Multicastadressen, die eine Gruppe von Zielhosts adressieren.



Ähnliche Dokumente
IP-Adressierung IPv4

Die Subnetzmaske/Netzwerkmaske

CCNA Exploration Network Fundamentals. Chapter 6 Subnetze

Black Box erklärt. Subnetzmasken

HBF IT-Systeme. BBU-NPA Übung 4 Stand:

Referat von Sonja Trotter Klasse: E2IT1 Datum Jan Subnetting

IP-Adresse und Netzmaske:

2.1 Adressierung im Internet

IRF2000 Application Note Lösung von IP-Adresskonflikten bei zwei identischen Netzwerken

Einführung in IP, ARP, Routing. Wap WS02/03 Ploner, Zaunbauer

Guide DynDNS und Portforwarding


3 Das verbindungslose Vermittlungsprotokoll IP

Rechnernetzwerke. Rechnernetze sind Verbünde von einzelnen Computern, die Daten auf elektronischem Weg miteinander austauschen können.

2. Negative Dualzahlen darstellen

How-to: Webserver NAT. Securepoint Security System Version 2007nx

Modul 13: DHCP (Dynamic Host Configuration Protocol)

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Kurzanleitung. MEYTON Aufbau einer Internetverbindung. 1 Von 11

Gemeinsam statt einsam - ein Internet-Zugang für mehrere Rechner Wie geht das? - Tricks und Verfahren einer Technik, die wirklich Geld spart.

Übung 6. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen MI-T7 / DO-T5 SS 2015) Michael Schwarz

Leichte-Sprache-Bilder

1. Der Router ist nicht erreichbar Lösungsansatz: IP Adresse des Routers überprüfen ( entweder irgendwo auf dem Gerät aufgeklebt oder im Handbuch )

KN Das Internet

Catherina Lange, Heimbeiräte und Werkstatträte-Tagung, November

Adressen im Internet (Wdh.)

Was meinen die Leute eigentlich mit: Grexit?

Netzwerkeinstellungen unter Mac OS X

Virtual Private Network

WLAN Konfiguration. Michael Bukreus Seite 1

Binär Codierte Dezimalzahlen (BCD-Code)

Klicken Sie mit einem Doppelklick auf das Symbol Arbeitsplatz auf Ihrem Desktop. Es öffnet sich das folgende Fenster.

Zeichen bei Zahlen entschlüsseln

Inbetriebnahme Profinet mit Engineer. Inhaltsverzeichnis. Verwendete Komponenten im Beispiel:

Eva Douma: Die Vorteile und Nachteile der Ökonomisierung in der Sozialen Arbeit

Das Leitbild vom Verein WIR

ISA Server 2004 Erstellen eines neuen Netzwerkes - Von Marc Grote

WLAN und VPN im b.i.b. mit Windows (Vista Home Premium SP1) oder Windows 7

Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192.

DNÜ-Tutorium HS Niederrhein, WS 2014/2015. Probeklausur

Einrichten eines Postfachs mit Outlook Express / Outlook bis Version 2000

Verbindungslose Netzwerk-Protokolle

Anwendungsbeispiele Buchhaltung

ALEMÃO. Text 1. Lernen, lernen, lernen

Anleitung Grundsetup C3 Mail & SMS Gateway V

Pädagogische Hochschule Thurgau. Lehre Weiterbildung Forschung

Übungsaufgaben. - Vorgehensweise entsprechend dem Algorithmus der schriftlichen Multiplikation

Subpostfächer und Vertretungen für Unternehmen

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse Lösung 10 Punkte

Die IP-Adressierung. IP-Adresse Netz- / Hostadressteil Einteilung der Adressen Subnetting Arbeit des Routers Fragmentierung IPv6

Prof. Dr. R. Sethmann Übungen: Datum: Rechnernetze und Telekommunikation

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

Binärdarstellung von Fliesskommazahlen

Alle gehören dazu. Vorwort

COMPUTER MULTIMEDIA SERVICE

Urlaubsregel in David

Aufruf der Weboberflache des HPM- Warmepumpenmanagers aus dem Internet TIPPS

Theoretische Informatik SS 04 Übung 1

.procmailrc HOWTO. zur Mailfilterung und Verteilung. Stand:

Registrierung am Elterninformationssysytem: ClaXss Infoline

Statuten in leichter Sprache

1 Mit einem Convision Videoserver über DSL oder ISDN Router ins Internet

Beschreibung Regeln z.b. Abwesenheitsmeldung und Weiterleitung

Eine Logikschaltung zur Addition zweier Zahlen

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?

Kapitalerhöhung - Verbuchung

Diese Anleitung enthält Anweisungen, die nur durch erfahrene Anwender durchgeführt werden sollten!

Professionelle Seminare im Bereich MS-Office

infach Geld FBV Ihr Weg zum finanzellen Erfolg Florian Mock

1 Mathematische Grundlagen

Kontrollfragen Die nötigen Netzwerkgrundlagen

Anbindung des eibport an das Internet

Widerrufsbelehrung der Free-Linked GmbH. Stand: Juni 2014

Aufruf der Buchungssystems über die Homepage des TC-Bamberg

Hilfedatei der Oden$-Börse Stand Juni 2014

Kurze Anleitung zum Guthaben-Aufladen bei.

Öffnen Sie den Internet-Browser Ihrer Wahl. Unabhängig von der eingestellten Startseite erscheint die folgende Seite in Ihrem Browserfenster:

Bedienungsanleitung für den Online-Shop

HostProfis ISP ADSL-Installation Windows XP 1

Netzwerk-Migration. Netzwerk-Migration IACBOX.COM. Version Deutsch

Grundlagen der Informatik

Fachdidaktik der Informatik Jörg Depner, Kathrin Gaißer

Lieber SPAMRobin -Kunde!

Leichte Sprache Informationen zum Europäischen Sozialfonds (ESF) Was ist der Europäische Sozialfonds?

In diesem Tutorial lernen Sie, wie Sie einen Termin erfassen und verschiedene Einstellungen zu einem Termin vornehmen können.

mysql - Clients MySQL - Abfragen eine serverbasierenden Datenbank

OECD Programme for International Student Assessment PISA Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

Anforderungen zur Nutzung von Secure

Installationshilfe DSL unter MAC OS X

Nicht über uns ohne uns

BMW ConnectedDrive. connecteddrive. Freude am Fahren BMW CONNECTED DRIVE. NEUERUNGEN FÜR PERSONALISIERTE BMW CONNECTED DRIVE DIENSTE.

GEZIELT MEHR SICHERHEIT MIT 4I ACCESS SERVER & 4I CONNECT CLIENT

Wichtig ist die Originalsatzung. Nur was in der Originalsatzung steht, gilt. Denn nur die Originalsatzung wurde vom Gericht geprüft.

Inbetriebnahme einer Fritzbox-Fon an einem DSLmobil Anschluss Konfiguration einer PPPOE-Einwahl (DSLmobil per Funk)

Routing und DHCP-Relayagent

4. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen

Einführung in die Netzwerktechnik

Was ich als Bürgermeister für Lübbecke tun möchte

Fragen und Antworten. Kabel Internet

Partnerportal Installateure Registrierung

Transkript:

11.1 Adressierung allgemein Wir hatten In unseren Netzbeispielen bisher nur ein Netz mit der IP-Netzadresse 192.168.27.0. Die Ethernet- Frames werden an Hand der MAC-n zugestellt. Diese Situation ist vergleichbar mit der Postzustellung in einer Straße. Das Problem der Adressierung ist uns von Postanschriften und Absendern geläufig. Eine Postanschrift, An Herrn Meier, Haus-Nr. 49, reicht allgemein nicht aus, einen Brief zuzustellen. Wir benötigen weitere Angaben, z.b. das Land, den Ort und die Straße, damit die richtige Haus-Nr. gefunden werden kann. Beim Telefon haben wir die gleiche Situation mit Länder- Ortsnetzkennzahl und Teilnehmernummer. Eine MAC- hat einen Vorteil, sie ist auf der Welt eindeutig. Nachteilig ist, dass keine Ortsinformation in einer MAC- enthalten ist, dies ist auch nicht möglich, da der Hersteller einer Netzwerkkarte diese weltweit verkaufen will. Der Einsatz einer Netzwerkkarte ist auch nicht ortsgebunden, z. B. in einem Laptop. Wir benötigen ein Adressierungsschema mit weitergehenden Informationen. Bit 7 6 5 4 3 2 1 0 Zweierpotenz 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 Dezimalwert 128 64 32 16 8 4 2 1 Abb. 11.2-1: Zuordnung von Zweierpotenz und Dezimalwert allgemein Dualzahl 1 0 0 1 0 1 0 1 Zweierpotenz 1*2 7 0*2 6 0*2 5 1*2 4 0*2 3 1*2 2 0*2 1 1*2 0 Dezimalwert 128 0 0 16 0 4 0 1 Abb. 11.2-2: Zuordnung von Dualzahl10010101 und Dezimalwert über die Zweierpotenz 11.2 IP-Adressierung allgemein Das IP-Adressierungsschema beinhaltet die Informationen, die benötigt werden, eine Nachricht irgendwo auf der Welt zuzustellen, es ist für das Internet konzipiert. Das Internet-Protokoll beinhaltet zum einen das IP-Adressierungsschema, zum anderen die Protokollinformationen für einen ungesicherten Datentransport. IP ist ein Protokoll der Schicht 3, der Vermittlungsschicht (Network Layer). IP gehört zu den routebaren (routed = gerouteten) Protokollen. Router treffen an Hand der Schicht-3-lnformationen Entscheidungen über die Wegewahl zwischen verschiedenen Netzen. IPv4- n werden in angegeben, z.b. 192.168.27.52. Jede Dezimalzahl kann die Werte 0 bis 255 annehmen, die Dezimalzahlen werden durch einen Dezimalpunkt voneinander getrennt. Sie bestehen aus einem Netzanteil (Netz-ID) und einem Hostanteil (Host-ID). Der Netzanteil dient der Wegefindung, der Hostanteil der Zustellung zu einem bestimmten Host in einem Netz. Die Trennung von Netz- und Hostanteil erfolgt mit Hilfe der Subnetzmaske. Wir unterscheiden: Unicastadressen, n, die einen Zielhost festlegen und Multicastadressen, die eine Gruppe von Zielhosts adressieren. Für den Umgang mit IP-n ist es vorteilhaft, Dualzahlen zu kennen und mit ihnen umgehen zu können. Jede dieser Dezimalzahlen besteht aus acht Bit, daraus resultiert der Dezimalbereich von 0 bis 255, also 256 Werte. Die Zählung der acht Bit beginnt mit Bit 0 und endet mit Bit 7. Der Wert ergibt sich aus der entsprechenden Zweierpotenz, s. Abbildung 11.2-1. Eine Dualsteile kann nur die Werte 0 oder 1 annehmen. Ein X an einer Dualsteile kennzeichnet, dass dieser Wert 0 oder 1 sein kann. In Abbildung 11.2-2 wird die Dualzahl 1001 0101 über die Zweierpotenzen in den zugehörigen Dezimalwert umgerechnet. Die Dezimalzahl ergibt sich aus der Addition der dezimalen Teilwerte: 128+16+4+1=149. ipv4.doc Seite 1 von 9

