Einführung in die Systemprogrammierung 01

Größe: px
Ab Seite anzeigen:

Download "Einführung in die Systemprogrammierung 01"

Transkript

1 Einführung in die Systemprogrammierung 01 Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 24. April 2013

2 Administrativa Ab nächster Woche bitte Laptops in Übungen mitbringen OLAT-Paßwort ist mips Übungen werden montags morgens veröffentlicht Bearbeitungszeitlimit für Bonuspunkte: 12 Tage (Freitag Nachmittag, 17:00) Abgabe: Übungen Vorlesungen Sprechstunden Mein Fach im Direktorat, Robert-Mayer-Str

3 Daten-Repräsentation: Ganze Zahlen Wie repräsentieren wir ganze Zahlen (inklusive negativer Zahlen) im Speicher? Wie immer: Bitmuster!

4 Daten-Repräsentation: Ganze Zahlen Positive Zahlen: wie bisher Negative Zahlen: verschiedene Verfahren: Vorzeichen-Betrag Exzesscode Einerkomplement Zweierkomplement Negative Repräsentierungen verwenden logische Negation (neg bzw. ): b neg(b) Im Folgenden betrachten wir 8-Bit Zahlen. Die Konzepte funktionieren analog mit größeren n-bit Zahlen.

5 Vorzeichen-Betrag-Darstellung Beispiel Bitfolge repr( 5) = Betrag Vorzeichen Negation x: Oberstes Bit negieren Arithmetik: Benötigt Fallunterscheidung Zwei Nullen: , Zahlenraum: 2 n n 1 1 (symmetrisch)

6 Exzess-N-code-Darstellung Beispiel Bitfolge repr( 5) = = 123 = Hier: Exzess-128-Code (N = 128 = ) Negation x: 2N x Arithmetik: Benötigt Fallunterscheidung Eine Null: Zahlenraum: 2 n n 1 (asymmetrisch)

7 Einerkomplement-Darstellung Beispiel Bitfolge repr( 5) = neg(5) = neg( ) = Negation x: Alle Bits negieren Arithmetik: Ähnlich bei negativ/positiv Zwei Nullen: , Zahlenraum: 2 n n 1 (symmetrisch)

8 Zweierkomplement-Darstellung Beispiel Bitfolge repr( 5) = neg(5 1) = neg( ) = Negation x: Benötigt Fallunterscheidung Arithmetik: Positive/negative Zahlen sehr ähnlich, nur Vorzeichenerweiterung nötig Eine Null: Zahlenraum: 2 n n 1 (asymmetrisch) Einfache Arithmetik kleiner Prozessor

9 Zusammenfassung: Zahlen mit Vorzeichen Vorzeichen-Betrag: Vorzeichen-Bit repr( 1) = Exzess-N-code: +N (hier N = 128) repr( 1) = Einerkomplement: Negation repr( 1) = Zweierkomplement: Negation, +1 repr( 1) =

10 Kurze Geschichte der MIPS-Architektur 1984: MIPS Technologies gegründet 1985: MIPS R2000 (bis MHz) 1988: MIPS R3000 (bis 40 MHz), kommerziell erfolgreich 1992: Firma von SGI aufgekauft 1999: MIPS : Basis für Loongson-Prozessor 2012: Aktuellste MIPS-Prozessoren: MIPS32 microaptiv, interaptiv, proaptiv Eingebettete Systeme, Router, Android-Systeme, Allzweckrechner (Loongson)

11 Bedeutung der MIPS-Architektur RISC: Reduced Instruction Set Computing (Rechnen mit reduziertem Befehlssatz) Prozessoren vor MIPS: Komplexe Befehlssätze, oft für menschliche Programmierer gedacht Komplexer Prozessoraufbau (Mikroarchitektur) RISC ermöglicht mehrere Hardware-Optimierungen ( nächste Vorlesung) RISC verkleinerte Prozessoren Beschleunigung RISC-Idee aufgenommen von SPARC, DEC Alpha, PA-RISC, ARM, PowerPC Moderne x86-prozessoren verwenden intern RISC-Architektur

12 Einfacher Befehlssatz dank Übersetzern Programmrepräsentierungen und Werkzeuge Höhere Sprache Übersetzer/ Compiler Assembler Assemblersprache Maschinensprache

13 MIPS-Register Alle Register fassen 32 Bit (64 Bit bei Mips64) Registername(n) Bedeutung PC Programmzähler $0 Konstante 0 $1... $31 Allzweckregister HI, LO Divisions-/Multiplikationsergebnis Weitere Register in den Coprozessoren: Coprozessor 0: Verwaltung von Ausnahmen, Unterbrechungen, und Speicher Coprozessor 1 (optional): Fließkommaberechnung

14 MIPS-Hardware-Operationen Arithmetische und logische Operationen (add, ori,... ) Ladeoperationen Speicherzugriffsoperationen (lbu, sw,... ) Vergleichsoperationen Sprung- und Verzweigungsoperationen Systemoperationen Operationen auf Coprozessor 0 (Ausnahmen, Speicher) Operationen auf Coprozessor 1 (Fließkomma-Operationen)

15 Logische Operationen and or nor xor sll srl

16 Arithmetische Operationen Addition (add etc.) Subtraktion (sub etc.) Multiplikation (mul etc.) Division und Divisionsrest (div etc.) Verschiedene Implementierungsvarianten: Vorzeichenbehandlung Operanden Überlaufbehandlung Zielregister

17 Arithmetische Operationen: Operanden Register-Operanden add $x, $y, $z Beispiel: add $2, $2, $2 0x00 x y z 0x0 0x Maschinensprache: R-Format Für alle arithmetischen und logischen Operationen Direktoperand addi $x, $y, v Beispiel: addi $2, $3, 777 0x08 x z v Maschinensprache: I-Format Nur für addi, andi, ori, xori (und einige nicht-arithmethisch/logische Operationen)

18 Überlauf 32 Bit: Bit: A HI LO Option #1: 64 Bit-Wert aufteilen in Register HI, LO (z.b. mult, multu)

19 Überlauf A Ausgaberegister Option #2: Obere 32 Bit verwerfen (z.b. mul, addu)

20 Überlauf A Ausnahme nein = 0? ja Ausgaberegister ok Option #3: Ausnahme, falls obere 32 Bit 0 (z.b. add)

21 Arithmetische Operationen, Zusammenfassung Ganzzahl-Arithmetik: +,,, / Vorzeichen: Vorzeichenbehaftet: (div) Ohne Vorzeichen: (divu) Operanden: Registeroperanden: add $t1, $t2, $t3 Direktoperanden: addi $t1, $t2, 23 Überlaufverhalten: Ignoriert: (addu): FFFFFFFF Ausnahme: (add): FFFFFFFF + 2 Ausnahme Zielregister: Allzweckregister: mul $x, $y, $z HI und LO: 64-Bit Multiplikation/Division: mult $x, $y ; Obere 32 Bit in HI, untere in LO div $x, $y ; Rest in HI, Ergebnis in LO

22 Registerladeoperationen Obere 16 Bits direkt laden (untere 16 auf 0): lui $z, v HI- und LO-Register auslesen: mflo $z mfhi $z HI- und LO-Register beschreiben: mtlo $x mthi $x

23 Speicherzugriff [v + $x] Speicher:... E8 03 CD b C8... Mit Vorzeichen lb $z, v($x) Ohne Vorzeichen lbu $z, v($x) nein 00 < 0 FF ja $z = V V V b $z = b

24 Speicherbefehle Lesen: Befehl Name Ausr. B Vorzeichenerweiterung lb $z, v($x) load byte 8 1 ja lbu $z, v($x) load byte unsigned 8 1 nein lh $z, v($x) load halfword 16 2 ja lhu $z, v($x) load halfword unsigned 16 2 nein lw $z, v($x) load word 32 4 Schreiben: Befehl Name Ausrichtung Bytes sb $z, v($x) store byte 8 1 sh $z, v($x) store halfword 16 2 sw $z, v($x) store word 32 4

25 Sprung- und Verzweigungsbefehle Sprungbefehle ändern den Programmzähler steuern den Programmfluß Bezug zur theoretischen Informatik: Um Turing-vollständig zu sein ( Allzweckrechner ) benötigt ein Rechner: Sprungbefehle Bedingte Ausführung Indirekten Speicherzugriff (oder unendlich große Register)

26 Sprungbefehle Jeder dieser Befehle setzt den Programmzähler auf a, wenn die Bedingung wahr ist. Befehl Name Bedingung j a jump (keine) beq $x, $y, a branch if equal $x = $y bne $x, $y, a branch if not equal $x $y bltz $x, a branch if less than zero $x < 0 blez $x, a branch if less or equal to zero $x 0 bgtz $x, a branch if greater than zero $x > 0 bgez $x, a branch if greater or equal to zero $x 0

27 Sprungbefehle in Maschinensprache j ziel: 2 ziel 6 26 ziel: Absolute Adresse im Speicher Um zwei 0-Bits erweitert (Befehle 32-Bit ausgerichtet): PC := ziel 4 Kann noch nicht alle Adressen im Adreßraum anspringen (stattdessen ist u.u. der jr-befehl nötig) beq $x, $y, rziel: 4 $x $y rziel rziel: Relative Adresse im Speicher (Zweierkomplement) Um zwei 0-Bits erweitert: PC := PC + rziel 4

28 Sprungbefehle: Beispiel 0000: li $1, : li $2, Sprungmarken : eingabe $3 FC C: schleife: addi $1, $1, : beq $1, $3, fertig : mul $2, $2, $ : j schleife C: fertig: ausgabe $2 FC Relative Sprungmarke = 001C Absolute Sprungmarke = 000C Verweise auf Sprungmarken werden vom Assembler in relative oder absolute Adressen übersetzt.

29 Sprungbefehle: Beispiel li $1, 1 li $2, 1 eingabe $3 schleife: addi $1, $1, 1 beq $1, $3, fertig mul $2, $2, $1 j schleife fertig: ausgabe $2 Prozessor $0 = 0 $1 = 0 $2 = 0 $3 = 0

30 Sprungbefehle: Beispiel li $1, 1 li $2, 1 eingabe $3 schleife: addi $1, $1, 1 beq $1, $3, fertig mul $2, $2, $1 j schleife fertig: ausgabe $2 Prozessor $0 = 0 $1 = 1 $2 = 0 $3 = 0

31 Sprungbefehle: Beispiel li $1, 1 li $2, 1 eingabe $3 schleife: addi $1, $1, 1 beq $1, $3, fertig mul $2, $2, $1 j schleife fertig: ausgabe $2 Prozessor $0 = 0 $1 = 1 $2 = 1 $3 = 0

32 Sprungbefehle: Beispiel li $1, 1 li $2, 1 eingabe $3 schleife: addi $1, $1, 1 beq $1, $3, fertig mul $2, $2, $1 j schleife fertig: ausgabe $2 Eingabe: 4 Prozessor $0 = 0 $1 = 1 $2 = 1 $3 = 4

33 Sprungbefehle: Beispiel li $1, 1 li $2, 1 eingabe $3 schleife: addi $1, $1, 1 beq $1, $3, fertig mul $2, $2, $1 j schleife fertig: ausgabe $2 Prozessor $0 = 0 $1 = 2 $2 = 1 $3 = 4

34 Sprungbefehle: Beispiel li $1, 1 li $2, 1 eingabe $3 schleife: addi $1, $1, 1 beq $1, $3, fertig mul $2, $2, $1 j schleife fertig: ausgabe $2 Prozessor $0 = 0 $1 = 2 $2 = 1 $3 = 4

35 Sprungbefehle: Beispiel li $1, 1 li $2, 1 eingabe $3 schleife: addi $1, $1, 1 beq $1, $3, fertig mul $2, $2, $1 j schleife fertig: ausgabe $2 Prozessor $0 = 0 $1 = 2 $2 = 2 $3 = 4

36 Sprungbefehle: Beispiel li $1, 1 li $2, 1 eingabe $3 schleife: addi $1, $1, 1 beq $1, $3, fertig mul $2, $2, $1 j schleife fertig: ausgabe $2 Prozessor $0 = 0 $1 = 2 $2 = 2 $3 = 4

37 Sprungbefehle: Beispiel li $1, 1 li $2, 1 eingabe $3 schleife: addi $1, $1, 1 beq $1, $3, fertig mul $2, $2, $1 j schleife fertig: ausgabe $2 Prozessor $0 = 0 $1 = 3 $2 = 2 $3 = 4

38 Sprungbefehle: Beispiel li $1, 1 li $2, 1 eingabe $3 schleife: addi $1, $1, 1 beq $1, $3, fertig mul $2, $2, $1 j schleife fertig: ausgabe $2 Prozessor $0 = 0 $1 = 3 $2 = 2 $3 = 4

39 Sprungbefehle: Beispiel li $1, 1 li $2, 1 eingabe $3 schleife: addi $1, $1, 1 beq $1, $3, fertig mul $2, $2, $1 j schleife fertig: ausgabe $2 Prozessor $0 = 0 $1 = 3 $2 = 6 $3 = 4

40 Sprungbefehle: Beispiel li $1, 1 li $2, 1 eingabe $3 schleife: addi $1, $1, 1 beq $1, $3, fertig mul $2, $2, $1 j schleife fertig: ausgabe $2 Prozessor $0 = 0 $1 = 3 $2 = 6 $3 = 4

41 Sprungbefehle: Beispiel li $1, 1 li $2, 1 eingabe $3 schleife: addi $1, $1, 1 beq $1, $3, fertig mul $2, $2, $1 j schleife fertig: ausgabe $2 Prozessor $0 = 0 $1 = 4 $2 = 6 $3 = 4

42 Sprungbefehle: Beispiel li $1, 1 li $2, 1 eingabe $3 schleife: addi $1, $1, 1 beq $1, $3, fertig mul $2, $2, $1 j schleife fertig: ausgabe $2 Prozessor $0 = 0 $1 = 4 $2 = 6 $3 = 4

43 Sprungbefehle: Beispiel li $1, 1 li $2, 1 eingabe $3 schleife: addi $1, $1, 1 beq $1, $3, fertig mul $2, $2, $1 j schleife fertig: ausgabe $2 Prozessor $0 = 0 $1 = 4 $2 = 6 $3 = 4 Ausgabe: 6

44 Sprünge mit Registern Befehl Name Effekt jr $x jump to register PC := $x jal ziel jump and link $31 := PC + 4; PC := ziel jal springt und merkt sich Rücksprungadresse jr springt zu berechneter (z.b. von jal gespeicherter) Adresse $31 heißt auch $ra ( Rücksprungadresse bzw. return address)

45 Subroutinen mit jr und jal Hauptprogramm: jal eingabe... jal eingabe ausgabe $2 eingabe: lw $2, 1000($0) addi $2, 1 sw $2, 1000($0) eingabe $3 jr $ra eingabe markiert eine Subroutine jal eingabe ruft die Subroutine auf Die Subroutine hat folgende Auswirkungen: $3 wird eingelesen Das 32-Bit-Wort auf Adresse 1000 wird um 1 erhöht $2 wird auf den aktuellen Stand dieses Zählers gesetzt

46 Schwer zu merken: Welche Routinen verändert welche Registerinhalte wie? Aufrufkonventionen fakultaet: li $1, 1 li $2, 1 addi $3, $3, 1 schleife: addi $1, $1, 1 beq $1, $3, fertig mul $2, $2, $1 j schleife fertig: jr $ra Subroutine berechnet Fakultät von Wert in $3 Ergebnis in $2 Seiteneffekte: Inhalte von Registern $3 und $1 werden verändert

47 Subroutinen auf MIPS Größere Programme werden von mehreren Entwicklern gebaut, u.u. auch in verschiedenen Programmiersprachen Konventionen nötig, um Kommunikation zu erlauben Diese Konventionen geben an: Wo wird welcher Aufrufparameter abgelegt? In welche Register dürfen Subroutinen schreiben? Wo wird welcher Rückgabewert abgelegt? Auswirkungen: Registerkonventionen Speicherkonventionen Wer die Konventionen verletzt, riskiert schwer zu findende Programmfehler

48 Registerkonventionen Register Name Bedeutung Erhalten? $0 $zero Konstante 0 $1 $at Assembler-Hilfsregister nein $2 $3 $v0 $v1 Rückgabewerte nein $4 $7 $a0 $a3 Argumente (Parameter) nein $8 $15 $t0 $t7 Temporäre Register nein $16 $23 $s0 $s7 Gesicherte Register ja $24 $25 $t8 $t9 Temporäre Register nein $26 $27 $k0 $k1 Kernelregister nein $28 $gp Globaler Zeiger ja $29 $sp Stapelzeiger ja $30 $fp Rahmenzeiger ja $31 $ra Rücksprungadresse Erhaltene Register müssen beim Rücksprung von einer Subroutine den gleichen Zustand wie beim Einsprung haben.

49 Speicherkonventionen auf 32-Bit MIPS Betriebssystem verwendet Speicher von 0x xFFFFFFFF. Stapelspeicher (stack) per Konvention durch $sp begrenzt Ablagespeicher, von Systembibliotheken verwaltet (dynamische Allozierung) Statischer Speicher: Programmvariablen, mit gleicher Lebenszeit wie Gesamtprogramm Programmcode (text) ab 0x $fp $sp $gp Betriebssystem- Kern (Kernel), Gerätespeicher Stapelspeicher Ablagespeicher Statische Daten Programmcode

50 Der Stapelspeicher Per Konvention: Stapelspeicher speichert: Variablen von Subroutinen Parameter an Subroutinen $sp zeigt auf nach unten wachsenden Speicher $sp ist 64-Bit-ausgerichtet

51 Der Stapelspeicher: Beispiel Lokale Variablen: sub: addi $sp, $sp, -8 sw $s0, $sp(0) li $s0, lw $s0, $sp(0) addi $sp, 8 jr $ra $sp $sp Stapelspeicher Prozessor...? ? $s0 = CB33F5 $sp = 7FFF0A00 7FFF09F8

52 Der Stapelspeicher: Parameterübergabe Konvention: Für alle Parameter wird Platz auf dem Stapelspeicher alloziert Parameter 0 3 werden in Registern $a0-$a3 gespeichert Parameter ab 4 werden im Stapelspeicher gespeichert $sp Stapelspeicher... Param. 7 Param. 6 Param. 5 Param. 4 (Param. 3) (Param. 2) (Param. 1) (Param. 0)

53 MIPS-Speicher, Zusammenfassung Bereich unterhalb 0x für Anwendungen Speicheraufbau von oben nach unten: Stapelspeicher (wächst nach unten) ungenutzter Speicher Ablagespeicher (wächst nach oben) Statische Daten (konstante Größe) Programmcode (konstante Größe) Stapelspeicher nimmt lokale Variablen und Parameter auf $sp ist unteres Ende des Stapelspeichers $fp zeigt auf Aktivierungseintrag (Beginn der lokalen Variablen)

54 Subroutinen, Zusammenfassung Subroutinen werden mit jal (oder ähnlichen bedingten Sprüngen) aufgerufen Rücksprungadresse wird dabei in $ra abgelegt Parameter in $a0 $a3 und Stapelspeicher Rückgabewerte in $v0, $v1 Subroutinen müssen $s0 $s7, $fp, $sp, $gp erhalten Ablage von Variablen und Parametern im Stapelspeicher

55 Weitere MIPS-Operationen Pseudo-Operationen Coprozessor 0 Coprozessor 1 (Wir überspringen einige weniger wichtige Operationen.)

56 Pseudo-Operationen li $2, 0xABCD0123 ; Pseudoinstruktion wird vom Assembler überzetzt zu: lui $2, 0xABCD ori $2, $2, 0x0123 ; load upper immediate: Obere 16 Bits laden ; Bitweise-Oder fügt untere 16 Bits hinzu Einige Pseudo-Operationen benötigen Zwischenablagen, z.b.: blt $t0, $t1, ziel (springt gdw $t0 < $t1) muß erst Differenz zwischen $t0 und $t1 berechnen Register $at ist daher als Zwischenablage reserviert

57 Coprozessor 0 Speicherverwaltung Behandlung von Unterbrechungen und Ausnahmen: Unterbrechung (interrupt): Ein Eingabe- oder Ausgabegerät fordert Aufmerksamkeit Ausnahme (exception): Der Prozessor ist bei der Befehlsausführung auf eine ungewöhnliche Situation gestoßen: Unbekannter Befehl Arithmetischer Überlauf... Anfrage auf Systemdienst (syscall) 32 Spezialregister (nicht alle verwendet) Zugriff (nur durch Betriebssystemkern!) per: mtc0 $x, CP0Reg ; Lesen mfc0 $x, CP0Reg ; Schreiben

58 Systemdienste Betriebssystem hat Monopol auf Ein- und Ausgabegeräte Betriebssystemcode kann nur in privilegiertem Modus ( Kernel-Modus ) ausgeführt werden Privilegierter Modus (steuerbar durch Statusregister in CP0) erlaubt: Zugriff auf Register in Coprozessor 0 Zugriff auf Betriebssystemkernspeicher Zugriff auf Gerätespeicher Anwendungsprogramme können Betriebssystemkern um Dienstleistungen bitten: li $v0, Dienstleistungsnummer syscall

59 Systemdienste: Beispiele Diese Systemdienste werden von dem in den Übungen verwendeten SPIM-Simulator angeboten: $v0 Systemdienst 1 Zahl ausgeben: $a0 4 ASCII-Zeichenkette ausgeben: $a0 zeigt auf 0- terminierte Zeichenkette 5 Zahl einlesen: wird in $v0 gespeichert 8 ASCII-Zeichenkette einlesen: auf Adresse $a0, maximal $a1 Zeichen 10 SPIM-Simulator beenden

60 Behandlung von Unterbrechungen und Ausnahmen Bei einer Unterbrechung/Ausnahme reagiert der Prozessor wie folgt (in einem Schritt): Programmzähler wird in CP0-Register abgelegt (CP0 14) Prozessor sichert Statusregister und deaktiviert Hardwareunterbrechungen Grund für die Unterbrechung/Ausnahme wird in Register CP0 13 geschrieben Bei Speicherzugriffsfehlern: Fehleradresse wird gesichert System geht in Kernelmodus über System springt nach 0x Das Betriebssystem schreitet ein: Betriebssystemkern analysiert, behandelt Unterbrechung Betriebssystem führt eret-befehl aus: Programmzähler wird aus CP0 14 geladen Alter Status (Unterbrechungen, priv. Modus) wiederhergestellt

61 Coprozessor 1 Optionaler Zusatzprozessor (bei R2000, R3000) Hardware-Unterstützung für Fließkommazahlen: Basis-Arithmetik Quadratwurzel Zahlenkonvertierung / Rundung Bedingte Sprünge auf dem Zentralprozessor

62 MIPS-Hardware-Instruktionen, Zusammenfassung Alle Befehle als 32 Bit kodiert Befehle manipulieren die Register: 31 Allzweckregister, PC, HI, LO 32 CP0-Register für Systemverwaltung (nicht alle verwendbar!) CP1-Register für Fließkommazahlen Manche Befehle und Operationen nur in privilegiertem Modus ( Kernel-Modus ) erlaubt Drei Kodierungen für Befehle: R-Instruktionsformat: I-Instruktionsformat: J-Instruktionsformat: op $x $y $z fc op $x $y v op

63 Nächste Woche: Grundlagen der Performanz

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 9. Juli 2015 Der MIPS-Prozessor MIPS R2000, von iamretro.gr Kurze Geschichte der MIPS-Architektur

Mehr

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9

Arithmetik, Register und Speicherzugriff. Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik, Register und Speicherzugriff Grundlagen der Rechnerarchitektur Assembler 9 Arithmetik und Zuweisungen Einfache Arithmetik mit Zuweisung C Programm: a = b + c; d = a e; MIPS Instruktionen: Komplexere

Mehr

Assembler am Beispiel der MIPS Architektur

Assembler am Beispiel der MIPS Architektur Assembler am Beispiel der MIPS Architektur Frühere Einsatzgebiete MIPS Silicon Graphics Unix Workstations (z. B. SGI Indigo2) Silicon Graphics Unix Server (z. B. SGI Origin2000) DEC Workstations (z.b.

Mehr

Grundlagen der Rechnerarchitektur. MIPS Assembler

Grundlagen der Rechnerarchitektur. MIPS Assembler Grundlagen der Rechnerarchitektur MIPS Assembler Übersicht Arithmetik, Register und Speicherzugriff Darstellung von Instruktionen Logische Operationen Weitere Arithmetik Branches und Jumps Prozeduren 32

Mehr

Zusammenfassung: Grundlagen der Informatik Zahlensysteme, b-adische Darstellung, Umrechnung Beispiel: Umrechnung von ( ) 10 ins Dualsystem

Zusammenfassung: Grundlagen der Informatik Zahlensysteme, b-adische Darstellung, Umrechnung Beispiel: Umrechnung von ( ) 10 ins Dualsystem Zusammenfassung: Grundlagen der Informatik - Seite von 6 Zusammenfassung: Grundlagen der Informatik Zahlensysteme, b-adische Darstellung, Umrechnung Beispiel: Umrechnung von (69.59375) 0 ins Dualsystem

Mehr

RO-Tutorien 15 und 16

RO-Tutorien 15 und 16 Tutorien zur Vorlesung Rechnerorganisation Tutorienwoche 5 am 25.05.2011 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft

Mehr

28. März Name:. Vorname. Matr.-Nr:. Studiengang

28. März Name:. Vorname. Matr.-Nr:. Studiengang Klausur 28. März 2011 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Zur Klausur zugelassen sind ausschließlich Schreibutensilien,

Mehr

MIPS-Programmierung in der WebSPIM-Umgebung (0.3)

MIPS-Programmierung in der WebSPIM-Umgebung (0.3) MIPS-Programmierung in der WebSPIM-Umgebung (0.3) C. Reichenbach, mailto:reichenbach@cs.uni-frankfurt.de 12. Mai 2013 1 Einführung WebSPIM ist ein Web-basierter MIPS32-Simulator, dessen MIPS-Funktionalität

Mehr

Übungsblatt 10 (Block C 2) (16 Punkte)

Übungsblatt 10 (Block C 2) (16 Punkte) georg.von-der-brueggen [ ] tu-dortmund.de ulrich.gabor [ ] tu-dortmund.de pascal.libuschewski [ ] tu-dortmund.de Übung zur Vorlesung Rechnerstrukturen Wintersemester 2016 Übungsblatt 10 (Block C 2) (16

Mehr

Technische Informatik I - HS 18

Technische Informatik I - HS 18 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik I - HS 18 Musterlösung zu Übung 3 Datum : 25.-26. Oktober 2018 Aufgabe 1: Wurzelverfahren nach Heron Das

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM. Die MARS Umgebung

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM. Die MARS Umgebung Die MARS Umgebung MARS ist ein Simulationswerkzeug für MIPS Prozessoren Es enthält einen Assembler und eine Laufzeitumgebung Da das Wirtsystem (z.b. Windows) auf einem anderen Prozessor basiert, werden

