgabe

Digitalisierung von Fotos und Filmen

Sitzung: Bilder für das WWW

3. Aufgabe: Bitmap-Datei

Name: «Nachname», «Vorname»

Multimediatechnik / Video

EIN KLEINES DIGITALES FOTO-ABC

Web-basierte Anwendungssysteme XHTML-Tabellen und Bilder

Herbstschule 2006 Bildbearbeitung für die Erstellung von e-learning-material mit Photoshop CS

Basisinformationstechnologie II

Schnellanleitung: Bilder für das Internet optimieren

Abbildtreue und Kompression gescannter Dokumente bei PDF/A

Gängige Grafikformate

Kompression und Datenformate. Grundlagen der Bildspeicherung, Kompressionsverfahren, Datenformate

Digitale Medien Es ist ein Grundproblem der Menschen: Wir glauben, was wir sehen Frank Keil (Yale University)

Bilder im BMP Format (1)

Handbuch DatInf Measure

Speicherkonzepte von Pixel- und Vektorgrafik

Vektorgrafik / Bitmap (bmp)

Bilddateien. Für die Speicherung von Bilddaten existieren zwei grundsätzlich unterschiedliche Verfahren. Bilder können als

Der Rumpf. Titel Seite 3

y das Web als Hypermedia-System y "Hyper" kommt durch die Verlinkung y "Media" durch Multimediafähigkeiten

Bilder via Photoshop fürs Web optimieren

Digitale Medien Es ist ein Grundproblem der Menschen: Wir glauben, was wir sehen Frank Keil (Yale University)

Bilder. 2D Spiele programmieren in Java. Alpha channel. Formate. Optimierung. Empfehlung

HEMAG-CAD Installationplan und Schemazeichnen

Bildbearbeitung. Bildbearbeitung

Digital ProLine Das große Kamerahandbuch Sony Alpha Frank Exner DATA BECKER

Compitreff Wattwil: Bildbearbeitung

Transkript:

6. Licht, Farbe und Bilder 6.1 Licht und Farbe: Physikalische und physiologische Aspekte 6.2 Farbmodelle 6.3 Raster-Bilddatenformate Grundbegriffe für Bildspeicherung und -Bearbeitung Bitmap-Formate Verlustfrei komprimierende Formate 6.4 Verlustbehaftete Kompression bei Bildern 6.5 Weiterentwicklungen bei der Bildkompression Literatur: Quelle für Informationen zu diversen Dateiformaten: http://www.wotsit.org John Miano: Compressed Image File Formats, Addison-Wesley 1999 Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-31

Klassifikation von Bild-Dateiformaten Vektorgrafik Enthält keine Rasterdaten, sondern Beschreibung von Einzelobjekten Beispiele: SVG (Scalable Vector Graphics) und div. proprietäre Formate Rastergrafik (Bitmap) Speicherung der Rasterdaten eines Bildes Einfache verlustfreie Kompression Beispiele: BMP, TIFF Meta-Files Kombination von Vektorgrafik und Rasterdaten Beispiele: WMF (Windows Meta File), Macintosh PICT Erweiterte Bitmap-Formate Bessere Kompression, zusätzliche Funktionalität (z.b. Animation) Beispiele: GIF, PNG Stark komprimierende Formate (Auch) verlustbehaftete Kompression Beispiel: JPEG Hinweis: Mehr Informationen zu SVG/Vektorgrafik später in der Vorlesung Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-32

Bildgröße und Auflösung Pixel (picture element): Kleinste Einheit eines Bildes, Bild punkt Die tatsächliche Größe eines Pixels hängt vom Ausgabegerät ab. Seitenverhältnis (pixel aspect ratio) muss nicht 1 sein Bildgrösse für Bildschirmdarstellung in Pixel Beispiel: Bild der Größe 131 x 148 Pixel Auflösung: Anzahl der Pixel, die auf einer bestimmten Strecke zur Darstellung zur Verfügung stehen Angabe in ppi (pixel per inch), Standardwert 72 ppi (d.h. 1 Pixel = 1 Pica-Punkt) Zusammenhang Abmessungen / Auflösung / Pixelgröße: Breite [px] = Breite [in] * Auflösung [ppi] Skalierung: Konversion des Bildes auf andere Auflösung (resampling) Abwärtsskalierung, Herunterrechnen : Bildung von Mittelwerten Aufwärtsskalierung, Hochrechnen :» Nur eingeschränkt automatisch möglich» Diverse Interpolationsalgorithmen (z.b. "Bi-kubische Interpolation") Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-33

Anschaulich: Anzahl der Pixel im Bild 100 50 25 12 Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-34

Anti-Aliasing Durch unzureichende Abtastrate können ungewünschte sichtbare Erscheinungen entstehen. z.b. Treppeneffekte, verschwundene Öffnungen Anti-Aliasing-Technik für Farbübergänge und Kanten: Bild einer höheren Auflösung wird künstlich erzeugt Jedes neue (kleine) Pixel wird mit einer Mischfarbe nach Anteil an den beiden beteiligten Flächen belegt Effekt: Kantenglättung Problem: Finden der Objekte bei Bild-Nachbearbeitung (z.b. Objektmarkierung mit Zauberstab ) Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-35

Farbtiefen und Farbkanäle Farbtiefe (color resolution): Anzahl der Farben, die pro Pixel gespeichert werden können Typische Werte:» 2 Farben (1 bit) = schwarz-weiss» 16 Farben (4 bit)» 256 Farben (8 bit)» 16,7 Millionen Farben (24 bit) True Color :» 24 bit Farbtiefe» 1 Byte je Grundfarbe (R, G, B) Farbkanal: Teil der gespeicherten Information, der sich auf eine der Primärkomponenten des gewählten Farbmodells bezieht Bei Rohdaten meist: Rot, Grün und Blau (RGB-Modell) bei Druckvorbereitung auch CMY bzw. CMYK ( Vierfarbdruck ) Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-36

Anschaulich: RGB Farbkanäle Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-37

Farbpaletten und indizierte Farben Farbpalette: Die Menge der in einem konkreten Bild tatsächlich enthaltenen Farben Teilmenge der insgesamt möglichen Farben Indizierte Speicherung: Farbpalette (Tabelle) enthält die im Bild vorkommenden Farben Pro Pixel wird nur der Index in die Palettentabelle gespeichert 1 1 1 1 1 1 1 1 1 2 2 3 3 2 2 1 1 2 2 2 2 2 2 1 1 3 2 0 0 2 3 1 1 3 2 0 0 2 3 1 1 2 2 2 2 2 2 1 1 2 2 3 3 2 2 1 1 1 1 1 1 1 1 1 0 1 2 3 R 35 G B 101 128 128 0 64 99 92 254 156 227 227 Speicherplatz: 8 x 8 x 2 bit + 4 x 3 x 8 bit + 4 x 2 bit = 232 bit (statt 1536 bit) Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-38

Dithering Farbverläufe sind bei Reduzierung auf wenige Palettenfarben schlecht darstellbar Dithering: Darstellung von Verläufen durch Punktmuster höherer Auflösung, wobei die einzelnen Punkte Farben aus der verkleinerten Palette haben Bekanntester Algorithmus: Floyd-Steinberg Wird oft auch von Anzeigeprogrammen (z.b. Browsern) durchgeführt Ausschnittvergrösserung: 16,7 Mio Farben 16 Indexfarben ohne Dithering 16 Indexfarben mit Dithering Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-39

Beispiel: 2, 4, 256 Helligkeitsstufen je Farbkanal 256 4 2 2 + dither Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-40

Transparenz: Alphakanal Bilder bestehen oft aus verschiedenen Elementen, die sich überlagern z.b. Hintergrund, Vordergrund Zum Überlagern müssen oft Objekte transparent (durchscheinend) werden Alphakanal: Zusätzliche Information zu einem Bild, die den Grad der Transparenz angibt Sinnvoll vor allem bei der Zusammensetzung eines Bildes aus verschiedenen Ebenen (layers) Häufig verwendet in Bildbearbeitungsprogrammen Technisch: Zusätzliche Information pro Pixel ( RGBA-Farbmodell ) aaaaaaaa A B C aaaaaaaa A B C Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-41

Gamma-Korrektur Jedes Ausgabegerät zeigt Farben geringfügig anders an Phosphortypen bei Monitoren Grafik-Subsysteme verschiedener Betriebssysteme (z.b. Macintosh vs. Windows) Gammawert: beschreibt das Verhältnis zwischen den gespeicherten und auf dem aktuellen Anzeigegerät angezeigten Farben im Wesentlichen Änderung der Helligkeit, Details gleich! Gammakorrektur: Anpassung der angezeigten Farben an die beabsichtigten Farben Bei der Anzeige auf einem bestimmten Monitor (ohne Monitoreinstellungen zu verändern) Bei der Anzeige von Dateien aus fremden Plattformen, deren Gammawert bekannt ist Gammakorrektur wird realisiert in: Bildbearbeitungsprogrammen Anzeigeprogrammen für bestimmte Dateiformate (z.b. PNG) Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-42

Mathematische Beschreibung: Gamma 1 1 0,9 0,9 0,8 0,8 0,7 0,7 0,6 0,5 0,6 0,5 0,4 0,4 0,3 0,3 0,2 0,2 0,1 0,1 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Röhrenmonitor mit Phosphor als Leuchtstoff: Steuerspannung u von 0,0 bis 1,0 * u max Helligkeit h von 0,0 bis 1,0 * h max Verhältnis von Helligkeit eines Punktes zur Steuerspannung ist nicht linear, sondern exponentiell: h = u wobei (sprich: Gamma) = 2,5 Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-43

6. Licht, Farbe und Bilder 6.1 Licht und Farbe: Physikalische und physiologische Aspekte 6.2 Farbmodelle 6.3 Raster-Bilddatenformate Grundbegriffe für Bildspeicherung und -Bearbeitung Bitmap-Formate Verlustfrei komprimierende Formate 6.4 Verlustbehaftete Kompression bei Bildern 6.5 Weiterentwicklungen bei der Bildkompression Literatur: Quelle für Informationen zu diversen Dateiformaten: http://www.wotsit.org Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-44

Windows BMP-Format Standardformat aus Microsoft DOS und Windows Rasterformat mit zulässigen Farbtiefen 1, 4, 8 und 24 bit Verwendet eine Farbpalette (color table) (bei niedrigeren Farbtiefen als 24 bit) Besteht aus: Kopfinformation Farbtabelle Daten Datenablage zeilenweise 4- und 8-bit-Variante unterstützen Lauflängen-Kompression: RLE4 und RLE8 Zwei Bytes (RLE8) bzw. Halbbytes (RLE4) als Einheit:» Erstes Byte: Anzahl der beschriebenen Pixel» Zweites Byte: Index in Farbtabelle für diese Pixel Spezielle Variante mit Alphakanal: BMP4 Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-45

Tagged Image File Format TIFF Entwickelt ca. 1980 von Aldus (Firma Aldus inzwischen von Adobe übernommen) Portabilität, Hardwareunabhängigkeit, Flexibilität Unterstützt ca. 80 verschiedene Varianten zur Datenspeicherung und deren Kombination z.b. schwach aufgelöstes Preview -Bild und hochaufgelöstes Bild Farbmodell explizit angegeben Kann Metainformation (z.b. über Ursprungshardware) speichern Grundstruktur: Header Liste von Image File Directories» Image File Directory: Liste von Tags (jeweils pro Tag: Typ, Datentyp, Länge, Zeiger auf Daten) Datenbereich Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-46

6. Licht, Farbe und Bilder 6.1 Licht und Farbe: Physikalische und physiologische Aspekte 6.2 Farbmodelle 6.3 Raster-Bilddatenformate Grundbegriffe für Bildspeicherung und -Bearbeitung Bitmap-Formate Verlustfrei komprimierende Formate 6.4 Verlustbehaftete Kompression bei Bildern 6.5 Weiterentwicklungen bei der Bildkompression Literatur: John Miano: Compressed Image File Formats, Addison-Wesley 1999 Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-47

GIF-Format: Allgemeines GIF = Graphics Interchange Format eingeführt von CompuServe 1987 ( GIF87a ) Heute verwendete Version von 1989 ( GIF89a ) mit kleinen Modifikationen Verlustfreie Kompression (mit LZW) Kleiner Farbumfang (max. 256 Farben in einem Bild) Flexible Anzeigeoptionen (z.b. interlaced und Animation) Optimal für kleinere Grafiken und Gestaltungselemente Wenig geeignet für hoch auflösende Bilder (z.b. Fotos) Patent-Streit: Unisys hat Patent auf den verwendeten LZW-Algorithmus 1999: Ankündigung von Lizenzforderungen für GIF-Grafiken Initiativen zum Ersatz von GIF (z.b. durch PNG) Im folgenden: Weit gehend komplette Darstellung des Formats (als typisches Beispiel) Abgrenzungszeichen, Blocklängenfelder etc. hier nicht beschrieben Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-48

BNF-Grammatik für das GIF-Format <GIF Data Stream> ::= Header <Logical Screen> <Data>* Trailer <Logical Screen> ::= Logical Screen Descriptor [Global Color Table] <Data> ::= <Graphic Block> <Special-Purpose Block> <Graphic Block> ::= [Graphic Control Extension] <Graphic-Rendering Block> <Graphic-Rendering Block> ::= <Table-Based Image> Plain Text Extension <Table-Based Image> ::= Image Descriptor [Local Color Table] Image Data <Special-Purpose Block> ::= Application Extension Comment Extension Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-49

Global Color Table in GIF Eine GIF-Datei kann mehrere Bilder enthalten. Farbtabellen (Paletten) entweder global für alle enthaltenen Bilder (Global Color Table) oder lokal je Bild Lokale Farbtabelle hat Vorrang vor globaler Tabelle Hintergrundfarbe für Gesamtdarstellung möglich, wenn globale Farbtabelle existiert Sortierung der globalen Farbtabelle: Reihenfolge der Farben in globaler Farbtabelle nach Häufigkeit sortiert Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-50

GIF-Elemente im Detail (1) Header: Signatur GIF Version (87a oder 89a) Logical Screen Descriptor: Breite und Höhe des logischen Bildschirms in Pixel Global Color Table Flag (ist eine solche Tabelle vorhanden?) Color Resolution (Welche Auflösung hatte das Ursprungsbild?) Sort Flag (Ist die globale Farbtabelle sortiert?) Size of Global Color Table s (maximale Anzahl im Bild benutzter Farben) Background Color Index (Hintergrundfarbe - Index in die globale Farbtabelle) Pixel Aspect Ratio (Seitenverhältnis der Pixel) Global Color Table (optional) 3* 2 s +1 Bytes, jeweils Rot-, Grün- und Blau-Wert Grammatik Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-51

Transparenzfarbe in GIF In GIF (89) kann eine Farbe der Tabelle als transparent gekennzeichnet werden. Pixel dieser Farbe werden nicht angezeigt, statt dessen Hintergrund Das ist keine echte Transparenz im Sinne eines Alphakanals! Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-52

GIF-Elemente im Detail (2) Graphic Block: entweder Bild (Table-Based Image) oder Textblock Textblöcke in der Praxis kaum verwendet Graphic Control Extension (nur in GIF89): Disposal Method (Was passiert nach abgeschlossener Anzeige?)» Optionen: Keine Aktion, Hintergrundfarbe, früheres Bild User Input Flag (Benutzereingaben erwartet? - kaum verwendet) Transparency Flag (Wird eine Transparenzfarbe benutzt?) Delay Time (Wartezeit bis nächstes Bild angezeigt wird) Transparency Index (Index in Farbtabelle für Transparenzfarbe) Grammatik Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-53

Interlacing in GIF Ziel: Kürzere empfundene Ladezeit für Betrachter, z.b. bei Web-Grafik Bild wird schrittweise in Zeilen aufgebaut 1. Durchlauf: Jede 8. Zeile beginnend in Zeile 0 2. Durchlauf: Jede 8. Zeile beginnend in Zeile 4 3. Durchlauf: Jede 4. Zeile beginnend in Zeile 2 4. Durchlauf: Jede 2. Zeile beginnend in Zeile 1 Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-54

GIF-Elemente im Detail (3) Image Descriptor: Image Top Position (Lage der linken oberen Ecke auf dem log. Bildschirm) Image Width & Height (Breite und Höhe des Einzelbildes) Local Color Table Flag (Gibt es eine lokale Farbtabelle?) Interlace Flag (Wird Interlacing verwendet?) Sort Flag (Ist die lokale Farbtabelle sortiert?) Local Color Table: Analog zur Global Color Table Table Based Image Data LZW Minimum Code Size: Startlänge der LZW-Codes Image Data: Bilddaten, LZW-komprimiert, strukturiert in 255-Byte-Blöcke Grammatik Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-55

LZW-Algorithmus beim GIF-Format In den Datenbereich eingetragen werden: Indizes in die aktuelle Farbtabelle (Länge meist 8 bit) als Repräsentation von Einzel-Pixeln Weitere Indizes (Länge zwischen Pixel-Indizes+1 und 12 bit) als Repräsentation von Pixelfolgen (zeilenweise) Startbelegung der LZW-Code-Tabelle ist implizit mit der Farbtabelle gegeben Rücksetzen der LZW-Codierung Spezieller Reset-Code (clear code) erlaubt völligen Neustart der Codierung Im Prinzip an jeder Stelle möglich, v.a. am Beginn eines neuen Bildes Packen von Bitcodes in Bytes Codes werden in Bytes (8-bit-Worte) gepackt Platzersparnis gegenüber 1 Byte (oder mehr) je Codewert Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-56

Animated GIF GIF-Datei mit mehreren Bildern als einfacher Film Bilder enthalten verschiedene Stadien der Animation Anzeigeprogramm zeigt zyklisch die verschiedenen Bilder an, mit definierter Wartezeit dazwischen Praktische Bedeutung: Eine der einfachsten Formen, Besucher von Web-Seiten vom eigentlichen Inhalt abzulenken... Heutzutage sehr schwach im Vergleich zu Animationstechniken wie Macromedia Flash (sh. später) Dennoch: Einfach handzuhaben und plattformübergreifend stabil implementiert GIF Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-57

Special Purpose Blocks in GIF Application Extension Möglichkeit für Hersteller, nach Registrierung bei Compuserve spezielle Informationen zur Aktivierung von Programmfeatures zu hinterlegen Weit verbreitet:» Netscape 2.0 Loop Extension» Realisiert Animation von GIFs Comment Extension Möglichkeit zur Ablage von nicht angezeigter Metainformation z.b. Autor, Copyright, Kontakt Grammatik Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-58

Portable Network Graphics PNG ( Ping ) Geschichte: Ausgelöst durch Compuserve s Ankündigung, auf das GIF-Format Lizenzgebühren zu erheben (1994) Arbeitsgruppe beim W3C für PNG, standardisiert 1996 PNG ist offen und lizenzfrei Ziel: Besserer Ersatz für GIF, teilweise auch Ersatz für JPEG Mäßige praktische Verbreitung Farbtiefen: 24 oder 48 bit TrueColor, 8 oder 16 bit Graustufen, Paletten bis 256 Farben (optional) Hauptvorteile: Völlig verlustfrei ("Deflate"-Algorithmus: Lempel-Ziv- + Huffman-Kompression) Echter Alpha-Kanal Gamma-Korrektur (Gamma-Wert der Quellplatform speicherbar) Verbessertes Interlacing (7-Pass-Algorithmus Adam7 ) Bessere Kompression (Kompressionsfilter) Integritätstest für Dateien (magic signature, CRC-32) Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-59

PNG: Beispiel Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-60

Echter Alpha-Kanal in PNG Alpha-Werte pro Pixel gespeichert 4 Bytes pro Pixel: RGBA -Farbmodell Ermöglicht elegante Schatten und Übergänge zwischen Grafik und Hintergrund Vermeidet Wechselwirkungen zwischen Anti-Aliasing und Transparenzfarbe Bei binärer Transparenz wie in GIF oft weißer Rand um transparente Grafiken aufgrund von Anti-Aliasing (erzeugt nicht-transparente Farben) Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-61

Kompressionsverbesserung durch Filter in PNG Beispiel: Wertfolge 1, 2, 3, 4, 5, 6, 7, 8, 9, Komprimiert extrem schlecht mit LZ-artigen Algorithmen Filter (Prädiktion): Ersetze alle Zahlen (außer der ersten) durch die Differenz zur vorhergehenden Wertfolge: 1, 1, 1, 1, 1, 1, 1, 1, 1, Komprimiert exzellent! (viele Wiederholungen) Filter in PNG: Sub: Differenz zum linksstehenden Byte Up: Differenz zum darüberstehenden Byte Average: Differenz zum Durchschnitt der Sub- und Up-Bytes Paeth: Differenz zum Paeth-Prediktor» Benutzt linksstehendes, darüberstehendes und "links oben" stehendes Byte Heuristiken zur Wahl des passenden Filters Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-62

Welches Format wofür? Für Web-Grafiken (klein, geringe Farbanzahl) GIF oder PNG Für Bilderzeugung mit Scanner oder Austausch über diverse Geräte hinweg: TIFF Für hochauflösende Bilder mit vielen Farben (Fotos) JPEG (wegen wesentlich besserer Kompression) Bei grossen einheitlichen Farbflächen evtl. auch PNG (beste Qualität) Ludwig-Maximilians-Universität München Medieninformatik, Prof. Butz Digitale Medien WS 2006/2007 6-63