11.3 Unicastadressen der Klassen A, B, und C Die Klassen unterscheiden sich in der Anzahl der möglichen Netze und Hosts. In Abbildung 11.3-1 ist der prinzipielle Aufbau der Klassenstruktur dargestellt. Fett ist der Netz- und normal der Hostanteil dargestellt, "x" kann,,0" oder " 1" sein. Die ranghöchsten Bits entscheiden über die Klassenzugehörigkeit. Duale Struktur xxxx xxxx. xxxx xxxx. xxxx xxxx. xxxx xxxx Klasse A Ranghöchstes Bit = 0 0xxx xxxx. xxxx xxxx. xxxx xxxx. xxxx xxxx Klasse B Ranghöchstes Bit = 10 10xx xxxx. xxxx xxxx. xxxx xxxx. xxxx xxxx Klasse C Ranghöchstes Bit =110 110x xxxx. xxxx xxxx. xxxx xxxx. xxxx xxxx Abb. 11.3-1: Struktur der Unicastadressen Anzahl der Netze Anzahl der Hosts Zweierpotenz dezimal Zweierpotenz dezimal Klasse A 2 7-2 126 2 24-2 16.777.214 Klasse B 2 14-2 16.382 2 16-2 65.534 Klasse C 2 21-2 2.097.150 2 8-2 254 Abb. 11.3-2: Zuordnung der Netze und Hosts zu den Klassen Aus der Struktur der Unicastadressen ergibt sich die Anzahl der Netze einer Klasse und die Anzahl der Hosts je Netz, s. Abbil dung 11.3-2. In der Klasse A sind nur 126 Netze verfügbar, aber die nicht nutzbare Anzahl von über 16 Millionen Hosts je Netz. In der Klasse C gibt es über zwei Millionen Netze, aber nur 254 Hosts je Netz. Klasse A 0nnn nnnn. hhhh hhhh. hhhh hhhh. hhhh hhhh SM 1111 1111. 0000 0000. 0000 0000. 0000 0000 Klasse B 10nn nnnn. nnnn nnnn. hhhh hhhh. hhhh hhhh SM 1111 1111. 1111 1111. 0000 0000. 0000 0000 Klasse C 110n nnnn. nnnn nnnn. nnnn nnnn. xxxx xxxx SM 1111 1111. 1111 1111. 1111 1111. hhhh hhhh Abb. 11.3-3: Zuordnung von Klassenadressen und Standardsubnetzmaske Die Zuordnung der Klassen zur jeweiligen Standardsubnetzmaske (SM Klasse A, SM Klasse B, SM Klasse C) ist in Abbildung 11.3-3 angegeben. Die "n" kenn- zeichnen die Netzbits und die "h" die Hostbits, die die Werte,,0" oder,,1" annehmen können. In der Binärdarstellung der Standardsubnetzmaske wird der Bereich der Netz-ID durch "1" und der Bereich der Host-ID durch "0" dargestellt. Ein Zielhost ist erreichbar, wenn er die gleiche Netz-ID besitzt wie der Absenderhost. Durch eine bitweise UND- Verknüpfung (AND Operation) der Ziel-IP- mit der eigenen Subnetzmaske wird die Netz-ID des Zielhost herausgefiltert und mit der eigenen Netz-ID verglichen. Die Funktionstabelle der UND-Verknüpfung ist in Abbildung 11.3-4 dargestellt. Das Ergebnis einer UND- Verknüpfung Y ist nur dann,,1 ", wenn beide Eingangsgrößen E1 und E2,,1" sind. Y = E1 & E2 E1 E2 Y 0 0 0 0 1 0 1 0 0 1 1 1 Abb. 11.3-4: Funktionstabelle der UND-Verknüpfung ipv4.doc Seite 2 von 9

Hostadresse binär 1100 0000. 1010 1000. 0001 1011. 0010 0000 Bitweise UND-Verknüpfung SM Klasse C 1111 1111. 1111 1111. 1111 1111. 0000 0000 Ergebnis der UND-Verknüpfung 1100 0000 1010 1000 0001 1011 0000 0000 Abb. 11.3-5: Herausfiltern der Netz-ID aus einer IP-Host- durch UND-Verknüpfung mit der Subnetzmaske Die UND-Verknüpfung wird am Beispiel der Hostadresse 192.168.27.32 und der Standardsubnetzmaske 255.255.255.0 in Abbildung 11.3-5 gezeigt. Da die Subnetzmaske für den Hostbereich nur Nullen aufweist, werden nach der UND-Verknüpfung alle Hostbits zu Null, die Host-ID wird ausgeblendet und die Netz- ID (fett dargestellt: 192.168.27) bleibt übrig. Die IP- Netzadresse ergibt sich dann zu: 192.168.27.0. 11.4 IP-n mit Sonderfunktion Private IP-n nach RFC 1597/1918 (Address Allocation for Private Internets) Die Regelungen TCP/IP betreffend erfolgen in so genannten RFCs (RFC = Request For Comment = Anforderung einer Kommentierung). Die in Abbildung 11.4-1 folgenden IP-Adressbereiche sind für private Nutzung reserviert. Die privaten I P-Adressbereiche nach Abbildung 11.4-1 sind für jedermann frei und unentgeltlich verfügbar. Es sind aber nichtroutebare n. Öffentliche Router im Internet leiten Nachrichten für diese n nicht weiter. Über diese privaten Adressbereiche wird der Mangel an verfügbaren öffentlichen IP-n gemindert. Der private Internetnutzer bekommt nur für den Zeitraum der Einwahl von seinem Provider (Diensteanbieter) eine gültige, öffentliche IP-. Klasse von bis Standard- Subnetzmaske Anzahl der Netze A 10.0.0.0 10.255.255.255 255.0.0.0 1 B 172.16.0.0 172.31.255.255 255.255.0.0 16 C 192.168.0.0 192.168.225.255 255.255.255.0 256 Abb. 11.4-1:Private IP-n nach RFC 1597/1918 11.5 loopback-n Die IP-n 127.0.0.* (* = 1 bis 254) sind Loopback-n (Loopback = Rückschleife). Mit einem Ping auf die Loopback- 127.0.0.1 kann man- quasi einen Ping auf sich selbst durchführen und damit eine Minimalfunktion von IP ohne Netz nachweisen. Abb. 11.5-1: Ping auf Loopbackinterface ipv4.doc Seite 3 von 9

11.6 Multicastadressen der Klassen D und E Die Multicastadressen der Klassen D und E sind hier nur der Vollständigkeit halber erwähnt. Klasse D 1100 xxxx. xxxx xxxx. xxxx xxxx. xxxx xxxx Klasse E 1111 xxxx. xxxx xxxx. xxxx xxxx. xxxx xxxx Abb11.6-1:Struktur der Multicastadressen D und E 11.7 IP-Adressierung am Beispiel der Klasse C Netzadresse 192.168.27.0 Die Adressvergabe folgt immer dem gleichen Schema: Die Netz- und die Broadcastadresse dürfen nicht an Hosts vergeben werden. IP- in Netz 192.168.27.0 Erster Host 192.168.27.1 15ter Host 192.168.27.15 Vorletzter Host 192.168.27.253 Letzter Host 192.168.27.254 Broadkast 192.168.27.255 Abb. 11.7-1: Adressbei- spiele tür das Klasse C- Netz 192.168.27.0 Jeder Host im Netz erhält eine eindeutige Hastadresse. Hostadressen dürfen nicht doppelt vergeben werden. Der Bereich der Host-ID reicht. in unserem Beispiel von 1 bis 254. 11.8 IP-Adressierung am Beispiel der Klasse B Netzadresse 172.16.0.0 Der Bereich der Host-ID reicht in unserem Beispiel von ".1" bis "255.254" oder 1 bis 65.534 dezimal. 11.9 IP-Adressierung am Beispiel der Klasse A Netzadresse 10.0.0.0 Der Bereich der Host-ID reicht in unserem Beispiel von,,0.0,1" bis,,255.255,254" oder 1 bis 16.777.214 dezimal. IP- in Netz 172.16.0.0 Erster Host 172.16.0.1 259ter Host 172.16.1.3 Vorletzter Host 172.16.255.253 Letzter Host 172.16.255.254 Broadkast 172.16.255.255 Abb. 11.8-1: Adressbei- spiele für das Klasse B- Netz 172.16.0.0 IP- in Netz 10.0.0.0 Erster Host 10.0.0.1 259ter Host 10.0.1.3 Vorletzter Host 10.255.255.253 Letzter Host 10.255.255.254 Broadkast 10.255.255.255 Abb. 11.9-1: Adressbei- spiele für das Klasse A- Netz 10.0.0.0 ipv4.doc Seite 4 von 9

Klasse A 0nnn nnnn. ssss hhhh. hhhh hhhh. hhhh hhhh Klasse B 10nn nnnn. nnnn nnnn. ssss hhhh. hhhh hhhh Klasse C 110n nnnn. nnnn nnnn. nnnn nnnn. ssss hhhh Abb. 11.10-1 Prinzip des Subnetting am Beispiel von vier Subnetzbits 11.10 IP Subnetting (Subnetzbildung) Die Einteilung der IP-n in Klassen hat eine festgelegte Zahl von Hosts je Netz zur Folge. 11.10.1 Anwendungsbeispiel 1 Subnetting im Klasse C-Netz Eine Firma, die eine öffentliche Klasse C-Netzadresse, z.b. 192.3.17.0, gekauft hat, möchte nicht alle möglichen 254 Hosts in einem Netz betreiben. Abteilungen (Personalabteilung, Einkauf, Verkauf, Lager, Buchhaltung) sollen logisch voneinander getrennt werden. Die Firma hat zurzeit 100 PCs im Einsatz mit maximal 25 PCs in einer Abteilung. Die Lösung, weitere Netzadressen der Klasse C zu kaufen, verbietet sich aus Kostengründen und der Verfügbarkeit öffentlicher IP- n. Ein gangbarer Weg ist die Unterteilung des Klasse C-Netzes in fünf Teilnetze (Subnetze). Die Lösung für das Anwendungsbeispiel 1 folgt nach allgemeinen Erläuterung zum Subnetting. 11.10.2 Prinzip des Subnetting Beim Subnetting werden Hostbits aus dem Hostbereich entlehnt und zu Subnetzbits gewandelt. Die Netz-ID setzt sich aus den Netz- und den Subnetzbits zusammen, der Bereich tür die Host-ID wird um die Anzahl der Subnetzbits verringert. In Abbildung 11.10-1 werden je vier Hostbits entlehnt. Die Subnetzmaske hat für alle Netz- und Subnetzbits eine duale " 1 " und für alle Hostbits eine duale,,0", s. Abbfldung11.10-2. Klasse A 0nnn nnnn. ssss hhhh. hhhh hhhh. hhhh hhhh SM 1111 1111. 1111 0000. 0000 0000. 0000 0000 Klasse B 10nn nnnn. nnnn nnnn. ssss hhhh. hhhh hhhh SM 1111 1111. 1111 1111. 1111 0000. 0000 0000 Klasse C 110n nnnn. nnnn nnnn. nnnn nnnn. ssss hhhh SM 1111 1111. 1111 1111. 1111 1111. 1111 0000 Abb. 11.10-2: Subnetting und Subnetzmaske 11.10.3 Regeln für die Subnetzbildung Wir entlehnen wenigstens zwei Subnetzbits von den Hostbits. Die Subnetzbits folgen unmittelbar den Netzbits. Die Subnetzmaske beginnt links mit einem "1er-Block" für die Netz-ID, gefolgt von einem "0er-Block" für die Host-ID. Es müssen wenigstens zwei Hostbits übrig bleiben. Das Subnetz "0", alle Subnetzbits = 0 darf nicht verwendet werden. Das letzte Subnetz, alle Subnetzbits = 1 darf nicht verwendet werden. Klasse C 110n nnnn. nnnn nnnn. nnnn nnnn. sssh hhhh SM 1111 1111. 1111 1111. 1111 1111. 1110 0000 Abb. 11.10-3: Struktur der Klase C- mit drei Subnetbits und Subnetmaske ipv4.doc Seite 5 von 9

11.10.4 Lösung zum Anwendungsbeispiel 1 Subnetting im Klasse C-Netz Die Firma hat fünf Abteilungen, wir müssen deshalb fünf Subnetze realisieren. Entlehnen wir drei Bits, können wir 2 3-2 = 6 Subnetze erhalten. Es reicht also, drei Subnetzbits zu entlehnen, es verbleiben fünf Hostbits. Wir müssen jetzt noch prüfen, ob die fünf Hostbits ausreichen, die Abteilungshosts zu adressieren. Es verbleiben 2 5-2 = 30 Hosts je Subnetz. Maximal 25 Hosts je Abteilung waren vorgegeben, es sind im ungünstigsten Fall fünf Hosts in Reserve adressierbar. Insgesamt sind durch die Subnettingmaßnahme sechs Subnetze mit jeweils 30 Hosts je Subnetz möglich. Durch das Subnetting haben wir 254-180 = 74 Hostadressen weniger zur Verfügung als ohne Subnetting. Die IP-Adressierung mit Klassen und Subnetzen geht verschwenderisch mit den knappen IP-n um. In unserem Beispiel war die Klasse C- vorhanden und die gestellte Aufgabe konnte mit Reserven gelöst werden. Nun zur konkreten Lösung. 11.10.4.1 Ermittlung der Subnetzmaske Die Netz-ID wurde um drei Bit verlängert, es verbleiben fünf Bit für den Hostbereich. Die Subnetzmaske wurde entsprechend angepasst, SM = 255.255.255.224. Subnetz Subnetz-ID dezimal binär binär dezimal 0 000 000 0000 0 1 001 0010 0000 32 2 010 0100 0000 64 3 011 0110 0000 96 4 100 1000 0000 128 5 101 1010 0000 160 6 110 1100 0000 192 7 111 1110 0000 224 Abb. 11.10-4: Subnetze im Klasse C-Netz bei drei Subnetzbits Subnetz Subnetz- 0 192.3.17.0 1 192.3.17.32 2 192.3.17.64 3 192.3.17.96 4 192.3.17.128 5 192.3.17.160 6 192.3.17.192 7 192.3.17.244 Abb. 11.10-5: Subnetzadressen im Klasse C-Netz 192.3.17.0 bei drei Subnetzbits 110n nnnn. nnnn nnnn. nnnn nnnn. sssh hhhh Subnetz 1100 0000. 0000 0011. 0001 0001. 0010 0000 Erster Host 1100 0000. 0000 0011. 0001 0001. 0010 0001 15. Host 1100 0000. 0000 0011. 0001 0001. 0010 1111 Vorletzter Host 1100 0000. 0000 0011. 0001 0001. 0011 1101 Letzter Host 1100 0000. 0000 0011. 0001 0001. 0011 1110 Broardkast 1100 0000. 0000 0011. 0001 0001. 0011 1111 Abb. 11.10-6: IP-n für das Subnetz 1 in binärer Darstellung ipv4.doc Seite 6 von 9

11.10.4.2 Ermittlung der Subnetzadressen Bei drei Binärsteilen gibt es acht Möglichkeiten. Alle Subnetzbits "0" und alle Subnetzbits "1" ergeben Subnetze, die nicht genutzt werden können, sie sind in Abbildung 11. 10-4 grau hinterlegt dargestellt. In dezimaler ZähIweise haben wir Subnetz 0 bis Subnetz 7. Die Subnetz-IP stellt die Subnetze stellen richtig im letzten Oktett dar. Die vollständigen IP-Subnetzadressen sind in Abbildung 11.10-5 wiedergegeben. 11.10.4.3 Ermittlung der IP-n für das Subnetz 1 Der unveränderliche Teil der IP-, die Netz-IP, ist in Abbildung 11.10-6 grau dargestellt, der variable Teil, die Host-ID, fett. Die nutzbaren Host-IPs reichen von 1 bis 30. Die Broadcast-IP- adressiert alle Hosts in diesem Subnetz. IP- in Subnetz 192.3.17.32 Erster Host 192.3.17.33 15ter Host 192.3.17.47 Vorletzter Host 192.3.17.61 Letzter Host 192.3.17.62 Broadkast 192.3.17.63 Abb. 11.10-7: IP-n für das Subnetz 1 in dezimaler Darstellung IP- binär Subnetz 1100 0000. 0000 0011. 0001 0001. 1010 0000 Erster Host 1100 0000. 0000 0011. 0001 0001. 1010 0001 15. Host 1100 0000. 0000 0011. 0001 0001. 1010 1111 Vorletzter Host 1100 0000. 0000 0011. 0001 0001. 1011 1101 Letzter Host 1100 0000. 0000 0011. 0001 0001. 1011 1110 Broardkast 1100 0000. 0000 0011. 0001 0001. 1011 1111 Abb. 11.10-8: IP-n tür das Subnetz 5 in binärer Darstellung IP- in Subnetz 192.3.17.160 Erster Host 192.3.17.161 15ter Host 192.3.17.175 Vorletzter Host 192.3.17.189 Letzter Host 192.3.17.190 Broadkast 192.3.17.191 Abb. 11.10-9: IP-n für das Subnetz 5 in dezimaler Darstellung 11.10.4.4 Ermittlung der IP-n für das Subnetz 5 Die Vorgehensweise ist die gleiche wie für das Subnetz 1, lediglich die Subnetzbits müssen auf das Subnetz 5 geändert werden. ipv4.doc Seite 7 von 9

11.10.5 Anwendungsbeispiel 2 Subnetting im Klasse B-Netz 11.10.5.1 Aufgabenstellung Eine größere Stadt hat 50 Schulen mit maximal 280 PCs an einer Schule. Sie möchte intern, in ihrem Intranet, mit einer privaten Klasse B-, hier 172.16.0.0, arbeiten und allen Schulen den Internetzugang ermöglichen. Die Schulen sollen logisch getrennt sein. Diese logische Trennung kann über die IP-Adressierung erfolgen. Klasse B 10nn nnnn. nnnn nnnn. ssss sssh. hhhh hhhh SM 1111 1111. 1111 1111. 1111 1110. 0000 0000 Abb. 11.10-10: Struktur einer Klasse B- mit sieben Subnetzbits und Subnetzmaske 11.10.5.2 Lösung Zunächst ist die Anzahl der Hostbits zu klären. Mit neun Hostbits kann ich 2 9-2 = 510 Hosts adressieren. Bei neun Hostbits sind je Schule maximal 510 Hostadressen möglich, das ist ausreichend. Eine Klasse B- hat insgesamt 16 Hostbits, davon sind neun für die Hosts reserviert. Es verbleiben sieben Bits. Wenn wir den Netzanteil um diese sieben Bit vergrößern, können wir die Schulen logisch trennen. Es sind 2 7-2 = 126 Subnetze nutzbar und damit 126 Schulen möglich. In Abbildung 11.10-10 ist die Struktur einer Klasse B- mit Subnetzbits dargestellt. Ein Bit kann noch vom Subnetzbereich in den Hostbereich verschoben werden. Diese Entscheidung hängt davon ab, ob mehr Hosts je Schule oder mehr Subnetze für Schulen benötigt werden. Die Netz-ID wurde um sieben Bit verlängert, es verbleiben neun Bit für den Hostbereich. Die Subnetzmaske wurde entsprechend angepasst, SM = 255.255.254.0. 11.10.5.3 Subnetzadressen in Binärdarstellung Die Subnetzadresse vom Subnetz 0 ist identisch mit der Klasse B-Netzadresse. Das letzte Subnetz ist die IP-Broadcastadresse an alle Subnetze im Netz 172.16.0.0. IP- binär Subnetz 0 1010 1010. 0001 0000. 0000 0000. 0000 0000 Subnetz 1 1010 1010. 0001 0000. 0000 0010. 0000 0000 Subnetz 2 1010 1010. 0001 0000. 0000 0100. 0000 0000 Subnetz 126, vorletztes Subnetz 1010 1010. 0001 0000. 1111 1100. 0000 0000 Subnetz 127, letztes Subnetz 1010 1010. 0001 0000. 1111 1110. 0000 0000 Abb.11.10-11: Subnetze im Klasse B-Netz 172.16.0.0 bei sieben Subnetzbits 11.10.5.4 Subnetzadressen in IP- in Subnetz 0 172.16.0.0 Subnetz 1 172.16.2.0 Subnetz 2 172.16.4.0 Subnetz 126, vorletztes Subnetz 172.16.252.0 Subnetz 127, letztes Subnetz 172.16.254.0 Abb. 11.10-12: Subnetze im Klasse B- Netz 172.16.0.0 bei sieben Subnetzbits ipv4.doc Seite 8 von 9

11.10.5.5 Beispieladressen für das Subnetz 1 in binärer Darstellung Beim Übergang vom 255. Host zum 256. Host kommen wir in das 3. Oktett, s. Abbildung 11.10-13. IP- binär Subnetz 50 1010 1010. 0001 0000. 0110 0100. 0000 0000 Erster Host 1010 1010 0001 0000 0110 0100 0000 0001 Zweiter Host 1010 1010. 0001 0000. 0110 0100. 0000 0010 17. Host 1010 1010. 0001 0000. 0110 0100. 0001 0001 262. Host 1010 1010. 0001 0000. 0110 0101. 0000 0110 Letzter Host 1010 1010. 0001 0000. 0110 0101. 1111 1110 Broardkast 1010 1010. 0001 0000. 0110 0101. 1111 1111 Abb. 11.10-13: Beispieladressen für das Subnetz 1 in binärer Darstellung 11.10.5.6 Beispieladressen für das Subnetz 1 in Dezimal- Punktnotation IP- in Subnetz 1 172.16.2.0 Erster Host 172.16.2.1 Zweiter Host 172.16.2.2 17ter Host 172.16.2.17 256. Host 172.16.3.0 Letzter Host 172.16.3.254 Broadkast 172.16.3.255 Abb.11.10-14 Beispieladressen für das Subnetz 1 in 11.10.5.7 Beispieladressen für das Subnetz 50 in binärer Darstellung Beim Übergang vom 255. Hast zum 256. Hast kommen wir in das 3. Oktett, hier am Beispiel des 262. Host gezeigt, s. Abbildung 11. 10-15. IP- binär Subnetz 1 1010 1010. 0001 0000. 0000 0010. 0000 0000 Erster Host 1010 1010 0001 0000 0000 0010 0000 0001 Zweiter Host 1010 1010. 0001 0000. 0000 0010. 0000 0010 17. Host 1010 1010. 0001 0000. 0000 0010. 0001 0001 246. Host 1010 1010. 0001 0000. 0000 0011. 0000 0000 Letzter Host 1010 1010. 0001 0000. 0000 0011. 1111 1110 Broardkast 1010 1010. 0001 0000. 0000 0011. 1111 1111 Abb. 11.10-13: Beispieladressen für das Subnetz 1 in binärer Darstellung 11.10.5.8 Beispieladressen für das Subnetz 1 in Dezimal- Punktnotation IP- in Subnetz 50 172.16.100.0 Erster Host 172.16.100.1 Zweiter Host 172.16.100.2 17ter Host 172.16.100.17 262. Host 172.16.101.0 Letzter Host 172.16.101.254 Broadkast 172.16.101.255 Abb.11.10-14 Beispieladressen für das Subnetz 1 in ipv4.doc Seite 9 von 9