Mehr

Heute nur MIPS-Praxis (4 Aufgaben)

Heute nur MIPS-Praxis (4 Aufgaben) Themen heute Heute nur MIPS-Praxis (4 Aufgaben) Hinweis: Diese Aufgaben findet ihr auf den Übungsblättern zu den Tutorien (bei Aufgabe 4 wurde eine Teilaufgabe und im Tutorium #6 bereits geklärte Wissensfragen

Mehr

Darstellung von Instruktionen. Grundlagen der Rechnerarchitektur Assembler 21

Darstellung von Instruktionen. Grundlagen der Rechnerarchitektur Assembler 21 Darstellung von Instruktionen Grundlagen der Rechnerarchitektur Assembler 21 Übersetzung aus Assembler in Maschinensprache Assembler Instruktion add $t0, $s1, $s2 0 17 18 8 0 32 6 Bit Opcode Maschinen

Mehr

Notwendigkeit für andere Instruktionsformate

Notwendigkeit für andere Instruktionsformate Notwendigkeit für andere Instruktionsformate add $t0, $s1, $s2 op rs rt rd shamt funct 6 Bit 5 Bit 5 Bit 5 Bit 5 Bit 6 Bit R Typ? lw $t0, 32($s3) I Typ Opcode 6 Bit Source 5 Bit Dest 5 Bit Konstante oder

Mehr

Weitere Arithmetik. Grundlagen der Rechnerarchitektur Assembler 33

Weitere Arithmetik. Grundlagen der Rechnerarchitektur Assembler 33 Weitere Arithmetik Grundlagen der Rechnerarchitektur Assembler 33 Die speziellen Register lo und hi Erinnerung: ganzzahliges Produkt von zwei n Bit Zahlen benötigt bis zu 2n Bits Eine MIPS Instruktion

Mehr

5.BMaschinensprache und Assembler

5.BMaschinensprache und Assembler Die Maschinenprogrammebene eines Rechners Jörg Roth 268 5.BMaschinensprache und Assembler Die vom Prozessor ausführbaren Befehle liegen im Binärformat vor. Nur solche Befehle sind direkt ausführbar. So

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 15. April 2014 Veranstaltungsübersicht Kontakt: Prof. Dr. Christoph Reichenbach (reichenbach@cs.uni-frankfurt.de)

Mehr

Übungsblatt 10 (Block C 2) (16 Punkte)

Übungsblatt 10 (Block C 2) (16 Punkte) georg.von-der-brueggen [ ] tu-dortmund.de ulrich.gabor [ ] tu-dortmund.de marco.duerr [ ] tu-dortmund.de Übung zur Vorlesung Rechnerstrukturen Wintersemester 2018 Übungsblatt 10 (Block C 2) (16 Punkte)

Mehr

21. Februar Name:. Vorname. Matr.-Nr:. Studiengang

21. Februar Name:. Vorname. Matr.-Nr:. Studiengang Klausur 21. Februar 2011 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Zur Klausur zugelassen sind ausschließlich Schreibutensilien,

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 6 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht Kap.2 Befehlsschnittstelle Prozessoren, externe Sicht 2 Befehlsschnittstelle 2.1 elementare Datentypen, Operationen 2.2 logische Speicherorganisation 2.3 Maschinenbefehlssatz 2.4 Klassifikation von Befehlssätzen

Mehr

Programmiersprachen Einführung in C

Programmiersprachen Einführung in C Programmiersprachen Einführung in C Teil 1: Von der Maschinensprache zu C Prof. Dr. Maschinensprache: MIPS R2000 Was bewirkt folgendes Programm: 00100111101111011111111111100000 10101111101111110000000000010100

Mehr

Mikroprozessortechnik. 03. April 2012

Mikroprozessortechnik. 03. April 2012 Klausur 03. April 2012 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Die Klausur besteht aus 6 doppelseitig bedruckten Blättern.

Mehr

Beispiel: A[300] = h + A[300]

Beispiel: A[300] = h + A[300] Beispiel: A[300] = h + A[300] $t1 sei Basisadresse von A und h in $s2 gespeichert. Assembler Code? Maschinen Code (der Einfachheit halber mit Dezimalzahlen)? op rs rt rd adr/shamt funct Instruktion Format

Mehr

Klausur Mikroprozessortechnik 29. März 2010

Klausur Mikroprozessortechnik 29. März 2010 Klausur Mikroprozessortechnik 29. März 2010 Name:... Vorname:... Matr.-Nr:... Studiengang:... Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Zur Klausur zugelassen

Mehr

Unterstützung von Jump Tables

Unterstützung von Jump Tables Unterstützung von Jump Tables Assembler Code: Label_ 1: Label_2: Label_n: Maschinen Code: 0x05342120: 1011010110 0x05443004: 0001011101 0x06756900: 0000111000 Jump Table Nr Label Adresse 0 Label_1 0x05342120

Mehr

32 Bit Konstanten und Adressierung. Grundlagen der Rechnerarchitektur Assembler 78

32 Bit Konstanten und Adressierung. Grundlagen der Rechnerarchitektur Assembler 78 32 Bit Konstanten und Adressierung Grundlagen der Rechnerarchitektur Assembler 78 Immediate kann nur 16 Bit lang sein Erinnerung: Laden einer Konstante in ein Register addi $t0, $zero, 200 Als Maschinen

Mehr

24. Februar Name:. Vorname. Matr.-Nr:. Studiengang

24. Februar Name:. Vorname. Matr.-Nr:. Studiengang Klausur 24. Februar 2012 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Die Klausur besteht aus 6 doppelseitig bedruckten

Mehr

Lösungsvorschlag zur 3. Übung

Lösungsvorschlag zur 3. Übung Prof Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik Wintersemester 09/10 1 Präsenzübungen 11 Schnelltest Lösungsvorschlag zur Übung a) Welche der folgenden Aussagen entsprechen

Mehr

Die Maschinenprogrammebene eines Rechners Jörg Roth 294

Die Maschinenprogrammebene eines Rechners Jörg Roth 294 Die Maschinenprogrammebene eines Rechners Jörg Roth 294 5.E Die SPIM-Umgebung SPIM ist ein Simulationswerkzeug für MIPS-Prozessoren Es enthält einen Assembler und eine Laufzeitumgebung Da das Wirtsystem

Mehr

Technische Informatik I Übung 3: Assembler

Technische Informatik I Übung 3: Assembler Technische Informatik I Übung 3: Assembler Roman Trüb Computer Engineering Group, ETH Zürich 1 Lernziele Übung 3 Aufgabe 1 Aufbau und Aufruf von Funktionen in Assembler Assembler Codeanalyse Aufgabe 2

Mehr

Assembler Programmierung Motivation. Informatik II SS 2004 Teil 4: Assembler Programmierung. Assembler vs. Maschinensprache

Assembler Programmierung Motivation. Informatik II SS 2004 Teil 4: Assembler Programmierung. Assembler vs. Maschinensprache Assembler Programmierung Motivation Informatik II SS 2004 Teil 4: Assembler Programmierung Was ist ein Programm? Eine Reihe von Befehlen, die der Ausführung einer Aufgabe dient Dazu wird das Programm sequentiell

Mehr

Einführung. Saalübung Informatik II SS Einführung. Einführung

Einführung. Saalübung Informatik II SS Einführung. Einführung Saalübung Informatik II SS 2006 SPIM-Assembler Teil 1 Einführung Übung zur SPIM-Assemblerprogrammierung Assembler ist die elementare Sprache eines Prozessors Assemblerbefehle repräsentieren die Basisoperationen

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 15. Juli 2014 Veranstaltungsübersicht Kontakt: Prof. Dr. Christoph Reichenbach (reichenbach@cs.uni-frankfurt.de)

Mehr

Lösungsvorschlag 10. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 10. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag. Übung Technische Grundlagen der Informatik II Sommersemester 29 Aufgabe.: MIPS-Kontrollsignale Für die 5 Befehlstypen a) R-Format

Mehr

Offenbar hängt das Ergebnis nur von der Summe der beiden Argumente ab...

Offenbar hängt das Ergebnis nur von der Summe der beiden Argumente ab... 0 1 2 0 2 1 1 2 0 2 1 0 Offenbar hängt das Ergebnis nur von der Summe der beiden Argumente ab... 0 1 2 0 1 2 1 1 3 2 2 3 212 Um solche Tabellen leicht implementieren zu können, stellt Java das switch-statement

Mehr

Technische Informatik 1 Übung 2 Assembler (Computerübung) Matthias Meyer

Technische Informatik 1 Übung 2 Assembler (Computerübung) Matthias Meyer Technische Informatik 1 Übung 2 Assembler (Computerübung) Matthias Meyer Ziele der Übung Aufgabe 1 Ein lauffähiges Assembler-Programm Umgang mit dem Debugger Aufgabe 2 (Zusatzaufgabe) Lesen und Analysieren

Mehr

Besprechung des 4. Übungsblattes Was ist MIPS? SPIM-Simulator MIPS-Befehlsformate MIPS-Befehle Assemblerdirektiven Syscalls in MIPS

Besprechung des 4. Übungsblattes Was ist MIPS? SPIM-Simulator MIPS-Befehlsformate MIPS-Befehle Assemblerdirektiven Syscalls in MIPS Organisatorisches Es gibt kein Übungsblatt zur heutigen Abgabe, da sich durch ausfallende Vorlesungstermine entsprechende Verschiebungen ergeben haben Das jetzige Übungsblatt ist abzugeben bis zum nächsten

Mehr

Vorlesung Rechnerarchitektur

Vorlesung Rechnerarchitektur Vorlesung Rechnerarchitektur Sommersemester 2017 Carsten Hahn 8. Juni 2017 Agenda Grundlagen: Wiederholung Kontroll-Strukturen Stack-Speicher Unterprogramme I Unterprogramme II Call-by-Value (CBV) vs.

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

Institut für Informatik Prof. Dr. D. Hogrefe Dipl.-Inf. R. Soltwisch, Dipl.-Inform. M. Ebner, Prof. Dr. D. Hogrefe Informatik II - SS 04.

Institut für Informatik Prof. Dr. D. Hogrefe Dipl.-Inf. R. Soltwisch, Dipl.-Inform. M. Ebner, Prof. Dr. D. Hogrefe Informatik II - SS 04. Kontrollstrukturen Informatik II SS 2004 Teil 4: Assembler Programmierung Sprünge (bedingte und unbedingte) If-then-else, Case Loop (n Durchläufe) While (Abbruchbedingung) Institut für Informatik Prof.

Mehr

Unterprogramme. Unterprogramme

Unterprogramme. Unterprogramme Unterprogramme Unterprogramme wichtiges Hilfsmittel für mehrfach benötigte Programmabschnitte spielen in höheren Programmiersprachen eine wesentliche Rolle in Assembler sind bestimmte Konventionen nötig

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Der Binder Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 28. Mai 2015 Herausforderungen durch große Programme Große Programme: die meisten

Mehr

Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015

Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015 Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015 Ziele der Übung Aufgabe 1 Aufbau und Aufruf von Funktionen in Assembler Codeanalyse

Mehr

Grundlagen zur Assemblerprogrammierung unter SPIM im Sommersemester Lorenz Schauer Mobile & Verteilte Systeme

Grundlagen zur Assemblerprogrammierung unter SPIM im Sommersemester Lorenz Schauer Mobile & Verteilte Systeme Grundlagen zur Assemblerprogrammierung unter SPIM im Sommersemester 2016 Lorenz Schauer Mobile & Verteilte Systeme 12. Juli 2016 Agenda heute Grundlagen: Unterprogramme I Call-by-Value (CBV) vs. Call-by-Reference

Mehr

Grundlagen der Rechnerarchitektur. Einführung

Grundlagen der Rechnerarchitektur. Einführung Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Musterlösung zur Klausur

Musterlösung zur Klausur Koblenz am 25. Februar 25 Uhr c.t., Hörsaal MD 28 Studiengang Informatik/Computervisualistik Musterlösung zur Klausur TECHNISCHE INFORMATIK B Prof. Dr. Ch. Steigner Name: Vorname: Matrikel-Nr.: Vergessen

Mehr

Rechnerarchitektur. Marián Vajteršic und Helmut A. Mayer

Rechnerarchitektur. Marián Vajteršic und Helmut A. Mayer Rechnerarchitektur Marián Vajteršic und Helmut A. Mayer Fachbereich Computerwissenschaften Universität Salzburg marian@cosy.sbg.ac.at und helmut@cosy.sbg.ac.at Tel.: 8044-6344 und 8044-6315 3. Mai 2017

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 2 Instruktionssatz Lothar Thiele Computer Engineering and Networks Laboratory Instruktionsverarbeitung 2 2 Übersetzung Das Kapitel 2 der Vorlesung setzt sich mit der Maschinensprache

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Sprungbefehle und Kontroll-Strukturen

Sprungbefehle und Kontroll-Strukturen Sprungbefehle und Kontroll-Strukturen Statusregister und Flags Sprungbefehle Kontrollstrukturen Das Status-Register 1 Register-Satz des ATmega128 Universal-Register (8Bit) R0..R15 16 Bit Program counter

Mehr

5.GTypische Anwendungsfälle

5.GTypische Anwendungsfälle Die Maschinenprogrammebene eines Rechners Jörg Roth 337 5.GTypische Anwendungsfälle Wir betrachten im Folgenden typische Fälle aus dem Bereich imperativer Programmiersprachen und beschreiben, wie diese

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation Mikroprogrammierung

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

######################### Zeichenkette auswerten ###################################

######################### Zeichenkette auswerten ################################### Informatik 3 Übung 06 Georg Kuschk 6.3) MIPS #Aufgabe 6.3) #Georg Kuschk #ACHTUNG : Da laut Forum davon ausgegangen werden soll, dass der Eingabewert, # falls er denn kleiner gleich 10 Stellen besitzt,

Mehr

Übung Praktische Informatik II

Übung Praktische Informatik II Übung Praktische Informatik II FSS 2009 Benjamin Guthier Lehrstuhl für Praktische Informatik IV Universität Mannheim guthier@pi4.informatik.uni-mannheim.de 20.03.09 4-1 Heutige große Übung Ankündigung

Mehr

ARM-Cortex-M4 / Thumb-2-Befehlssatz Adressierungsarten und arithmetische Operationen

ARM-Cortex-M4 / Thumb-2-Befehlssatz Adressierungsarten und arithmetische Operationen ARM-Cortex-M4 / Thumb-2-Befehlssatz Adressierungsarten und arithmetische Operationen Aufgabenstellung: - das beigefügte Assembler-Programm schrittweise ausführen - sich mit der Handhabung der Entwicklungswerkzeuge

Mehr

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht

Kap.3 Mikroarchitektur. Prozessoren, interne Sicht Kap.3 Mikroarchitektur Prozessoren, interne Sicht 3.1 Elementare Datentypen, Operationen und ihre Realisierung (siehe 2.1) 3.2 Mikroprogrammierung 3.3 Einfache Implementierung von MIPS 3.4 Pipelining Implementierung

Mehr

Kap 5. 5 Die Maschinenprogrammebene eines Rechners. int a=1, b=2; a = a+2*b; Höhere Programmiersprache. Assembler und Maschinenprogramm

Kap 5. 5 Die Maschinenprogrammebene eines Rechners. int a=1, b=2; a = a+2*b; Höhere Programmiersprache. Assembler und Maschinenprogramm 5 Die Maschinenprogrammebene eines Rechners Höhere Programmiersprache Assembler und Maschinenprogramm Register und Mikroprogramm int a=1, b=2; a = a+2*b; lw $t0, a lw $t1, b add $t0, $t0, $t1 add $t0,

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Repräsentierung Rationaler Zahlen Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 19. Juni 2015 Rationale Zahlen Wie können wir Rationale

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 9.1: Dinatos-Algorithmus-Analyse Die folgenden Verilog-Zeilen

Mehr

"Organisation und Technologie von Rechensystemen 4"

Organisation und Technologie von Rechensystemen 4 Klausur OTRS-4, 29.09.2004 Seite 1 (12) INSTITUT FÜR INFORMATIK Lehrstuhl für Rechnerarchitektur (Informatik 3) Universität Erlangen-Nürnberg Martensstr. 3, 91058 Erlangen 29.09.2004 Klausur zu "Organisation

Mehr

3. Grundlagen der Rechnerarchitektur

3. Grundlagen der Rechnerarchitektur 3. Grundlagen der Rechnerarchitektur 3.1 Architektur des von-neumann-rechners 3.2 Maschinentypen: Einadressmaschine, Zweiadressmaschine 3.3 Befehlsformate und Adressierungstechniken 3.4 Beispiel: der Prozessor

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

3.1 Architektur des von-neumann-rechners. 3. Grundlagen der Rechnerarchitektur

3.1 Architektur des von-neumann-rechners. 3. Grundlagen der Rechnerarchitektur 3. Grundlagen der Rechnerarchitektur 3.1 Architektur des von-neumann-rechners 3.1 Architektur des von - Neumann - Rechners 3.2 Maschinentypen: Einadressmaschine, Zweiadressmaschine 3.3 Befehlsformate und

Mehr

Einheit Datentypen in der Programmiersprache C Schwerpunkt: Elementare (arithmetische) Datentypen

Einheit Datentypen in der Programmiersprache C Schwerpunkt: Elementare (arithmetische) Datentypen Einheit Datentypen in der Programmiersprache C Schwerpunkt: Elementare (arithmetische) Datentypen Kurs C/C++ Programmierung, WS 2008/2009 Dipl.Inform. R. Spurk Arbeitsgruppe Programmierung FR 6.2 Informatik

Mehr

Synchronisation. Grundlagen der Rechnerarchitektur Assembler 91

Synchronisation. Grundlagen der Rechnerarchitektur Assembler 91 Synchronisation Grundlagen der Rechnerarchitektur Assembler 91 Data Race Prozessor 1: berechne x = x + 2 lw $t0, 0($s0) # lade x nach $t0 addi $t0, $t0, 2 # $t0 = $t0 + 2 sw $t0, 0($s0) # speichere $t0

Mehr

13.2 Übergang zur realen Maschine

13.2 Übergang zur realen Maschine 13.2 Übergang zur realen Maschine Bernd Becker Technische Informatik II Unterschiede zwischen abstrakter und realer Maschine 1. Bei realer Maschine nur ein Speicher M für Daten und Befehle. M ist endlich.

Mehr

RO.RO, ADD RO, 120,121 MUL 120,120,121 INPUT RO, MUL INPUT 120,0 ADD RO, INPUT 121,1 INPUT R 1,2 INPUT 121,2 RO, IN put 121,1 N RO, ROIRA SET 121,3

RO.RO, ADD RO, 120,121 MUL 120,120,121 INPUT RO, MUL INPUT 120,0 ADD RO, INPUT 121,1 INPUT R 1,2 INPUT 121,2 RO, IN put 121,1 N RO, ROIRA SET 121,3 6 4 Prozessor-Datenpfad a) Schreiben Sie für den Universalrechner ein Programm in Assembler-Sprache, welches die drei Seiten eines Würfels von den Eingängen, und einliest, das Volumen des Würfels berechnet

Mehr

Was ist die Performance Ratio?

Was ist die Performance Ratio? Was ist die Performance Ratio? Wie eben gezeigt wäre für k Pipeline Stufen und eine große Zahl an ausgeführten Instruktionen die Performance Ratio gleich k, wenn jede Pipeline Stufe dieselbe Zeit beanspruchen

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Computersysteme. Stacks Anwendung in der Assembler-Programmierung

Computersysteme. Stacks Anwendung in der Assembler-Programmierung Computersysteme Stacks Anwendung in der Assembler-Programmierung 1 Unterprogramme Betrachten wir zunächst folgendes Programm m_mod_n : /Berechne m modulo n für positive Integerwerte m und n. /Beim Programmstart

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Die Programmiersprache C Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 14. Mai 2015 Hallo, Welt! main() { printf("hallo, Welt!\n"); } main:

Mehr

Grundlagen der Rechnerarchitektur. MIPS Assembler

Grundlagen der Rechnerarchitektur. MIPS Assembler Grundlagen der Rechnerarchitektur MIPS Assembler Übersicht Arithmetik, Register und Speicherzugriff Darstellung von Instruktionen Logische Operationen Weitere Arithmetik Branches und Jumps Prozeduren 32

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation Mikroprogrammierung

Mehr

Informatik II SS 2004 Teil 4-1: Assembler Programmierung

Informatik II SS 2004 Teil 4-1: Assembler Programmierung Assembler Programmierung Motivation Informatik II SS 2004 Teil 4-1: Assembler Programmierung Prof. Dr. Dieter Hogrefe Dipl.-Inform. Michael Ebner Lehrstuhl für Telematik Institut für Informatik Was ist

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation Mikroprogrammierung

Mehr

Assembler Integer-Arithmetik

Assembler Integer-Arithmetik Assembler Integer-Arithmetik Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler Integer-Arithmetik 1/23 2008-04-01 Arithmetik

Mehr

Zusammenfassung der Assemblerbefehle des 8051

Zusammenfassung der Assemblerbefehle des 8051 Zusammenfassung der Assemblerbefehle des 8051 Seite 1 von 5 Befehl Bezeichnung Syntax Wirkung / Beispiel Befehle zum Datentransfer MOV Move MOV [Ziel],[Quelle] MOV P1,P3 Kopiert den Inhalt von P3 nach

Mehr

Technische Informatik 1 - HS 2017

Technische Informatik 1 - HS 2017 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2017 Lösungsvorschläge für Übung 2 Datum: 12. 13. 10. 2017 1 Aufgaben Diese Übung soll Ihnen einen

Mehr

Rechnernetze und Organisation

Rechnernetze und Organisation Arithmetic Logic Unit ALU Professor Dr. Johannes Horst Wolkerstorfer Cerjak, 9.2.25 RNO VO4_alu Übersicht Motivation ALU Addition Subtraktion De Morgan Shift Multiplikation Gleitkommazahlen Professor Dr.

Mehr

Kontrollpfad der hypothetischen CPU

Kontrollpfad der hypothetischen CPU Kontrollpfad der hypothetischen CPU fast alle Algorithmen benötigen FOR- oder WHILE-Schleifen und IF.. ELSE Verzweigungen Kontrollfluß ist datenabhängig CCR speichert Statussignale N,Z, V,C der letzten

Mehr

Organisatorisches. PDV und Robotik Fakultät 4 TUB 1 INFO4 Übung Assembler 1

Organisatorisches. PDV und Robotik Fakultät 4 TUB 1 INFO4 Übung Assembler 1 Organisatorisches Die Großübung findet zweimal mit gleichen Inhalt statt: Montag 16-18 und Mittwoch 14-16 jeweils im MA001. Betreute Rechnerzeit: Donnerstag 10-18 und Freitag 10-16 jeweils FR2516 Code:

Mehr

Übungsblatt 7 Implementierung von Programmsteuerbefehlen in einer Befehlspipeline Abgabefrist: Mittwoch , 14:00 Uhr

Übungsblatt 7 Implementierung von Programmsteuerbefehlen in einer Befehlspipeline Abgabefrist: Mittwoch , 14:00 Uhr Praktikum zur Vorlesung Prozessorarchitektur SS 2017 Übungsblatt 7 Implementierung von Programmsteuerbefehlen in einer Befehlspipeline Abgabefrist: Mittwoch 21.06.2017, 14:00 Uhr 1.1. Einführung Programmsteuerbefehle

Mehr

Kontrollpfad der hypothetischen CPU

Kontrollpfad der hypothetischen CPU Kontrollpfad der hypothetischen CPU fast alle Algorithmen benötigen FOR- oder WHILE-Schleifen und IF.. ELSE Verzweigungen Kontrollfluß ist datenabhängig CCR speichert Statussignale N,Z, V,C der letzten

Mehr

Technische Informatik I - HS 18

Technische Informatik I - HS 18 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik I - HS 18 Musterlösung zu Übung 6 Datum : 15.-16. November 2018 Aufgabe 1: Bit-Test Zum Überprüfen des Status

Mehr

9. Assembler: Der Prozessor Motorola 68000

9. Assembler: Der Prozessor Motorola 68000 9.1 Architektur des Prozessors M 68000 9.2 Adressierungsarten des M 68000 9-1 9.1 Beschreibung des Prozessors M 68000 Charakteristische Daten des 56 Maschinenbefehle 14 Adressierungsarten Zweiadressmaschine

Mehr

9. Assembler: Der Prozessor Motorola 68000

9. Assembler: Der Prozessor Motorola 68000 9.1 Architektur des Prozessors M 68000 9.2 Adressierungsarten des M 68000 9-1 9.1 Beschreibung des Prozessors M 68000 Charakteristische Daten des 56 Maschinenbefehle 14 Adressierungsarten Zweiadressmaschine

Mehr

1 Rechnerstrukturen 1: Der Sehr Einfache Computer

1 Rechnerstrukturen 1: Der Sehr Einfache Computer David Neugebauer, Informationsverarbeitung - Universität zu Köln, Seminar BIT I Inhaltsverzeichnis 1 Rechnerstrukturen 1: Der Sehr Einfache Computer 1 1.1 Komponenten................................. 1

Mehr

N Bit Binärzahlen. Stelle: Binär-Digit:

N Bit Binärzahlen. Stelle: Binär-Digit: N Bit Binärzahlen N Bit Binärzahlen, Beispiel 16 Bit: Stelle: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Binär-Digit: 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 Least Significant Bit (LSB) und Most Significant Bit (MSB)

Mehr

Grundlagen der Rechnerarchitektur. MIPS Assembler

Grundlagen der Rechnerarchitektur. MIPS Assembler Grundlagen der Rechnerarchitektur MIPS Assembler Übersicht Arithmetik, Register und Speicherzugriff Darstellung von Instruktionen Logische Operationen Weitere Arithmetik Branches und Jumps Prozeduren 32

Mehr

Von-Neumann-Architektur

Von-Neumann-Architektur Von-Neumann-Architektur Bisher wichtig: Konstruktionsprinzip des Rechenwerkes und Leitwerkes. Neu: Größerer Arbeitsspeicher Ein- und Ausgabewerk (Peripherie) Rechenwerk (ALU) Steuerwerk (CU) Speicher...ppppp...dddddd..

Mehr

4. TÜ-Zusammenfassung zum Modul Computersysteme

4. TÜ-Zusammenfassung zum Modul Computersysteme 4. TÜ-Zusammenfassung zum Modul Computersysteme Kurzzusammenfassung 6. Kapitel MMIX 256 Allzweckregister um Operanden abzuspeichern 32 Spezialregister bilden Schnittstelle zwischen Soft- und Hardware ALU(Arithmetic

Mehr

11. Unterprogrammtechnik

11. Unterprogrammtechnik 11 Unterprogrammtechnik 111 Sprung und Rücksprung 112 Retten der Register 113 Parameter-Übergabe Programmierkurs II Wolfgang Effelsberg 11 Unterprogrammtechnik 11-1 111 Sprung und Rücksprung BSR Verzweige

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 22: Mima-X Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr