Ionenverteilungen beim Magnetronsputtern verschiedener Metalle in Argon/Sauerstoff

Ähnliche Dokumente
Ion beam sputtering of Ag: Properties of sputtered and scattered particles

Unravelling the systematics in ion beam sputter deposition of SiO 2. M. Mateev, T. Lautenschläger, D. Spemann, C. Bundesmann

Simulation of a Battery Electric Vehicle

Numerical Analysis of a Radiant Syngas Cooler

Stefan Seeger, Klaus Ellmer. HMI-Berlin Abteilung Solare Energetik Glienicker Str Berlin.

Fluorescence studies using low energy electron beam excitation

auf differentiellen Leitungen

Efficient Monte Carlo Simulation of Tunnel Currents in MOS Structures

Titanium The heaviest light metal

Routing in WSN Exercise

Simulating the Idle: A New Load Case for Vehicle Thermal Management

Chemical heat storage using Na-leach

LS Kopplung. = a ij l i l j. W li l j. = b ij s i s j. = c ii l i s i. W li s j J = L + S. L = l i L = L(L + 1) J = J(J + 1) S = s i S = S(S + 1)

Hazards and measures against hazards by implementation of safe pneumatic circuits

Die Bedeutung neurowissenschaftlicher Erkenntnisse für die Werbung (German Edition)

Cycling and (or?) Trams

Stahl-Zentrum. Koksqualität und Hochofenleistung - Theorie und Praxis. Düsseldorf, 05. Dezember Peter Schmöle

SAFETY CONSIDERATIONS ON LIQUID HYDROGEN (PART 2)

Air-Sea Gas Transfer: Schmidt Number Dependency and Intermittency

Gas discharges. For low temperature plasmas:electric fields are important (stationary (DC) or alternating current (AC)) E - -

Meteorological measurements at the Offshore Platform FINO 2 - new insights -

Cycling. and / or Trams

Climate change and availability of water resources for Lima

Numerical analysis of the influence of turbulence on the exchange processes between porous-medium and free flow

FIVNAT-CH. Annual report 2002

Newest Generation of the BS2 Corrosion/Warning and Measurement System

Shock pulse measurement principle

Integrating storages in energy regions and local communities a range of storage capacities

Proposal for Belt Anchorage Points

Delta 2.4 W-Lan EINBAUANLEITUNG MOUNTINGINSTRUCTIONS

USBASIC SAFETY IN NUMBERS

GIS-based Mapping Tool for Urban Energy Demand

Energiespektrum der Sonnenneutrinos

Sintering of PM Tool Steels supported by Computational Thermodynamics

Ein Stern in dunkler Nacht Die schoensten Weihnachtsgeschichten. Click here if your download doesn"t start automatically

Asynchronous Generators

Mobility trends in the Baltic Sea Region

Mock Exam Behavioral Finance

technische universität dortmund Fakultät Bio- & Chemieingenieurwesen Mechanische Verfahrenstechnik

Neue Technologien für die Übertragungsnetze von Morgen

Wakefield computation of PETRAIII taper section Laura Lünzer

Dynamic Hybrid Simulation

- Characteristic sensitive Small temperature differences. - Low Sensitivity 42,8 µv/k for Cu-Constantan

Influence of dust layer thickness. on specific dust resistivity

Bosch Thermotechnik. Thermotechnology

AS Path-Prepending in the Internet And Its Impact on Routing Decisions

Toses GmbH & Co KG Geschäftsführer Burkhard Walder

technical documents for extraction and filter devices type series 220

WELDING ARTICLE. Plasma welding with aluminium materialsdirect or alternating current? Plasma welding

High Power Langpass-/Kurzpass- Spiegelbeschichtungen. High Power Long-pass/Short-pass Mirror Coatings

Neue Entwicklungen an der Göttinger Testanlage für elektrische Raumantriebe

Delta 2.4 W-LAN EINBAUANLEITUNG MOUNTINGINSTRUCTIONS

Molecular dynamics simulation of confined multiphasic systems

tigspeed oscillation drive 45 hotwire

2 Grad globale Erwärmung: Was bedeutet das für unser Klima?

Comparison of the WB- and STAMP-Analyses. Analyses of the Brühl accident. 2. Bieleschweig Workshop. Dipl.-Ing. Oliver Lemke. Lemke,

Extended Petri Nets for. Systems Biology. LFE Practical Informatics and Bioinformatics. Department Institut für Informatik.

Call Centers and Low Wage Employment in International Comparison

TV- und Bildschirmhalterungen TV and monitor screen mounts

Introduction FEM, 1D-Example

Radio Frequency Systems

Quality assurance of soft drinks and juices by color measurements

Mitglied der Leibniz-Gemeinschaft

Contaminant Mass Discharge Estimation in Groundwater Based on Multi-Level Well Data. Evaluation of Expected Errors. Markus Kübert, Michael Finkel

Die Intrige: Historischer Roman (German Edition)

Eingebettete Taktübertragung auf Speicherbussen

Lukas Hydraulik GmbH Weinstraße 39 D Erlangen. Mr. Sauerbier. Lukas Hydraulik GmbH Weinstraße 39 D Erlangen

Test report. Bericht Nr.: PH001/10. Gruppe Physik Seite 1 von 6. Liquisol Mr. Tom Huymans Lindberg Oelegem BELGIUM. Client: Order No.

Measurement of the Thermophysical Properties of Phase Change Materials using Laser Flash

Network premium POP UP Display

Serviceinformation Nr. 05/10

glass made for the sun

Online Learning in Management

Datenblatt. Remote-I/O - u-remote UR20-4AO-UI or 4-wire connection; 16-bit resolution; 4 outputs

Neueste Entwicklungen zum Aufbau einer Plasmadiagnostik mittels optisch gefangener Mikropartikel

Where are we now? The administration building M 3. Voransicht

ISONs Überbleibsel Kann der Schweifrest nachgewiesen werden? Sind Meteore zu erwarten?

Fluid-Particle Multiphase Flow Simulations for the Study of Sand Infiltration into Immobile Gravel-Beds

Vorlesung Waldwachstumskunde. Bio-Mechanik am Baum. Zusammenstellung: O.U. Bräker Swiss Federal Research Institute WSL, CH-8903 Birmensdorf

Pilot Project Biogas-powered Micro-gas-turbine

Summary Details for Performance, Duration and Acoustic Measurements for the. Aircon 10S Wind Turbine. UK MCS Certification Summary

Polymer & Metallbeschichtung

Presentation of a diagnostic tool for hybrid and module testing

1 Title Detail specification for high screened coaxial RF-cable with tin soaked braid. Generic specification: IEC , IEC

Geschäftsprozesse und Regeln

Technische Universität Kaiserslautern Lehrstuhl für Virtuelle Produktentwicklung

Context-adaptation based on Ontologies and Spreading Activation

Methoden moderner Röntgenphysik II Methods in modern X-ray physics II

Geostatistics for modeling of soil spatial variability in Adapazari, Turkey

Integration of a CO 2 separation process in a coal fired power plant

Prediction Market, 28th July 2012 Information and Instructions. Prognosemärkte Lehrstuhl für Betriebswirtschaftslehre insbes.

Produktdatenblatt. Artikel Nr.: Deckeneinbauring, Mizar I, Weiß-matt, 12V AC/DC, 1x max. 35,00 W. Technische Daten.

Possible Contributions to Subtask B Quality Procedure

1. General information Login Home Current applications... 3

Tunnelspitzen. Vorlesung. Rastersondenmikroskopie WS 2010/11. Spitzenätzung. Themenüberblick. Priv. Doz. Dr. A. Schirmeisen

Industrial USB3.0 Miniature Camera with color and monochrome sensor

Introduction FEM, 1D-Example

Separation of Manure and Digestate with the Aim of Phosphore and Biogas Utilization

advertising Kindermoden Nord 4 6 February 2017 trade fair : Kindermoden Nord 4 6 February 2017 deadline : 20 December 2016 A04_DE_Werbung

ABB i-bus EIB. EIB Power Supply Units

Transkript:

Th. Welzel, K. Ellmer Institut für Solare Brennstoffe und Energiespeichermaterialien HahnMeitnerPlatz 1, D1419 Berlin Email: thomas.welzel@helmholtzberlin.de Ionenverteilungen beim Magnetronsputtern verschiedener Metalle in Argon/Sauerstoff XVII. Erfahrungsaustausch "Oberflächentechnologie mit Plasma und Ionenstrahlprozessen Mühlleithen, 2. 4. März 21

Content: 1. Introduction 2. Experimental 3. Discharge Voltages 4. Mass Spectra 5. Positive Ion Distributions 6. Negative Ion Distributions 7. Summary

Introduction one of the main advantages of magnetron sputtering: assistance of the film formation by energetic particles neutrals from the sputtering process electrons from the plasma high energies due to electric fields ions (positive and negative) radicals compound formation by admixture of reactive gas component (O 2, N 2, CH 4, H 2 S,...) reactive mode... particularly high (negative) ion energies These ion energies may in some cases (e.g. microelectronics, photovoltaics) be too high and detrimental causing radiation damage in the films. Adjustment/suppression needs knowledge of ion formation mechanisms and energies.

Measurement of Ion Distributions schematic representation of the measurement setup V mass spectrometer: plasma process monitor PPM 422 (Inficon) in place of substrate holder 6 mm distance from target energy range:... ± 5 ev mass range:... 5 amu entrance orifice (Ø = 1 mm) at floating potential acceptance angle of few degrees: only perpendicular incidence sputter setup: circular planar magnetron ( = 5 mm), d.c. discharge, P = 5 W different target materials: Mg, Cu, In, W working gas: 1 % Ar (nonreactive) 5 % Ar + 5 % O 2 (reactive) working gas pressure:.5 Pa... 1.7 Pa

Target Voltages in Ar and Ar/O 2.9 Pa, 5 W const. power Depla et al., JAP 11 (27) 1331 const. current U met [V] U ox [V] U ox /U met γ met U ox /U met γ ox Mg 276 ± 2 155 ± 1.56.14.47.41 Cu 281 ± 1 325 ± 3 1.2.82 1.4.71 In 397 ± 9 395 ± 9.99.1.92 W 246 ± 12 418 ± 6 1.7.1 <.8 tungsten: according to U ox /U met γ ox /γ met much lower than for Cu (.87)

Mass Spectra with Cu Target + (E i = 1 ev) (E i = 17 ev) 1 6 Ar + Cu + + Ar 2 1 5 1 4 Cu 2 + Cu Ar 1 6 1 5 1 4 O + O 2 + Ar + Cu + Ar + 2 /CuO + + CuO 2 Cu 2 + CuAr + Cu 2 O + O O 2 O O 2 O 3 Cu CuO CuO 2 Cu 2 Cu 2 O Ar/O 2 2 4 6 8 1 12 14 16 m/z 2 4 6 8 1 12 14 16

Positive Ion Distributions: Typical Spectra Ar Ar/O 2 1 6 1 4 1 2 W + (184) Ar + (36) O + (16) 4 6 8 1 12 14 general: peak at low energy (~ev pl ) highenergy tail (sputter distribution) additional Ar + @ 5... 1 ev nonreactive (Ar): mainly M + and Ar + impurity signals of O + (MO x+ ) 1 6 1 4 1 O + (16) W + (184) + WO 2 (216) reactive (Ar/O 2 ): mainly Ar +, O +, and O 2 + O + extended to very high energy weak M + (reduced sputter yield) different molecules M (y) O x + 2 4 6 8 1 12 14 W target, P = 5 W, p =.5 Pa, centre, 6 cm distance

Positive Ion Distributions: HighEnergetic Working Gas (Ar + ) Meas. 1 4 1.5 Pa.9 Pa 1.7 Pa broad maximum/extension at energies of several 1 ev to (some) 1 ev: dependent on target mass (not for Cu, Mg) dependent on gas phase collisions TRIM 2 4 6 8 1 12 14 gas heating or projectile reflection # of Reflected Ar [a.u.] 1 1 1 2 4 6 8 1 12 14 Energy of Reflected Ar [ev] TRIM simulations (Ar + (256 ev) W): similar distribution slightly higher energy (no collisions) only for heavy targets W target, P = 5 W, Ar, centre, 6 cm distance

Positive Ion Distributions: HighEnergetic Working Gas (O + ) Meas. TRIM # of Reflected O [a.u.] 1 6 1 4 1 1 1 1 25.5 Pa.9 Pa 1.7 Pa ev T ~155 ev 5 75 1 125 15 175 25 5 75 1 125 15 175 Energy of Reflected O [ev] 2 2 broad maximum/extension to energies far above 1 ev: observed for every target material MgO: low discharge voltage (~155 V) signal extents to full voltage equivalent TRIM simulations (O + (158 ev) MgO): energy of reflected O much too low In contrast to Ar + (reflection + postionisation), highenergetic O + is not due to reflected atoms instead to O. Mg target, P = 5 W, Ar/O 2, centre, 6 cm distance

Negative Ion Distributions: Typical Spectra Ar weak signals in nonreactive mode: Ar/O 2 1 5 1 1 1 5 1 1 1 O (16) W (184) 2 3 4 W (184) WO 3 (232) O (16) 5 metal ions, if E a > (W, In, Cu) weak impurities more signal(s) in reactive mode: O,O 2, M (y) O x highenergy (several 1 ev) peak lowenergy signal (< 1 ev) partially midenergy peaks general: lowenergy cutoff: E min =ev fl to enter PPM no detection of cold ions formed from working gas 1 2 3 4 5 W target, P = 5 W,.5 Pa, centre, 6 cm distance

Negative Ion Distributions: HighEnergy Peak 1 6 1 5 IDF of O for different target materials, normalised to the respective target voltage V T 1 4 O peak generally located at ev T negative O ions formed directly at the target surface accelerated by full sheath potential 1 1 5 W d.c.,.5 Pa Ar/O 2 W, Cu In, Mg similar for all other negative ions..2.4.6.8 1. 1.2 1.4 Normalised Energy E i /ev T

Negative Ion Distributions: HighEnergy Tail f U surface binding energy g(e ) Gauß distribution around E mean (Mraz et al., JAP 1 (27) 2353) 1 4 1 1 25 CuO 2 3 1 4 1 1 E E E ( E) ~ g( E ) Emin (( E E ) + U ) 25 35 4 CuO 1 1 3 3 de 1 4 45 25 35 4 5 O 2 3 35 4 45 1 4 1 1 25 5 O 3 45 E mean = (338 ± 1) ev σ = (6.5 ± 1) ev 35 4 5 45 5 Fitted values for U : O : 1.5 ev O 2 : 3. ev CuO :.75 ev CuO 2 :.2 ev

Negative Ion Distributions: MidEnergy Peaks (Cu) Count Rate [a.u.] 1 1 1 1 1 1 1 5 1 1 1 6 1 4 CuO2 O2 Cu2O3 Cu2O2 CuO2 CuO CuO2 CuO3 x O O2 Cu CuO CuO2 CuO 2 CuO Cu O 2 O distinct peaks between ev T and ev fl : depend on target and detected ion fragments from molecular ions formed at the target (full energy) e.g.: O 2 (334 ev) O (167 ev) + O (167 ev) CuO 2 (334 ev) CuO (278 ev) +O(56 ev) possible formation paths: spontaneous decay electron collision + reattachment not: gasphase collisions scattering out of the small detection angle 1 2 3 4 Cu target, P = 5 W,.5 Pa Ar/O 2 = 5/5, centre, 6 cm distance

Negative Ion Distributions: MidEnergy Peaks (W) 1 1 1 1 1 1 1 1 1 6 1 5 1 4 4 2 6 4 W2O8 W2O3 W2O8 W2O2 W2O8 O2 W2O WO4 WO4 WO3 WO4 WO3 WO2 WO4 WO3 WO2 WO WO3 WO2 WO W O WO 3 WO 2 x WO x x W O parent molecules up to WO 4 and W 2 O x detected no WO or WO 2 at full energy of fragments of them not formed at the target dominant molecule WO 3 (E a > 2.5 ev, E a (W) =.8 ev, E a (O) = 1.5 ev) so far no correlation to neutral molecular abundance (signal depends on E a ) 1 2 3 4 5 W target, P = 5 W,.5 Pa Ar/O 2 = 5/5, centre, 6 cm distance

Conclusions nonreactive sputtering: lowenergetic positive ions for target material ions with highenergy tail midenergetic reflected gas atoms (heavy targets) few negative ions (electronegative metals, impurities) reactive sputtering: variety of negative ions (incl. molecules) energy up to full target voltage equivalent negative ion fragmentation, some ions missing low sputter energy of molecules additional highenergetic positive ions (charge exchange)

Thank you for your attention!

Magnetron Plasma Typical Potential Distribution (d.c.) positive ions from working gas (electron impact) reflexted atoms (electron impact) sputtered atoms (electron impact) Target Substrate negative Ionen aus working gas (electron attachment) emission from the target sputtered atoms (electron impact) various chargeexchange processes V Pl V fl ~ 5 V ~ 2 V ~ 1 V substrate: grounded (fixed) ~ 4 V V bias with negative bias potential (fixed) insulated (floating) V T Measurement with the PPM is performed against ground potential.

Positive Ion Distributions: Centre of Gravity for Metal Ions CoG [ev] 1 9 8 7 6 5 4 3 2 1 8.8 ev.5 Pa.9 Pa 1.7 Pa heat of sublimation: 3.5 ev 2.5 ev 1 6 1 4 1 1.5 ev W Cu In Mg Target Material W + 2 4.5 Pa.9 Pa 1.7 Pa 6 P= 5 W p =.5 Pa Ar/O 2 = 1/ centre, 7 cm distance 8 pressure increase: highenergy tail (sputter distribution) thermalised peak CoG: trend follows sublimation energy (better for heavy atoms less efficient scattering)

Negative Ion Distributions: High and LowEnergy Part 1 Ratio Low/High Energy O 1 1 1.5.9 1.7 Parameter: P = 5 W p =.5 Pa Ar/O 2 = 5/5 centre, 7 cm distance highenergy O represents γ ox : 1 W Cu In Mg Target Material high ratio for WO x (low γ ox ), lowest for MgO x (high γ ox ) formation possibilities of lowenergetic O : (1) at the target sheath edge (2) from highenergetic O by several collisions and electron reattachment

Positive Ion Distributions (revisited): HighEnergetic O + O O + 1 6 1 4 1 6 1 4 1 25.5 Pa.9 Pa 1.7 Pa 5 75 1 125 15 175 2.5 Pa.9 Pa 1.7 Pa ev T ~155 ev O spans whole range up to ev T charge exchange between target and substrate via electron impact: (a1) (a2) (b) O + e O + 2e O + e O + + 2e O + e O + + 3e Highenergetic O + results from O accelerated in the target sheath. Lowenergy peak is still due to ions formed by electronimpact from the cold working gas in the plasma bulk. 25 5 75 1 125 15 175 2 Mg target, P = 5 W, Ar/O 2, centre, 7 cm distance