Studientag zur Algorithmischen Mathematik

Größe: px
Ab Seite anzeigen:

Download "Studientag zur Algorithmischen Mathematik"

Transkript

1 Studientag zur Algorithmischen Mathematik Eulertouren, 2-Zusammenhang, Bäume und Baumisomorphismen Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 22. Mai 2011

2 Outline Eulertouren Charakterisierung im Fall ungerichteter Graphen Gerichtete Eulertouren Zweizusammenhang Operationen auf Multigraphen Bäume Charakterisierung von Bäumen Isomorphietest von Bäumen

3 Eulertouren Eine Eulertour ist ein geschlossener Spaziergang, der jede Kante genau einmal besucht.

4 Eulertouren Eine Eulertour ist ein geschlossener Spaziergang, der jede Kante genau einmal besucht. G ist eulersch : G hat Eulertour

5 Eulertouren Eine Eulertour ist ein geschlossener Spaziergang, der jede Kante genau einmal besucht. G ist eulersch : G hat Eulertour ist eulersch 4

6 Eulertouren Eine Eulertour ist ein geschlossener Spaziergang, der jede Kante genau einmal besucht. G ist eulersch : G hat Eulertour ist eulersch 4 ist nicht eulersch

7 Eulersche Graphen Satz Sei G = (V, E) ein Graph. Paarweise äquivalent sind (i) G ist eulersch. (ii) G ist zusammenhängend und v V : deg(v) ist gerade. (iii) G ist zusammenhängend und E ist kantendisjunkte Vereinigung von Kreisen.

8 Eulersche Graphen Satz Sei G = (V, E) ein Graph. Paarweise äquivalent sind (i) G ist eulersch. (ii) G ist zusammenhängend und v V : deg(v) ist gerade. (iii) G ist zusammenhängend und E ist kantendisjunkte Vereinigung von Kreisen. Beweis. (i) (ii): klar (genauso oft rein wie raus).

9 Eulersche Graphen Satz Sei G = (V, E) ein Graph. Paarweise äquivalent sind (i) G ist eulersch. (ii) G ist zusammenhängend und v V : deg(v) ist gerade. (iii) G ist zusammenhängend und E ist kantendisjunkte Vereinigung von Kreisen. Beweis. (i) (ii): klar (genauso oft rein wie raus). (ii) = (iii): Wähle v 0 V und laufe solange noch neue Kanten gefunden werden.

10 Eulersche Graphen Satz Sei G = (V, E) ein Graph. Paarweise äquivalent sind (i) G ist eulersch. (ii) G ist zusammenhängend und v V : deg(v) ist gerade. (iii) G ist zusammenhängend und E ist kantendisjunkte Vereinigung von Kreisen. Beweis. (i) (ii): klar (genauso oft rein wie raus). (ii) = (iii): Wähle v 0 V und laufe solange noch neue Kanten gefunden werden. Da deg(v) gerade ist, endet dieses Vorgehen in v 0.

11 Eulersche Graphen Satz Sei G = (V, E) ein Graph. Paarweise äquivalent sind (i) G ist eulersch. (ii) G ist zusammenhängend und v V : deg(v) ist gerade. (iii) G ist zusammenhängend und E ist kantendisjunkte Vereinigung von Kreisen. Beweis. (i) (ii): klar (genauso oft rein wie raus). (ii) = (iii): Wähle v 0 V und laufe solange noch neue Kanten gefunden werden. Da deg(v) gerade ist, endet dieses Vorgehen in v 0. Enferne die so gefundenen Kreise und fahre rekursiv fort, bis der Graph leer ist.

12 Eulersche Graphen Satz Sei G = (V, E) ein Graph. Paarweise äquivalent sind (i) G ist eulersch. (ii) G ist zusammenhängend und v V : deg(v) ist gerade. (iii) G ist zusammenhängend und E ist kantendisjunkte Vereinigung von Kreisen. Beweis. (i) (ii): klar (genauso oft rein wie raus). (ii) = (iii): Wähle v 0 V und laufe solange noch neue Kanten gefunden werden. Da deg(v) gerade ist, endet dieses Vorgehen in v 0. Enferne die so gefundenen Kreise und fahre rekursiv fort, bis der Graph leer ist. (iii) = (i): Setze Kreise zu Tour zusammen.

13 Beispiel:

14 Beispiel:

15 Beispiel:

16 Beispiel:

17 Beispiel:

18 Beispiel:

19 Beispiel:

20 Beispiel:

21 Beispiel:

22 Genauso oft rein wie raus Satz: Sei D = (V, A) ein gerichteter Graph. Äquivalent sind (1) D eulersch (2) D zusammenhängend und v V : deg + (v) = deg (v) (3) D zusammenhängend und A disjunkte Vereinigung von gerichteten Kreisen

23 Zweizusammenhang G = (V, E) heißt k-zusammenhängend (k 2), falls V k + 1 und beim Löschen von k 1 Knoten bleibt G zusammenhängend

24 Zweizusammenhang G = (V, E) heißt k-zusammenhängend (k 2), falls V k + 1 und beim Löschen von k 1 Knoten bleibt G zusammenhängend Beispiel ist 2-zusammenhängend.

25 Zweizusammenhang G = (V, E) heißt k-zusammenhängend (k 2), falls V k + 1 und beim Löschen von k 1 Knoten bleibt G zusammenhängend Beispiel ist 2-zusammenhängend. ist nicht 2-zusammenhängend.

26 Zweizusammenhang G = (V, E) heißt k-zusammenhängend (k 2), falls V k + 1 und beim Löschen von k 1 Knoten bleibt G zusammenhängend Beispiel ist 2-zusammenhängend. ist nicht 2-zusammenhängend. Schnittknoten

27 Ohrenzerlegungen Eine Ohrenzerlegung (C 0, P 1, P 2,..., P m ) besteht aus einem Kreis (C 0 ) und Pfaden (P i ) beliebiger Länge, die wie folgt angefügt werden:

28 C 0 P 2 Outline Eulertouren Zweizusammenhang Operationen auf Multigraphen Bäume Ohrenzerlegungen Eine Ohrenzerlegung (C 0, P 1, P 2,..., P m ) besteht aus einem Kreis (C 0 ) und Pfaden (P i ) beliebiger Länge, die wie folgt angefügt werden: erlaubt: P 1 P 3

29 Ohrenzerlegungen Eine Ohrenzerlegung (C 0, P 1, P 2,..., P m ) besteht aus einem Kreis (C 0 ) und Pfaden (P i ) beliebiger Länge, die wie folgt angefügt werden: erlaubt: C 0 P 2 P 1 P 3 nicht erlaubt: C 0 P 1 P 2 P 2 ist kein Ohr, da P 2 kein Pfad, sondern Kreis ist

30 Zweizusammenhang und Ohrenzerlegungen Satz Sei G = (V, E) Graph. Paarweise äquivalent sind: (i) G ist 2-zusammenhängend (ii) je zwei Knoten liegen auf gemeinsamem Kreis (iii) G hat Ohrenzerlegung

31 Zweizusammenhang und Ohrenzerlegungen Satz Sei G = (V, E) Graph. Paarweise äquivalent sind: (i) G ist 2-zusammenhängend (ii) je zwei Knoten liegen auf gemeinsamem Kreis (iii) G hat Ohrenzerlegung Beweis. (ii) (i): klar.

32 Zweizusammenhang und Ohrenzerlegungen Satz Sei G = (V, E) Graph. Paarweise äquivalent sind: (i) G ist 2-zusammenhängend (ii) je zwei Knoten liegen auf gemeinsamem Kreis (iii) G hat Ohrenzerlegung Beweis. (ii) (i): klar. (i) (ii): Induktion nach n :=dist(u, v).

33 Zweizusammenhang und Ohrenzerlegungen Satz Sei G = (V, E) Graph. Paarweise äquivalent sind: (i) G ist 2-zusammenhängend (ii) je zwei Knoten liegen auf gemeinsamem Kreis (iii) G hat Ohrenzerlegung Beweis. (ii) (i): klar. (i) (ii): Induktion nach n :=dist(u, v). u v x u v n 1 v

34 Zweizusammenhang und Ohrenzerlegungen Satz Sei G = (V, E) Graph. Paarweise äquivalent sind: (i) G ist 2-zusammenhängend (ii) je zwei Knoten liegen auf gemeinsamem Kreis (iii) G hat Ohrenzerlegung Beweis. (ii) (i): klar. (i) (ii): Induktion nach n :=dist(u, v). (i) (iii): Algorithmisch, siehe Kurstext.

35 Operationen auf Multigraphen I Einfügen einer Kante G + e := (V, E {e })

36 Operationen auf Multigraphen I Einfügen einer Kante G + e := (V, E {e }) Entfernen einer Kante G \ e := (V, E \ {e})

37 Operationen auf Multigraphen II Entfernen eines Knotens G \ v := (V \ {v}, {e E v / e})

38 Operationen auf Multigraphen II Entfernen eines Knotens G \ v := (V \ {v}, {e E v / e}) Unterteilen einer Kante e = (v, w) G%e := (V {u}, (E\{e}) {(v, u), (u, w)})

39 Operationen auf Multigraphen III Kontraktion einer Kante e = (v, w) G/e := ((V {u}) \ {v, w}, {e E e {v, w} = } {(u, x) (v, x) E} {(y, u) (y, w) E})

40 Charakterisierung von Bäumen Ein kreisfreier und zusammenhängender Graph T heißt Baum. Satz Sei G = (V, E) ein Graph. Paarweise äquivalent sind:

41 Charakterisierung von Bäumen Ein kreisfreier und zusammenhängender Graph T heißt Baum. Satz Sei G = (V, E) ein Graph. Paarweise äquivalent sind: 1. G ist Baum.

42 Charakterisierung von Bäumen Ein kreisfreier und zusammenhängender Graph T heißt Baum. Satz Sei G = (V, E) ein Graph. Paarweise äquivalent sind: 1. G ist Baum. 2. G ist kreisfrei und E = V 1.

43 Charakterisierung von Bäumen Ein kreisfreier und zusammenhängender Graph T heißt Baum. Satz Sei G = (V, E) ein Graph. Paarweise äquivalent sind: 1. G ist Baum. 2. G ist kreisfrei und E = V G ist zusammenhängend und E = V 1.

44 Charakterisierung von Bäumen Ein kreisfreier und zusammenhängender Graph T heißt Baum. Satz Sei G = (V, E) ein Graph. Paarweise äquivalent sind: 1. G ist Baum. 2. G ist kreisfrei und E = V G ist zusammenhängend und E = V v, w V :! v, w-weg in G.

45 Charakterisierung von Bäumen Ein kreisfreier und zusammenhängender Graph T heißt Baum. Satz Sei G = (V, E) ein Graph. Paarweise äquivalent sind: 1. G ist Baum. 2. G ist kreisfrei und E = V G ist zusammenhängend und E = V v, w V :! v, w-weg in G. 5. G kreisfrei und e / E : G + e hat Kreis.

46 Charakterisierung von Bäumen Ein kreisfreier und zusammenhängender Graph T heißt Baum. Satz Sei G = (V, E) ein Graph. Paarweise äquivalent sind: 1. G ist Baum. 2. G ist kreisfrei und E = V G ist zusammenhängend und E = V v, w V :! v, w-weg in G. 5. G kreisfrei und e / E : G + e hat Kreis. 6. G zusammenhängend und e E : G \ e unzusammenhängend.

47 Existenz von Blättern Der Beweis der äquivalenten Charakterisierung von Bäumen benutzt an mehreren Stellen das folgende Lemma.

48 Existenz von Blättern Der Beweis der äquivalenten Charakterisierung von Bäumen benutzt an mehreren Stellen das folgende Lemma. Ein Knoten v V heißt Blatt von V, wenn deg(v) = 1.

49 Existenz von Blättern Der Beweis der äquivalenten Charakterisierung von Bäumen benutzt an mehreren Stellen das folgende Lemma. Ein Knoten v V heißt Blatt von V, wenn deg(v) = 1. Lemma Ein Baum mit mindestens zwei Knoten hat mindestens zwei Blätter.

50 Existenz von Blättern Der Beweis der äquivalenten Charakterisierung von Bäumen benutzt an mehreren Stellen das folgende Lemma. Ein Knoten v V heißt Blatt von V, wenn deg(v) = 1. Lemma Ein Baum mit mindestens zwei Knoten hat mindestens zwei Blätter. Beweis. Sei P ein Pfad maximaler Länge in T, seien dessen Endknoten u und v. Dann ist u v und beide müssen Blätter des Graphen sein.

51 Isomorphietest von Bäumen Wenn Bäume gleich gezeichnet sind, sehen wir Ihnen an, ob Sie isomorph sind.

52 Isomorphietest von Bäumen Wenn Bäume gleich gezeichnet sind, sehen wir Ihnen an, ob Sie isomorph sind. Wir wollen also eine Vereinbarung treffen, wie ein Baum zu zeichnen ist.

53 Isomorphietest von Bäumen Wenn Bäume gleich gezeichnet sind, sehen wir Ihnen an, ob Sie isomorph sind. Wir wollen also eine Vereinbarung treffen, wie ein Baum zu zeichnen ist. Formal ordnen wir dafür jedem Baum einen Code zu.

54 Isomorphietest von Bäumen (()) () gepfl. Baum (()) korrekter Code (())

55 Isomorphietest von Bäumen (()) (()) () () gepfl. Baum (()) (()) korrekter Code (())

56 Isomorphietest von Bäumen (()) (()) () () gepfl. Baum Wurzelbäumen (()) (()) (sort. Kind. lex.) korrekter Code vorher nicht korrekt sortiert (()) (())

57 Isomorphietest von Bäumen (()) (()) ((())) () () (()) gepfl. Baum () Wurzelbäumen (()) (()) ((())) (sort. Kind. lex.) korrekter Code vorher nicht korrekt sortiert (()) (())

58 Isomorphietest von Bäumen (()) (()) ((())) () () (()) gepfl. Baum () Wurzelbäumen (()) (()) ((())) (sort. Kind. lex.) korrekter Code vorher nicht nicht korrekt korrekt sortiert gewurzelt Bäumen (()) (())

59 Isomorphietest von Bäumen (()) (()) ((())) () () (()) gepfl. Baum () Wurzelbäumen (()) (()) ((())) (sort. Kind. lex.) korrekter Code vorher nicht nicht korrekt korrekt sortiert gewurzelt Bäumen (()) (()) (()) (best. Zentrum)

60 Man zeigt induktiv Satz Bäume sind genau dann isomorph, wenn sie den gleichen Code haben. Hieraus erhalten wir folgendes Verfahren:

61 Man zeigt induktiv Satz Bäume sind genau dann isomorph, wenn sie den gleichen Code haben. Hieraus erhalten wir folgendes Verfahren: 1. Bestimme Zentrum

62 Man zeigt induktiv Satz Bäume sind genau dann isomorph, wenn sie den gleichen Code haben. Hieraus erhalten wir folgendes Verfahren: 1. Bestimme Zentrum 2. Erstelle rekursiv Codes für Unterbäume der Zentrumsknoten, lexikographisch geordnet.

63 Man zeigt induktiv Satz Bäume sind genau dann isomorph, wenn sie den gleichen Code haben. Hieraus erhalten wir folgendes Verfahren: 1. Bestimme Zentrum 2. Erstelle rekursiv Codes für Unterbäume der Zentrumsknoten, lexikographisch geordnet. 3. Zentrumsknoten mit kleinerem Code ist Wurzel

64 Beispiel a b z 1 z 2

65 Beispiel () a b z 1 z 2 () ()

66 Beispiel (()) (()()) () z 1 z 2 a b () ()

67 Beispiel (()) (()()) () z 1 z 2 a b () () Es gilt: c(z 1 ) c(z 2 ), also ist z 1 Wurzel und der Gesamtcode lautet ( (()()) () }{{}}{{} z 2 a }{{} b )

Bemerkung: Der vollständige Graph K n hat n(n 1)

Bemerkung: Der vollständige Graph K n hat n(n 1) Bemerkung: Der vollständige Graph K n hat n(n 1) 2 Kanten. Bew: Abzählen! Definition 111. Graphen mit n paarweise zyklisch verbundenen Kanten heißen Kreise (vom Grad n) und werden mit C n bezeichnet. Beispiel

Mehr

Isomorphie von Bäumen

Isomorphie von Bäumen Isomorphie von Bäumen Alexandra Weinberger 23. Dezember 2011 Inhaltsverzeichnis 1 Einige Grundlagen und Definitionen 2 1.1 Bäume................................. 3 1.2 Isomorphie..............................

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 00/0 Institut für Informatik Aufgabenblatt Prof. Dr. J. Csirik. November 00 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am. und.

Mehr

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist:

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Svenja Hüning, Michael Kerber, Hannah Schreiber WS 2016/2017 Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Hinweise: Dieses Blatt präsentiert Beispiellösungen zu

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Minimale aufspannende Bäume und Matchings Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 22. Mai 2011 Outline Minimale aufspannende

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen

5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 5 Graphen 5.1 Gerichtete Graphen Definition 5.1 (V, E) heißt gerichteter Graph (Digraph), wenn V Menge von Knoten

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Euler-Hamilton)

Diskrete Strukturen Kapitel 4: Graphentheorie (Euler-Hamilton) WS 2015/16 Diskrete Strukturen Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Freie Bäume und Wälder

Freie Bäume und Wälder (Martin Dietzfelbinger, Stand 4.6.2011) Freie Bäume und Wälder In dieser Notiz geht es um eine besondere Sorte von (ungerichteten) Graphen, nämlich Bäume. Im Gegensatz zu gerichteten Bäumen nennt man diese

Mehr

Diskrete Strukturen Wiederholungsklausur

Diskrete Strukturen Wiederholungsklausur Technische Universität München (I7) Winter 2013/14 Prof. J. Esparza / Dr. M. Luttenberger LÖSUNG Diskrete Strukturen Wiederholungsklausur Beachten Sie: Soweit nicht anders angegeben, ist stets eine Begründung

Mehr

MafI I: Logik & Diskrete Mathematik (F. Hoffmann)

MafI I: Logik & Diskrete Mathematik (F. Hoffmann) Lösungen zum 14. und letzten Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (F. Hoffmann) 1. Ungerichtete Graphen (a) Beschreiben Sie einen Algorithmus, der algorithmisch feststellt, ob

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

Nachbarschaft, Grad, regulär, Inzidenz

Nachbarschaft, Grad, regulär, Inzidenz Nachbarschaft, Grad, regulär, Inzidenz Definition Eigenschaften von Graphen Sei G = (V, E) ein ungerichteter Graph. 1 Die Nachbarschaftschaft Γ(u) eines Knoten u V ist Γ(u) := {v V {u, v} E}. 2 Der Grad

Mehr

Ferienkurs Propädeutikum Diskrete Mathematik

Ferienkurs Propädeutikum Diskrete Mathematik Ferienkurs Propädeutikum Diskrete Mathematik Teil 3: Grundlagen Graphentheorie Tina Janne Schmidt Technische Universität München April 2012 Tina Janne Schmidt (TU München) Ferienkurs Propädeutikum Diskrete

Mehr

3 Klassifikation wichtiger Optimierungsprobleme

3 Klassifikation wichtiger Optimierungsprobleme 3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 Notation für Wörter w a is die Anzahl der Vorkommen von

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 8

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES

Mehr

Übersicht. Bielefeld Hannover. Kamen Paderborn. Unna Wünnenberg Kassel. Ziffer wählen. abheben. auflegen. Gespräch führen

Übersicht. Bielefeld Hannover. Kamen Paderborn. Unna Wünnenberg Kassel. Ziffer wählen. abheben. auflegen. Gespräch führen Übersicht Graphen beschreiben Objekte und Beziehungen zwischen ihnen geeignet für Modellierung verschiedener Aufgaben betrachten endliche, ungerichtete und endliche, gerichtete Graphen Graphen bestehen

Mehr

Graphen KAPITEL 3. Dieses Problem wird durch folgenden Graph modelliert:

Graphen KAPITEL 3. Dieses Problem wird durch folgenden Graph modelliert: KAPITEL 3 Graphen Man kann als Ursprung der Graphentheorie ein Problem sehen, welches Euler 1736 von Studenten aus Königsberg gestellt bekam. Der Fluss Pregel wird von 7 Brücken überquert, und die Frage

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Bäume und Wälder. Definition 1

Bäume und Wälder. Definition 1 Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt

Mehr

Bäume und Wälder. Definition 1

Bäume und Wälder. Definition 1 Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

12. Graphen. Notation, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap ,Cormen et al, Kap.

12. Graphen. Notation, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap ,Cormen et al, Kap. 254 12. Graphen Notation, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap. 9.1-9.4,Cormen et al, Kap. 22 Königsberg 1736 255 Königsberg 1736 255 Königsberg 1736 255

Mehr

Diskrete Mathematik Graphentheorie (Übersicht)

Diskrete Mathematik Graphentheorie (Übersicht) Diskrete Mathematik Graphentheorie (Übersicht) Dr. C. Löh 2. Februar 2010 0 Graphentheorie Grundlagen Definition (Graph, gerichteter Graph). Ein Graph ist ein Paar G = (V, E), wobei V eine Menge ist (die

Mehr

Dieser Graph hat 3 Zusammenhangskomponenten

Dieser Graph hat 3 Zusammenhangskomponenten Vl 2, Informatik B, 19. 04. 02 1.1.3 Definitionen und wichtige Graphen Sei im folgenden G =(V;E) ein schlichter ungerichteter Graph. Definition: Der Grad eines Knoten v in einem ungerichteten Graphen ist

Mehr

Graphen. Definitionen

Graphen. Definitionen Graphen Graphen werden häufig als Modell für das Lösen eines Problems aus der Praxis verwendet, wie wir im Kapitel 1 gesehen haben. Der Schweizer Mathematiker Euler hat als erster Graphen verwendet, um

Mehr

Ferienkurs zum Propädeutikum Diskrete Mathematik. Technische Universität München

Ferienkurs zum Propädeutikum Diskrete Mathematik. Technische Universität München Ferienkurs zum Propädeutikum Diskrete Mathematik Andreas Würfl Stefan König Technische Universität München WS 09/10 Übersicht 1 Binäre Relationen 2 Elementares Zählen 3 Partitionen zählen 4 Erzeugende

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) WS 2013/14 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ws/ds/uebung/ 22. Januar 2014 ZÜ DS ZÜ XIII

Mehr

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet

Mehr

Naiver Algorithmus für Hamiltonkreis

Naiver Algorithmus für Hamiltonkreis Naiver Algorithmus für Hamiltonkreis Algorithmus HAMILTON EINGABE: G = ([n], E) in Adjazenzmatrixdarstellung 1 Für alle Permutationen π : [n] [n]. 1 Falls (π(1), π(2),..., π(n)) ein Kreis in G ist, AUSGABE

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 25. Januar 2012 ZÜ DS ZÜ XIII

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Minimale Spannbäume Maike Buchin 18.7., 20.7.2017 Einführung Motivation: Verbinde Inseln mit Fähren oder Städte mit Schienen und verbrauche dabei möglichst wenig Länge. Problem:

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr

Mehr

Technische Universität München. Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter

Technische Universität München. Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter Kapitel 7 Fortgeschrittene Datenstrukturen Motivation: Lineare Liste: Suchen eines Elements ist schnell O(log n) Einfügen eines Elements ist langsam

Mehr

Graphentheorie. Zusammenhang. Zusammenhang. Zusammenhang. Rainer Schrader. 13. November 2007

Graphentheorie. Zusammenhang. Zusammenhang. Zusammenhang. Rainer Schrader. 13. November 2007 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 13. November 2007 1 / 84 2 / 84 Gliederung stest und Schnittkanten älder und Bäume minimal aufspannende Bäume Der Satz von Menger 2-zusammenhängende

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9

Mehr

Tutoraufgabe 1 (Suchen in Graphen):

Tutoraufgabe 1 (Suchen in Graphen): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS14 F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe 1 (Suchen in Graphen): a) Geben Sie die Reihenfolge an, in der die Knoten besucht werden, wenn

Mehr

Algorithmen für Planare Graphen

Algorithmen für Planare Graphen Algorithmen für Planare Graphen 12. Juni 2018, Übung 4 Lars Gottesbüren, Michael Hamann INSTITUT FÜR THEORETISCHE INFORMATIK KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Prüfungstermine

Mehr

Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt:

Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt: Der K 4 lässt sich auch kreuzungsfrei zeichnen: Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt: ( ) n n (n 1) E

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

Graphen: Rundwege, Kodierung von Bäumen

Graphen: Rundwege, Kodierung von Bäumen TH Mittelhessen, Wintersemester 2013/2014 Lösungen zu Übungsblatt 11 Fachbereich MNI, Diskrete Mathematik 4./5./6. Februar 2014 Prof. Dr. Hans-Rudolf Metz Graphen: Rundwege, Kodierung von Bäumen Aufgabe

Mehr

12. Graphen. Königsberg Zyklen. [Multi]Graph

12. Graphen. Königsberg Zyklen. [Multi]Graph Königsberg 76. Graphen, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap. 9. - 9.,Cormen et al, Kap. [Multi]Graph Zyklen C Kante Gibt es einen Rundweg durch die Stadt

Mehr

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER. Über 7 Brücken... wissen leben WWU Münster. Dietmar Lammers Hochschultag 201

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER. Über 7 Brücken... wissen leben WWU Münster. Dietmar Lammers Hochschultag 201 MÜNSTER Über 7 Brücken... Dietmar Lammers Hochschultag 201 MÜNSTER Über 7 Brücken... 2/29 > Dauerwerbeveranstaltung für ein Studium der Informatik- aber mit mathematischem Inhalt! Hier: Ein Auszug aus

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 00/03 Institut für Informatik Aufgabenblatt 6 Prof. Dr. J. Csirik 18. November 00 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 7 und 8: Euler- und Hamilton-Graphen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 17. April 2018 1/96 WIEDERHOLUNG Eulersche

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphdurchläufe Maike Buchin 22. und 27.6.2017 Graphexploration Motivation: Für viele Zwecke will man den gesamten Graphen durchlaufen, zb. um festzustellen ob er (stark) zusammenhängt.

Mehr

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete).

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Vollständiger Graph Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Mit K n wird der vollständige Graph mit n Knoten bezeichnet. Bemerkung

Mehr

Vorlesungstermin 2: Graphentheorie II. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich

Vorlesungstermin 2: Graphentheorie II. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Vorlesungstermin 2: Graphentheorie II Markus Püschel David Steurer Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Wiederholung: Vollständige Induktion Ziel: zeige n N. A(n) für eine Aussage

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke Graphen Graphentheorie Graphentheorie Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke 2 Was ist ein Graph? Ein Graph ist in der Graphentheorie eine abstrakte Struktur,

Mehr

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2 1 Graphen Definition: Ein Graph G = (V,E) setzt sich aus einer Knotenmenge V und einer (Multi)Menge E V V, die als Kantenmenge bezeichnet wird, zusammen. Falls E symmetrisch ist, d.h.( u,v V)[(u,v) E (v,u)

Mehr

Graphentheorie. Kardinalitätsmatchings. Kardinalitätsmatchings. Kardinalitätsmatchings. Rainer Schrader. 11. Dezember 2007

Graphentheorie. Kardinalitätsmatchings. Kardinalitätsmatchings. Kardinalitätsmatchings. Rainer Schrader. 11. Dezember 2007 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 11. Dezember 2007 1 / 47 2 / 47 wir wenden uns jetzt einem weiteren Optimierungsproblem zu Gliederung Matchings in bipartiten Graphen

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Dipl-Math. Wolfgang Kinzner 2.4.2012 Kapitel 1: Grundlagen der algorithmischen Graphgentheorie

Mehr

Natürliche Bäume. (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun. Letzte Änderung: :16. Natürliche Bäume 1/16

Natürliche Bäume. (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun. Letzte Änderung: :16. Natürliche Bäume 1/16 Natürliche Bäume (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun Letzte Änderung: 18.03.2018 18:16 Natürliche Bäume 1/16 Bäume Begriffe (1/2) Bäume sind verallgemeinerte Listenstrukturen ein

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Graphen und Bäume Prof. Dr. Nikolaus Wulff Weitere Datentypen Als wichtige abstrakte Datentypen (ADT) kennen wir bis lang die Liste, den Stapel und die Warteschlange. Diese

Mehr

Diskrete Mathematik 1

Diskrete Mathematik 1 Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 2008/09 Blatt

Mehr

Effizienter Planaritätstest Vorlesung am

Effizienter Planaritätstest Vorlesung am Effizienter Planaritätstest Vorlesung am 23.04.2014 INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER Satz Gegebenen einen Graphen G = (V, E) mit n Kanten und m Knoten, kann in O(n + m) Zeit

Mehr

Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren.

Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Beweis: 1. 2. Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Widerspruchsannahme: Es gibt zwei verschiedene Pfade zwischen u und v. Dann gibt es einen

Mehr

8. Übung Algorithmen I

8. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Grundlagen

Mehr

Graphen. Graphen und ihre Darstellungen

Graphen. Graphen und ihre Darstellungen Graphen Graphen und ihre Darstellungen Ein Graph beschreibt Beziehungen zwischen den Elementen einer Menge von Objekten. Die Objekte werden als Knoten des Graphen bezeichnet; besteht zwischen zwei Knoten

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein:

a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein: 1 Aufgabe 8.1 (P) (2, 3)-Baum a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein: Zeichnen Sie, was in jedem Schritt passiert. b) Löschen Sie die Zahlen 65, 70 und 100 aus folgendem

Mehr

4. Kreis- und Wegeprobleme

4. Kreis- und Wegeprobleme 4. Kreis- und Wegeprobleme Kapitelübersicht 4. Kreis- und Wegeprobleme Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Abstände in Graphen Berechnung

Mehr

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld Westfählische Wilhelms-Universität Eulersche Graphen Autor: 21. Mai 2015 Inhaltsverzeichnis 1 Das Königsberger Brückenproblem 1 2 Eulertouren und Eulersche Graphen 2 3 Auffinden eines eulerschen Zyklus

Mehr

Übung zur Vorlesung Algorithmische Geometrie

Übung zur Vorlesung Algorithmische Geometrie Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen

Zentralübung zur Vorlesung Diskrete Strukturen WS 2010/11 Zentralübung zur Vorlesung Diskrete Strukturen Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ws/ds/uebung/ 2. Februar 2011 ZÜ DS ZÜ XIII 1. Übungsbetrieb:

Mehr

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S Minimale Graphentheorie Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt

Mehr

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 2. November 2011 Gradfolgen Zusammenhang Kürzeste Wege H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 Satz von Erdős und Gallai Eine Partition einer natürlichen Zahl ist genau dann die Gradfolge

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 2: Einführung in die Graphentheorie - Teil 2 Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 2. März 2018 1/48 OPERATIONEN

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Universität Siegen Lehrstuhl Theoretische Informatik Carl Philipp Reh Daniel König Diskrete Mathematik für Informatiker WS 016/017 Übung 7 1. Gegeben sei folgender Graph und das Matching M = {{h, f}, {c,

Mehr

Wir betrachten einen einfachen Algorithmus, der den Zusammenhang eines Graphen testen soll.

Wir betrachten einen einfachen Algorithmus, der den Zusammenhang eines Graphen testen soll. Kapitel 2 Zusammenhang 2.1 Zusammenhängende Graphen Wir betrachten einen einfachen Algorithmus, der den Zusammenhang eines Graphen testen soll. (1) Setze E = E, F =. (2) Wähle e E und setze F = F {e},

Mehr

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal 3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition

Mehr

Verteilen von Bällen auf Urnen

Verteilen von Bällen auf Urnen Verteilen von Bällen auf Urnen Szenario: Wir verteilen n Bälle auf m Urnen, d.h. f : B U mit B = {b 1,..., b n } und U = {u 1,..., u m }. Dabei unterscheiden wir alle Kombinationen der folgenden Fälle

Mehr

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter WS 2013/14 1 Eulersche Graphen Kantenzug Ein Kantenzug in einem Graphen (V, E) ist eine Folge (a 0, a 1,..., a n ) von Knoten

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Klausurvorbereitung

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Klausurvorbereitung Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl.-Math. S. König, Dipl.-Math. A. Würfl, Klausurvorbereitung Die Klausur zum Propädeutikum Diskrete

Mehr

Graphenalgorithmen I

Graphenalgorithmen I enalgorithmen I Tobias Pröger 21. Dezember 2016 Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch auf Vollständigkeit und Korrektheit. Wir sind froh über

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 6: Kreis- und Wegeprobleme Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 27. März 2018 1/47 KREIS- UND WEGEPROBLEME 2/47

Mehr

A Berlin, 10. April 2017

A Berlin, 10. April 2017 A Berlin, 10. April 2017 Name:... Matr.-Nr.:... Wiederholung der schriftlichen Prüfung zur Vorlesung Diskrete Strukturen (Niedermeier/Molter/Froese, Wintersemester 2016/17) Einlesezeit: 15 Minuten Bearbeitungszeit:

Mehr

Wie wird ein Graph dargestellt?

Wie wird ein Graph dargestellt? Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung

Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Matchings in Graphen. Praktikum Diskrete Optimierung (Teil 5)

Matchings in Graphen. Praktikum Diskrete Optimierung (Teil 5) Praktikum Diskrete Optimierung (Teil 5) 6.05.009 Matchings in Graphen Es sei ein ungerichteter Graph G = (V, E) gegeben. Ein Matching in G ist eine Teilmenge M E, so dass keine zwei Kanten aus M einen

Mehr

Diskrete Strukturen. Name Vorname Studiengang Matrikelnummer. Hörsaal Reihe Sitzplatz Unterschrift ... Allgemeine Hinweise

Diskrete Strukturen. Name Vorname Studiengang Matrikelnummer. Hörsaal Reihe Sitzplatz Unterschrift ... Allgemeine Hinweise Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 7 Prof. Dr. Javier Esparza Wintersemester 2008/09 Abschlussklausur 7. Februar 2009 Diskrete Strukturen Name Vorname Studiengang

Mehr

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )

Mehr

Verkettete Datenstrukturen: Bäume

Verkettete Datenstrukturen: Bäume Verkettete Datenstrukturen: Bäume 1 Graphen Gerichteter Graph: Menge von Knoten (= Elementen) + Menge von Kanten. Kante: Verbindung zwischen zwei Knoten k 1 k 2 = Paar von Knoten (k 1, k 2 ). Menge aller

Mehr

Was bisher geschah. gerichtete / ungerichtete Graphen G = (V, E) Darstellungen von Graphen

Was bisher geschah. gerichtete / ungerichtete Graphen G = (V, E) Darstellungen von Graphen Was bisher geschah gerichtete / ungerichtete Graphen G = (V, E) Darstellungen von Graphen Spezielle Graphen: I n, K n, P n, C n, K m,n, K 1,n, K n1,...,n m Beziehungen zwischen Graphen: Isomorphie, Teilgraph,

Mehr

1 DFS-Bäume in ungerichteten Graphen

1 DFS-Bäume in ungerichteten Graphen Praktikum Algorithmen-Entwurf (Teil 3) 06.11.2006 1 1 DFS-Bäume in ungerichteten Graphen Sei ein ungerichteter, zusammenhängender Graph G = (V, E) gegeben. Sei ferner ein Startknoten s V ausgewählt. Startet

Mehr

1 DFS-Bäume in ungerichteten Graphen

1 DFS-Bäume in ungerichteten Graphen Praktikum Algorithmen-Entwurf (Teil 3) 31.10.2005 1 1 DFS-Bäume in ungerichteten Graphen Sei ein ungerichteter, zusammenhängender Graph G = (V, E) gegeben. Sei ferner ein Startknoten s V ausgewählt. Startet

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 6: Graphentheorie Lang 6 Beutelspacher 8.1-8.5 Meinel 11 zur Vertiefung: Aigner 6, 7 (7.4: Algorithmus von Dijkstra) Matousek

Mehr

n t(2k + 1) in den P k s r = n t(2k + 1) Rest

n t(2k + 1) in den P k s r = n t(2k + 1) Rest Kette von P k s: Gesamtzahl der Elemente: top P k bottom P k P k }{{} t n t(2k + 1) in den P k s r = n t(2k + 1) Rest EADS 4 Schönhage/Paterson/Pippenger-Median-Algorithmus 365/530 Wenn r < t 1, dann wissen

Mehr

6. Planare Graphen und Färbungen

6. Planare Graphen und Färbungen 6. Planare Graphen und Färbungen Lernziele: Den Begriff der Planarität verstehen und erläutern können, wichtige Eigenschaften von planaren Graphen kennen und praktisch einsetzen können, die Anzahl von

Mehr

Informatik II Übung 2

Informatik II Übung 2 Informatik II Übung 2 Gruppe 2 Carina Fuss cfuss@student.ethz.ch 7.3.2018 Carina Fuss 7.3.2018 1 Übersicht Tipps zu Eclipse Nachbesprechung Übung 1 Vorbesprechung Übung 2 Wurzelbäume Sortieralgorithmus

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr